Properties

Label 825.6.a.g.1.3
Level $825$
Weight $6$
Character 825.1
Self dual yes
Analytic conductor $132.317$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [825,6,Mod(1,825)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(825, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("825.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 825 = 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 825.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(132.316651346\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.18257.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 26x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 165)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(5.47894\) of defining polynomial
Character \(\chi\) \(=\) 825.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.47894 q^{2} +9.00000 q^{3} -11.9391 q^{4} +40.3105 q^{6} +168.818 q^{7} -196.801 q^{8} +81.0000 q^{9} +O(q^{10})\) \(q+4.47894 q^{2} +9.00000 q^{3} -11.9391 q^{4} +40.3105 q^{6} +168.818 q^{7} -196.801 q^{8} +81.0000 q^{9} +121.000 q^{11} -107.452 q^{12} -290.259 q^{13} +756.126 q^{14} -499.408 q^{16} -623.964 q^{17} +362.794 q^{18} -398.456 q^{19} +1519.36 q^{21} +541.952 q^{22} -3788.06 q^{23} -1771.21 q^{24} -1300.06 q^{26} +729.000 q^{27} -2015.53 q^{28} +4220.43 q^{29} -5594.57 q^{31} +4060.80 q^{32} +1089.00 q^{33} -2794.70 q^{34} -967.065 q^{36} -301.266 q^{37} -1784.66 q^{38} -2612.33 q^{39} -14636.2 q^{41} +6805.14 q^{42} -151.418 q^{43} -1444.63 q^{44} -16966.5 q^{46} +13535.0 q^{47} -4494.67 q^{48} +11692.5 q^{49} -5615.68 q^{51} +3465.43 q^{52} +18116.1 q^{53} +3265.15 q^{54} -33223.5 q^{56} -3586.10 q^{57} +18903.0 q^{58} -50582.4 q^{59} +5984.35 q^{61} -25057.8 q^{62} +13674.3 q^{63} +34169.1 q^{64} +4877.57 q^{66} -22450.7 q^{67} +7449.56 q^{68} -34092.6 q^{69} +10017.6 q^{71} -15940.8 q^{72} +476.148 q^{73} -1349.35 q^{74} +4757.19 q^{76} +20427.0 q^{77} -11700.5 q^{78} -85024.7 q^{79} +6561.00 q^{81} -65554.5 q^{82} +25643.4 q^{83} -18139.8 q^{84} -678.194 q^{86} +37983.8 q^{87} -23812.9 q^{88} +1807.91 q^{89} -49001.0 q^{91} +45226.0 q^{92} -50351.2 q^{93} +60622.4 q^{94} +36547.2 q^{96} -11688.5 q^{97} +52370.1 q^{98} +9801.00 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 2 q^{2} + 27 q^{3} - 42 q^{4} - 18 q^{6} + 68 q^{7} + 24 q^{8} + 243 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q - 2 q^{2} + 27 q^{3} - 42 q^{4} - 18 q^{6} + 68 q^{7} + 24 q^{8} + 243 q^{9} + 363 q^{11} - 378 q^{12} - 290 q^{13} + 916 q^{14} - 590 q^{16} - 434 q^{17} - 162 q^{18} - 2856 q^{19} + 612 q^{21} - 242 q^{22} + 640 q^{23} + 216 q^{24} + 2132 q^{26} + 2187 q^{27} + 580 q^{28} - 4538 q^{29} - 14968 q^{31} + 2496 q^{32} + 3267 q^{33} - 13704 q^{34} - 3402 q^{36} + 6190 q^{37} + 11668 q^{38} - 2610 q^{39} - 8926 q^{41} + 8244 q^{42} + 33592 q^{43} - 5082 q^{44} - 35680 q^{46} + 24640 q^{47} - 5310 q^{48} - 14693 q^{49} - 3906 q^{51} - 18780 q^{52} + 22934 q^{53} - 1458 q^{54} - 40012 q^{56} - 25704 q^{57} + 32304 q^{58} - 13756 q^{59} + 24602 q^{61} + 7704 q^{62} + 5508 q^{63} + 35474 q^{64} - 2178 q^{66} - 16868 q^{67} + 71288 q^{68} + 5760 q^{69} + 4856 q^{71} + 1944 q^{72} - 1910 q^{73} + 29404 q^{74} + 6116 q^{76} + 8228 q^{77} + 19188 q^{78} - 36844 q^{79} + 19683 q^{81} - 84000 q^{82} + 48796 q^{83} + 5220 q^{84} - 83492 q^{86} - 40842 q^{87} + 2904 q^{88} - 188978 q^{89} - 93208 q^{91} + 6976 q^{92} - 134712 q^{93} + 70472 q^{94} + 22464 q^{96} - 247526 q^{97} + 154654 q^{98} + 29403 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.47894 0.791773 0.395886 0.918300i \(-0.370437\pi\)
0.395886 + 0.918300i \(0.370437\pi\)
\(3\) 9.00000 0.577350
\(4\) −11.9391 −0.373096
\(5\) 0 0
\(6\) 40.3105 0.457130
\(7\) 168.818 1.30219 0.651094 0.758997i \(-0.274310\pi\)
0.651094 + 0.758997i \(0.274310\pi\)
\(8\) −196.801 −1.08718
\(9\) 81.0000 0.333333
\(10\) 0 0
\(11\) 121.000 0.301511
\(12\) −107.452 −0.215407
\(13\) −290.259 −0.476352 −0.238176 0.971222i \(-0.576549\pi\)
−0.238176 + 0.971222i \(0.576549\pi\)
\(14\) 756.126 1.03104
\(15\) 0 0
\(16\) −499.408 −0.487703
\(17\) −623.964 −0.523645 −0.261823 0.965116i \(-0.584324\pi\)
−0.261823 + 0.965116i \(0.584324\pi\)
\(18\) 362.794 0.263924
\(19\) −398.456 −0.253219 −0.126609 0.991953i \(-0.540409\pi\)
−0.126609 + 0.991953i \(0.540409\pi\)
\(20\) 0 0
\(21\) 1519.36 0.751819
\(22\) 541.952 0.238728
\(23\) −3788.06 −1.49313 −0.746565 0.665312i \(-0.768298\pi\)
−0.746565 + 0.665312i \(0.768298\pi\)
\(24\) −1771.21 −0.627684
\(25\) 0 0
\(26\) −1300.06 −0.377162
\(27\) 729.000 0.192450
\(28\) −2015.53 −0.485841
\(29\) 4220.43 0.931883 0.465941 0.884816i \(-0.345716\pi\)
0.465941 + 0.884816i \(0.345716\pi\)
\(30\) 0 0
\(31\) −5594.57 −1.04559 −0.522797 0.852457i \(-0.675111\pi\)
−0.522797 + 0.852457i \(0.675111\pi\)
\(32\) 4060.80 0.701030
\(33\) 1089.00 0.174078
\(34\) −2794.70 −0.414608
\(35\) 0 0
\(36\) −967.065 −0.124365
\(37\) −301.266 −0.0361781 −0.0180890 0.999836i \(-0.505758\pi\)
−0.0180890 + 0.999836i \(0.505758\pi\)
\(38\) −1784.66 −0.200492
\(39\) −2612.33 −0.275022
\(40\) 0 0
\(41\) −14636.2 −1.35978 −0.679889 0.733315i \(-0.737972\pi\)
−0.679889 + 0.733315i \(0.737972\pi\)
\(42\) 6805.14 0.595269
\(43\) −151.418 −0.0124884 −0.00624421 0.999981i \(-0.501988\pi\)
−0.00624421 + 0.999981i \(0.501988\pi\)
\(44\) −1444.63 −0.112493
\(45\) 0 0
\(46\) −16966.5 −1.18222
\(47\) 13535.0 0.893743 0.446872 0.894598i \(-0.352538\pi\)
0.446872 + 0.894598i \(0.352538\pi\)
\(48\) −4494.67 −0.281575
\(49\) 11692.5 0.695694
\(50\) 0 0
\(51\) −5615.68 −0.302327
\(52\) 3465.43 0.177725
\(53\) 18116.1 0.885880 0.442940 0.896551i \(-0.353935\pi\)
0.442940 + 0.896551i \(0.353935\pi\)
\(54\) 3265.15 0.152377
\(55\) 0 0
\(56\) −33223.5 −1.41571
\(57\) −3586.10 −0.146196
\(58\) 18903.0 0.737839
\(59\) −50582.4 −1.89177 −0.945887 0.324495i \(-0.894806\pi\)
−0.945887 + 0.324495i \(0.894806\pi\)
\(60\) 0 0
\(61\) 5984.35 0.205917 0.102958 0.994686i \(-0.467169\pi\)
0.102958 + 0.994686i \(0.467169\pi\)
\(62\) −25057.8 −0.827872
\(63\) 13674.3 0.434063
\(64\) 34169.1 1.04276
\(65\) 0 0
\(66\) 4877.57 0.137830
\(67\) −22450.7 −0.611002 −0.305501 0.952192i \(-0.598824\pi\)
−0.305501 + 0.952192i \(0.598824\pi\)
\(68\) 7449.56 0.195370
\(69\) −34092.6 −0.862059
\(70\) 0 0
\(71\) 10017.6 0.235841 0.117921 0.993023i \(-0.462377\pi\)
0.117921 + 0.993023i \(0.462377\pi\)
\(72\) −15940.8 −0.362393
\(73\) 476.148 0.0104577 0.00522883 0.999986i \(-0.498336\pi\)
0.00522883 + 0.999986i \(0.498336\pi\)
\(74\) −1349.35 −0.0286448
\(75\) 0 0
\(76\) 4757.19 0.0944750
\(77\) 20427.0 0.392624
\(78\) −11700.5 −0.217755
\(79\) −85024.7 −1.53277 −0.766386 0.642380i \(-0.777947\pi\)
−0.766386 + 0.642380i \(0.777947\pi\)
\(80\) 0 0
\(81\) 6561.00 0.111111
\(82\) −65554.5 −1.07663
\(83\) 25643.4 0.408583 0.204292 0.978910i \(-0.434511\pi\)
0.204292 + 0.978910i \(0.434511\pi\)
\(84\) −18139.8 −0.280501
\(85\) 0 0
\(86\) −678.194 −0.00988799
\(87\) 37983.8 0.538023
\(88\) −23812.9 −0.327797
\(89\) 1807.91 0.0241937 0.0120968 0.999927i \(-0.496149\pi\)
0.0120968 + 0.999927i \(0.496149\pi\)
\(90\) 0 0
\(91\) −49001.0 −0.620300
\(92\) 45226.0 0.557081
\(93\) −50351.2 −0.603674
\(94\) 60622.4 0.707642
\(95\) 0 0
\(96\) 36547.2 0.404740
\(97\) −11688.5 −0.126133 −0.0630666 0.998009i \(-0.520088\pi\)
−0.0630666 + 0.998009i \(0.520088\pi\)
\(98\) 52370.1 0.550831
\(99\) 9801.00 0.100504
\(100\) 0 0
\(101\) −135573. −1.32242 −0.661210 0.750200i \(-0.729957\pi\)
−0.661210 + 0.750200i \(0.729957\pi\)
\(102\) −25152.3 −0.239374
\(103\) 88490.5 0.821871 0.410935 0.911664i \(-0.365202\pi\)
0.410935 + 0.911664i \(0.365202\pi\)
\(104\) 57123.2 0.517880
\(105\) 0 0
\(106\) 81140.9 0.701416
\(107\) −218742. −1.84703 −0.923514 0.383564i \(-0.874696\pi\)
−0.923514 + 0.383564i \(0.874696\pi\)
\(108\) −8703.59 −0.0718024
\(109\) 238399. 1.92193 0.960967 0.276663i \(-0.0892287\pi\)
0.960967 + 0.276663i \(0.0892287\pi\)
\(110\) 0 0
\(111\) −2711.39 −0.0208874
\(112\) −84309.1 −0.635081
\(113\) −187225. −1.37933 −0.689664 0.724130i \(-0.742242\pi\)
−0.689664 + 0.724130i \(0.742242\pi\)
\(114\) −16061.9 −0.115754
\(115\) 0 0
\(116\) −50388.0 −0.347682
\(117\) −23511.0 −0.158784
\(118\) −226556. −1.49786
\(119\) −105336. −0.681885
\(120\) 0 0
\(121\) 14641.0 0.0909091
\(122\) 26803.5 0.163039
\(123\) −131725. −0.785068
\(124\) 66794.1 0.390107
\(125\) 0 0
\(126\) 61246.2 0.343679
\(127\) −27727.6 −0.152547 −0.0762733 0.997087i \(-0.524302\pi\)
−0.0762733 + 0.997087i \(0.524302\pi\)
\(128\) 23096.0 0.124598
\(129\) −1362.77 −0.00721019
\(130\) 0 0
\(131\) −324623. −1.65273 −0.826363 0.563138i \(-0.809594\pi\)
−0.826363 + 0.563138i \(0.809594\pi\)
\(132\) −13001.7 −0.0649477
\(133\) −67266.5 −0.329739
\(134\) −100555. −0.483775
\(135\) 0 0
\(136\) 122797. 0.569297
\(137\) 59748.8 0.271974 0.135987 0.990711i \(-0.456579\pi\)
0.135987 + 0.990711i \(0.456579\pi\)
\(138\) −152699. −0.682555
\(139\) −117646. −0.516462 −0.258231 0.966083i \(-0.583140\pi\)
−0.258231 + 0.966083i \(0.583140\pi\)
\(140\) 0 0
\(141\) 121815. 0.516003
\(142\) 44868.5 0.186733
\(143\) −35121.4 −0.143626
\(144\) −40452.0 −0.162568
\(145\) 0 0
\(146\) 2132.64 0.00828009
\(147\) 105233. 0.401659
\(148\) 3596.84 0.0134979
\(149\) 52786.3 0.194785 0.0973925 0.995246i \(-0.468950\pi\)
0.0973925 + 0.995246i \(0.468950\pi\)
\(150\) 0 0
\(151\) −430119. −1.53513 −0.767567 0.640969i \(-0.778533\pi\)
−0.767567 + 0.640969i \(0.778533\pi\)
\(152\) 78416.3 0.275294
\(153\) −50541.1 −0.174548
\(154\) 91491.3 0.310869
\(155\) 0 0
\(156\) 31188.9 0.102610
\(157\) 150989. 0.488873 0.244436 0.969665i \(-0.421397\pi\)
0.244436 + 0.969665i \(0.421397\pi\)
\(158\) −380821. −1.21361
\(159\) 163045. 0.511463
\(160\) 0 0
\(161\) −639493. −1.94434
\(162\) 29386.3 0.0879747
\(163\) −142404. −0.419812 −0.209906 0.977722i \(-0.567316\pi\)
−0.209906 + 0.977722i \(0.567316\pi\)
\(164\) 174742. 0.507328
\(165\) 0 0
\(166\) 114855. 0.323505
\(167\) −55468.4 −0.153906 −0.0769528 0.997035i \(-0.524519\pi\)
−0.0769528 + 0.997035i \(0.524519\pi\)
\(168\) −299011. −0.817362
\(169\) −287042. −0.773089
\(170\) 0 0
\(171\) −32274.9 −0.0844063
\(172\) 1807.80 0.00465938
\(173\) −133612. −0.339414 −0.169707 0.985495i \(-0.554282\pi\)
−0.169707 + 0.985495i \(0.554282\pi\)
\(174\) 170127. 0.425992
\(175\) 0 0
\(176\) −60428.4 −0.147048
\(177\) −455242. −1.09222
\(178\) 8097.52 0.0191559
\(179\) −188254. −0.439150 −0.219575 0.975596i \(-0.570467\pi\)
−0.219575 + 0.975596i \(0.570467\pi\)
\(180\) 0 0
\(181\) −652252. −1.47986 −0.739928 0.672686i \(-0.765140\pi\)
−0.739928 + 0.672686i \(0.765140\pi\)
\(182\) −219473. −0.491136
\(183\) 53859.1 0.118886
\(184\) 745493. 1.62330
\(185\) 0 0
\(186\) −225520. −0.477972
\(187\) −75499.7 −0.157885
\(188\) −161595. −0.333452
\(189\) 123068. 0.250606
\(190\) 0 0
\(191\) −705620. −1.39955 −0.699774 0.714365i \(-0.746716\pi\)
−0.699774 + 0.714365i \(0.746716\pi\)
\(192\) 307522. 0.602037
\(193\) 87143.5 0.168400 0.0841999 0.996449i \(-0.473167\pi\)
0.0841999 + 0.996449i \(0.473167\pi\)
\(194\) −52352.1 −0.0998688
\(195\) 0 0
\(196\) −139598. −0.259561
\(197\) 667596. 1.22560 0.612800 0.790238i \(-0.290043\pi\)
0.612800 + 0.790238i \(0.290043\pi\)
\(198\) 43898.1 0.0795761
\(199\) −698609. −1.25055 −0.625276 0.780404i \(-0.715013\pi\)
−0.625276 + 0.780404i \(0.715013\pi\)
\(200\) 0 0
\(201\) −202056. −0.352762
\(202\) −607224. −1.04706
\(203\) 712484. 1.21349
\(204\) 67046.0 0.112797
\(205\) 0 0
\(206\) 396344. 0.650735
\(207\) −306833. −0.497710
\(208\) 144958. 0.232318
\(209\) −48213.1 −0.0763484
\(210\) 0 0
\(211\) −558238. −0.863203 −0.431602 0.902064i \(-0.642051\pi\)
−0.431602 + 0.902064i \(0.642051\pi\)
\(212\) −216289. −0.330518
\(213\) 90158.8 0.136163
\(214\) −979735. −1.46243
\(215\) 0 0
\(216\) −143468. −0.209228
\(217\) −944465. −1.36156
\(218\) 1.06778e6 1.52173
\(219\) 4285.33 0.00603773
\(220\) 0 0
\(221\) 181111. 0.249440
\(222\) −12144.2 −0.0165381
\(223\) 382897. 0.515608 0.257804 0.966197i \(-0.417001\pi\)
0.257804 + 0.966197i \(0.417001\pi\)
\(224\) 685536. 0.912873
\(225\) 0 0
\(226\) −838569. −1.09211
\(227\) 404735. 0.521322 0.260661 0.965430i \(-0.416059\pi\)
0.260661 + 0.965430i \(0.416059\pi\)
\(228\) 42814.7 0.0545452
\(229\) 664894. 0.837845 0.418922 0.908022i \(-0.362408\pi\)
0.418922 + 0.908022i \(0.362408\pi\)
\(230\) 0 0
\(231\) 183843. 0.226682
\(232\) −830582. −1.01312
\(233\) −61531.4 −0.0742518 −0.0371259 0.999311i \(-0.511820\pi\)
−0.0371259 + 0.999311i \(0.511820\pi\)
\(234\) −105304. −0.125721
\(235\) 0 0
\(236\) 603907. 0.705814
\(237\) −765223. −0.884946
\(238\) −471796. −0.539898
\(239\) 1.71207e6 1.93877 0.969384 0.245549i \(-0.0789682\pi\)
0.969384 + 0.245549i \(0.0789682\pi\)
\(240\) 0 0
\(241\) 1.31915e6 1.46302 0.731512 0.681828i \(-0.238815\pi\)
0.731512 + 0.681828i \(0.238815\pi\)
\(242\) 65576.2 0.0719793
\(243\) 59049.0 0.0641500
\(244\) −71447.6 −0.0768268
\(245\) 0 0
\(246\) −589991. −0.621595
\(247\) 115656. 0.120621
\(248\) 1.10102e6 1.13675
\(249\) 230791. 0.235896
\(250\) 0 0
\(251\) −237992. −0.238440 −0.119220 0.992868i \(-0.538039\pi\)
−0.119220 + 0.992868i \(0.538039\pi\)
\(252\) −163258. −0.161947
\(253\) −458356. −0.450196
\(254\) −124190. −0.120782
\(255\) 0 0
\(256\) −989967. −0.944106
\(257\) 1.90368e6 1.79789 0.898943 0.438066i \(-0.144336\pi\)
0.898943 + 0.438066i \(0.144336\pi\)
\(258\) −6103.75 −0.00570883
\(259\) −50859.1 −0.0471107
\(260\) 0 0
\(261\) 341854. 0.310628
\(262\) −1.45397e6 −1.30858
\(263\) 907019. 0.808588 0.404294 0.914629i \(-0.367517\pi\)
0.404294 + 0.914629i \(0.367517\pi\)
\(264\) −214316. −0.189254
\(265\) 0 0
\(266\) −301283. −0.261078
\(267\) 16271.2 0.0139682
\(268\) 268041. 0.227963
\(269\) 698485. 0.588541 0.294270 0.955722i \(-0.404923\pi\)
0.294270 + 0.955722i \(0.404923\pi\)
\(270\) 0 0
\(271\) 1.19097e6 0.985098 0.492549 0.870285i \(-0.336065\pi\)
0.492549 + 0.870285i \(0.336065\pi\)
\(272\) 311613. 0.255383
\(273\) −441009. −0.358130
\(274\) 267611. 0.215342
\(275\) 0 0
\(276\) 407034. 0.321631
\(277\) 1.15110e6 0.901392 0.450696 0.892677i \(-0.351176\pi\)
0.450696 + 0.892677i \(0.351176\pi\)
\(278\) −526928. −0.408921
\(279\) −453161. −0.348531
\(280\) 0 0
\(281\) −1.54201e6 −1.16498 −0.582492 0.812836i \(-0.697922\pi\)
−0.582492 + 0.812836i \(0.697922\pi\)
\(282\) 545601. 0.408557
\(283\) −1.28590e6 −0.954421 −0.477211 0.878789i \(-0.658352\pi\)
−0.477211 + 0.878789i \(0.658352\pi\)
\(284\) −119601. −0.0879915
\(285\) 0 0
\(286\) −157307. −0.113719
\(287\) −2.47085e6 −1.77069
\(288\) 328925. 0.233677
\(289\) −1.03053e6 −0.725795
\(290\) 0 0
\(291\) −105196. −0.0728230
\(292\) −5684.77 −0.00390171
\(293\) −1.08802e6 −0.740404 −0.370202 0.928951i \(-0.620712\pi\)
−0.370202 + 0.928951i \(0.620712\pi\)
\(294\) 471331. 0.318023
\(295\) 0 0
\(296\) 59289.3 0.0393321
\(297\) 88209.0 0.0580259
\(298\) 236427. 0.154225
\(299\) 1.09952e6 0.711255
\(300\) 0 0
\(301\) −25562.2 −0.0162623
\(302\) −1.92648e6 −1.21548
\(303\) −1.22016e6 −0.763500
\(304\) 198992. 0.123496
\(305\) 0 0
\(306\) −226371. −0.138203
\(307\) 580340. 0.351428 0.175714 0.984441i \(-0.443777\pi\)
0.175714 + 0.984441i \(0.443777\pi\)
\(308\) −243879. −0.146487
\(309\) 796414. 0.474507
\(310\) 0 0
\(311\) −1.68606e6 −0.988492 −0.494246 0.869322i \(-0.664556\pi\)
−0.494246 + 0.869322i \(0.664556\pi\)
\(312\) 514109. 0.298998
\(313\) 1.50328e6 0.867319 0.433659 0.901077i \(-0.357222\pi\)
0.433659 + 0.901077i \(0.357222\pi\)
\(314\) 676270. 0.387076
\(315\) 0 0
\(316\) 1.01512e6 0.571871
\(317\) −1.31016e6 −0.732281 −0.366140 0.930560i \(-0.619321\pi\)
−0.366140 + 0.930560i \(0.619321\pi\)
\(318\) 730269. 0.404962
\(319\) 510671. 0.280973
\(320\) 0 0
\(321\) −1.96868e6 −1.06638
\(322\) −2.86425e6 −1.53947
\(323\) 248622. 0.132597
\(324\) −78332.3 −0.0414551
\(325\) 0 0
\(326\) −637821. −0.332395
\(327\) 2.14559e6 1.10963
\(328\) 2.88041e6 1.47832
\(329\) 2.28495e6 1.16382
\(330\) 0 0
\(331\) 2.91035e6 1.46007 0.730037 0.683408i \(-0.239503\pi\)
0.730037 + 0.683408i \(0.239503\pi\)
\(332\) −306159. −0.152441
\(333\) −24402.5 −0.0120594
\(334\) −248440. −0.121858
\(335\) 0 0
\(336\) −758782. −0.366664
\(337\) −2.47133e6 −1.18538 −0.592688 0.805432i \(-0.701933\pi\)
−0.592688 + 0.805432i \(0.701933\pi\)
\(338\) −1.28565e6 −0.612111
\(339\) −1.68502e6 −0.796355
\(340\) 0 0
\(341\) −676944. −0.315258
\(342\) −144557. −0.0668306
\(343\) −863415. −0.396264
\(344\) 29799.2 0.0135772
\(345\) 0 0
\(346\) −598440. −0.268739
\(347\) −1.75988e6 −0.784619 −0.392309 0.919833i \(-0.628324\pi\)
−0.392309 + 0.919833i \(0.628324\pi\)
\(348\) −453492. −0.200734
\(349\) −386142. −0.169700 −0.0848502 0.996394i \(-0.527041\pi\)
−0.0848502 + 0.996394i \(0.527041\pi\)
\(350\) 0 0
\(351\) −211599. −0.0916740
\(352\) 491357. 0.211368
\(353\) 2.44184e6 1.04299 0.521495 0.853254i \(-0.325375\pi\)
0.521495 + 0.853254i \(0.325375\pi\)
\(354\) −2.03900e6 −0.864787
\(355\) 0 0
\(356\) −21584.8 −0.00902657
\(357\) −948028. −0.393686
\(358\) −843180. −0.347707
\(359\) 3.77524e6 1.54600 0.772998 0.634408i \(-0.218756\pi\)
0.772998 + 0.634408i \(0.218756\pi\)
\(360\) 0 0
\(361\) −2.31733e6 −0.935880
\(362\) −2.92140e6 −1.17171
\(363\) 131769. 0.0524864
\(364\) 585027. 0.231431
\(365\) 0 0
\(366\) 241232. 0.0941309
\(367\) 3.98351e6 1.54383 0.771917 0.635723i \(-0.219298\pi\)
0.771917 + 0.635723i \(0.219298\pi\)
\(368\) 1.89179e6 0.728204
\(369\) −1.18553e6 −0.453259
\(370\) 0 0
\(371\) 3.05832e6 1.15358
\(372\) 601147. 0.225228
\(373\) −3.13497e6 −1.16670 −0.583352 0.812219i \(-0.698259\pi\)
−0.583352 + 0.812219i \(0.698259\pi\)
\(374\) −338159. −0.125009
\(375\) 0 0
\(376\) −2.66369e6 −0.971660
\(377\) −1.22502e6 −0.443904
\(378\) 551216. 0.198423
\(379\) −2.50995e6 −0.897567 −0.448784 0.893640i \(-0.648143\pi\)
−0.448784 + 0.893640i \(0.648143\pi\)
\(380\) 0 0
\(381\) −249548. −0.0880728
\(382\) −3.16043e6 −1.10812
\(383\) 4.20287e6 1.46403 0.732014 0.681290i \(-0.238581\pi\)
0.732014 + 0.681290i \(0.238581\pi\)
\(384\) 207864. 0.0719368
\(385\) 0 0
\(386\) 390311. 0.133334
\(387\) −12264.9 −0.00416281
\(388\) 139550. 0.0470598
\(389\) −1.91171e6 −0.640543 −0.320271 0.947326i \(-0.603774\pi\)
−0.320271 + 0.947326i \(0.603774\pi\)
\(390\) 0 0
\(391\) 2.36362e6 0.781871
\(392\) −2.30110e6 −0.756344
\(393\) −2.92161e6 −0.954202
\(394\) 2.99013e6 0.970396
\(395\) 0 0
\(396\) −117015. −0.0374976
\(397\) −3.62426e6 −1.15410 −0.577049 0.816709i \(-0.695796\pi\)
−0.577049 + 0.816709i \(0.695796\pi\)
\(398\) −3.12903e6 −0.990152
\(399\) −605399. −0.190375
\(400\) 0 0
\(401\) −2.22052e6 −0.689593 −0.344797 0.938677i \(-0.612052\pi\)
−0.344797 + 0.938677i \(0.612052\pi\)
\(402\) −904998. −0.279307
\(403\) 1.62388e6 0.498070
\(404\) 1.61862e6 0.493390
\(405\) 0 0
\(406\) 3.19117e6 0.960805
\(407\) −36453.2 −0.0109081
\(408\) 1.10517e6 0.328684
\(409\) 20564.7 0.00607876 0.00303938 0.999995i \(-0.499033\pi\)
0.00303938 + 0.999995i \(0.499033\pi\)
\(410\) 0 0
\(411\) 537739. 0.157024
\(412\) −1.05649e6 −0.306637
\(413\) −8.53922e6 −2.46345
\(414\) −1.37429e6 −0.394073
\(415\) 0 0
\(416\) −1.17869e6 −0.333937
\(417\) −1.05881e6 −0.298180
\(418\) −215944. −0.0604505
\(419\) −2.30684e6 −0.641923 −0.320962 0.947092i \(-0.604006\pi\)
−0.320962 + 0.947092i \(0.604006\pi\)
\(420\) 0 0
\(421\) 5.00382e6 1.37593 0.687965 0.725744i \(-0.258504\pi\)
0.687965 + 0.725744i \(0.258504\pi\)
\(422\) −2.50032e6 −0.683461
\(423\) 1.09633e6 0.297914
\(424\) −3.56526e6 −0.963111
\(425\) 0 0
\(426\) 403816. 0.107810
\(427\) 1.01027e6 0.268143
\(428\) 2.61158e6 0.689119
\(429\) −316092. −0.0829222
\(430\) 0 0
\(431\) −2.70202e6 −0.700641 −0.350320 0.936630i \(-0.613927\pi\)
−0.350320 + 0.936630i \(0.613927\pi\)
\(432\) −364068. −0.0938585
\(433\) 3.92321e6 1.00559 0.502796 0.864405i \(-0.332305\pi\)
0.502796 + 0.864405i \(0.332305\pi\)
\(434\) −4.23020e6 −1.07805
\(435\) 0 0
\(436\) −2.84627e6 −0.717066
\(437\) 1.50938e6 0.378089
\(438\) 19193.7 0.00478051
\(439\) −53261.3 −0.0131902 −0.00659508 0.999978i \(-0.502099\pi\)
−0.00659508 + 0.999978i \(0.502099\pi\)
\(440\) 0 0
\(441\) 947095. 0.231898
\(442\) 811188. 0.197499
\(443\) −3.30457e6 −0.800029 −0.400015 0.916509i \(-0.630995\pi\)
−0.400015 + 0.916509i \(0.630995\pi\)
\(444\) 32371.5 0.00779302
\(445\) 0 0
\(446\) 1.71497e6 0.408244
\(447\) 475077. 0.112459
\(448\) 5.76837e6 1.35787
\(449\) 3.04596e6 0.713031 0.356516 0.934289i \(-0.383965\pi\)
0.356516 + 0.934289i \(0.383965\pi\)
\(450\) 0 0
\(451\) −1.77098e6 −0.409988
\(452\) 2.23529e6 0.514622
\(453\) −3.87107e6 −0.886309
\(454\) 1.81279e6 0.412769
\(455\) 0 0
\(456\) 705747. 0.158941
\(457\) 2.67154e6 0.598371 0.299186 0.954195i \(-0.403285\pi\)
0.299186 + 0.954195i \(0.403285\pi\)
\(458\) 2.97802e6 0.663382
\(459\) −454870. −0.100776
\(460\) 0 0
\(461\) −3.30382e6 −0.724042 −0.362021 0.932170i \(-0.617913\pi\)
−0.362021 + 0.932170i \(0.617913\pi\)
\(462\) 823421. 0.179480
\(463\) 7.66989e6 1.66279 0.831394 0.555684i \(-0.187543\pi\)
0.831394 + 0.555684i \(0.187543\pi\)
\(464\) −2.10771e6 −0.454482
\(465\) 0 0
\(466\) −275596. −0.0587905
\(467\) 7.91117e6 1.67860 0.839302 0.543665i \(-0.182964\pi\)
0.839302 + 0.543665i \(0.182964\pi\)
\(468\) 280700. 0.0592417
\(469\) −3.79008e6 −0.795640
\(470\) 0 0
\(471\) 1.35890e6 0.282251
\(472\) 9.95465e6 2.05670
\(473\) −18321.6 −0.00376540
\(474\) −3.42739e6 −0.700676
\(475\) 0 0
\(476\) 1.25762e6 0.254409
\(477\) 1.46740e6 0.295293
\(478\) 7.66825e6 1.53506
\(479\) 5.44099e6 1.08352 0.541762 0.840532i \(-0.317757\pi\)
0.541762 + 0.840532i \(0.317757\pi\)
\(480\) 0 0
\(481\) 87445.3 0.0172335
\(482\) 5.90840e6 1.15838
\(483\) −5.75544e6 −1.12256
\(484\) −174800. −0.0339178
\(485\) 0 0
\(486\) 264477. 0.0507922
\(487\) 8.50740e6 1.62545 0.812727 0.582645i \(-0.197982\pi\)
0.812727 + 0.582645i \(0.197982\pi\)
\(488\) −1.17772e6 −0.223869
\(489\) −1.28164e6 −0.242378
\(490\) 0 0
\(491\) −334168. −0.0625549 −0.0312775 0.999511i \(-0.509958\pi\)
−0.0312775 + 0.999511i \(0.509958\pi\)
\(492\) 1.57268e6 0.292906
\(493\) −2.63339e6 −0.487976
\(494\) 518014. 0.0955046
\(495\) 0 0
\(496\) 2.79397e6 0.509939
\(497\) 1.69116e6 0.307110
\(498\) 1.03370e6 0.186776
\(499\) −3.50055e6 −0.629339 −0.314669 0.949201i \(-0.601894\pi\)
−0.314669 + 0.949201i \(0.601894\pi\)
\(500\) 0 0
\(501\) −499216. −0.0888574
\(502\) −1.06595e6 −0.188790
\(503\) −6.56301e6 −1.15660 −0.578300 0.815824i \(-0.696284\pi\)
−0.578300 + 0.815824i \(0.696284\pi\)
\(504\) −2.69110e6 −0.471904
\(505\) 0 0
\(506\) −2.05295e6 −0.356453
\(507\) −2.58338e6 −0.446343
\(508\) 331042. 0.0569146
\(509\) 109860. 0.0187952 0.00939760 0.999956i \(-0.497009\pi\)
0.00939760 + 0.999956i \(0.497009\pi\)
\(510\) 0 0
\(511\) 80382.3 0.0136178
\(512\) −5.17308e6 −0.872115
\(513\) −290474. −0.0487320
\(514\) 8.52649e6 1.42352
\(515\) 0 0
\(516\) 16270.2 0.00269010
\(517\) 1.63773e6 0.269474
\(518\) −227795. −0.0373009
\(519\) −1.20251e6 −0.195961
\(520\) 0 0
\(521\) −914334. −0.147574 −0.0737872 0.997274i \(-0.523509\pi\)
−0.0737872 + 0.997274i \(0.523509\pi\)
\(522\) 1.53115e6 0.245946
\(523\) −4.00814e6 −0.640750 −0.320375 0.947291i \(-0.603809\pi\)
−0.320375 + 0.947291i \(0.603809\pi\)
\(524\) 3.87570e6 0.616626
\(525\) 0 0
\(526\) 4.06249e6 0.640218
\(527\) 3.49081e6 0.547520
\(528\) −543855. −0.0848982
\(529\) 7.91308e6 1.22944
\(530\) 0 0
\(531\) −4.09717e6 −0.630592
\(532\) 803100. 0.123024
\(533\) 4.24829e6 0.647732
\(534\) 72877.7 0.0110597
\(535\) 0 0
\(536\) 4.41831e6 0.664269
\(537\) −1.69429e6 −0.253543
\(538\) 3.12847e6 0.465990
\(539\) 1.41480e6 0.209760
\(540\) 0 0
\(541\) −1.87833e6 −0.275918 −0.137959 0.990438i \(-0.544054\pi\)
−0.137959 + 0.990438i \(0.544054\pi\)
\(542\) 5.33431e6 0.779974
\(543\) −5.87027e6 −0.854395
\(544\) −2.53379e6 −0.367091
\(545\) 0 0
\(546\) −1.97525e6 −0.283558
\(547\) −87797.6 −0.0125463 −0.00627313 0.999980i \(-0.501997\pi\)
−0.00627313 + 0.999980i \(0.501997\pi\)
\(548\) −713346. −0.101473
\(549\) 484732. 0.0686390
\(550\) 0 0
\(551\) −1.68165e6 −0.235970
\(552\) 6.70944e6 0.937213
\(553\) −1.43537e7 −1.99596
\(554\) 5.15571e6 0.713698
\(555\) 0 0
\(556\) 1.40458e6 0.192690
\(557\) 3.46548e6 0.473288 0.236644 0.971596i \(-0.423952\pi\)
0.236644 + 0.971596i \(0.423952\pi\)
\(558\) −2.02968e6 −0.275957
\(559\) 43950.6 0.00594888
\(560\) 0 0
\(561\) −679497. −0.0911550
\(562\) −6.90655e6 −0.922403
\(563\) 2.85737e6 0.379923 0.189961 0.981792i \(-0.439164\pi\)
0.189961 + 0.981792i \(0.439164\pi\)
\(564\) −1.45436e6 −0.192519
\(565\) 0 0
\(566\) −5.75946e6 −0.755685
\(567\) 1.10762e6 0.144688
\(568\) −1.97148e6 −0.256402
\(569\) −5.48030e6 −0.709617 −0.354808 0.934939i \(-0.615454\pi\)
−0.354808 + 0.934939i \(0.615454\pi\)
\(570\) 0 0
\(571\) 8.81180e6 1.13103 0.565515 0.824738i \(-0.308677\pi\)
0.565515 + 0.824738i \(0.308677\pi\)
\(572\) 419317. 0.0535861
\(573\) −6.35058e6 −0.808029
\(574\) −1.10668e7 −1.40198
\(575\) 0 0
\(576\) 2.76770e6 0.347586
\(577\) −502598. −0.0628465 −0.0314233 0.999506i \(-0.510004\pi\)
−0.0314233 + 0.999506i \(0.510004\pi\)
\(578\) −4.61566e6 −0.574665
\(579\) 784291. 0.0972257
\(580\) 0 0
\(581\) 4.32907e6 0.532053
\(582\) −471169. −0.0576593
\(583\) 2.19205e6 0.267103
\(584\) −93706.2 −0.0113694
\(585\) 0 0
\(586\) −4.87319e6 −0.586232
\(587\) 7.45878e6 0.893455 0.446728 0.894670i \(-0.352589\pi\)
0.446728 + 0.894670i \(0.352589\pi\)
\(588\) −1.25638e6 −0.149857
\(589\) 2.22919e6 0.264764
\(590\) 0 0
\(591\) 6.00837e6 0.707600
\(592\) 150455. 0.0176442
\(593\) −6.69352e6 −0.781660 −0.390830 0.920463i \(-0.627812\pi\)
−0.390830 + 0.920463i \(0.627812\pi\)
\(594\) 395083. 0.0459433
\(595\) 0 0
\(596\) −630220. −0.0726736
\(597\) −6.28748e6 −0.722006
\(598\) 4.92469e6 0.563153
\(599\) −1.64186e7 −1.86968 −0.934842 0.355065i \(-0.884459\pi\)
−0.934842 + 0.355065i \(0.884459\pi\)
\(600\) 0 0
\(601\) 1.42657e7 1.61105 0.805523 0.592564i \(-0.201884\pi\)
0.805523 + 0.592564i \(0.201884\pi\)
\(602\) −114491. −0.0128760
\(603\) −1.81851e6 −0.203667
\(604\) 5.13522e6 0.572752
\(605\) 0 0
\(606\) −5.46501e6 −0.604518
\(607\) −2.38734e6 −0.262992 −0.131496 0.991317i \(-0.541978\pi\)
−0.131496 + 0.991317i \(0.541978\pi\)
\(608\) −1.61805e6 −0.177514
\(609\) 6.41235e6 0.700607
\(610\) 0 0
\(611\) −3.92865e6 −0.425736
\(612\) 603414. 0.0651234
\(613\) 1.36125e6 0.146314 0.0731570 0.997320i \(-0.476693\pi\)
0.0731570 + 0.997320i \(0.476693\pi\)
\(614\) 2.59931e6 0.278251
\(615\) 0 0
\(616\) −4.02004e6 −0.426853
\(617\) 1.33759e6 0.141453 0.0707264 0.997496i \(-0.477468\pi\)
0.0707264 + 0.997496i \(0.477468\pi\)
\(618\) 3.56709e6 0.375702
\(619\) 1.70842e7 1.79212 0.896062 0.443930i \(-0.146416\pi\)
0.896062 + 0.443930i \(0.146416\pi\)
\(620\) 0 0
\(621\) −2.76150e6 −0.287353
\(622\) −7.55179e6 −0.782661
\(623\) 305208. 0.0315047
\(624\) 1.30462e6 0.134129
\(625\) 0 0
\(626\) 6.73310e6 0.686719
\(627\) −433918. −0.0440797
\(628\) −1.80267e6 −0.182397
\(629\) 187979. 0.0189445
\(630\) 0 0
\(631\) 1.70136e7 1.70107 0.850534 0.525920i \(-0.176279\pi\)
0.850534 + 0.525920i \(0.176279\pi\)
\(632\) 1.67329e7 1.66640
\(633\) −5.02414e6 −0.498371
\(634\) −5.86815e6 −0.579800
\(635\) 0 0
\(636\) −1.94661e6 −0.190825
\(637\) −3.39387e6 −0.331395
\(638\) 2.28727e6 0.222467
\(639\) 811429. 0.0786138
\(640\) 0 0
\(641\) 1.04366e7 1.00326 0.501632 0.865081i \(-0.332733\pi\)
0.501632 + 0.865081i \(0.332733\pi\)
\(642\) −8.81761e6 −0.844332
\(643\) −1.32098e7 −1.25999 −0.629996 0.776598i \(-0.716944\pi\)
−0.629996 + 0.776598i \(0.716944\pi\)
\(644\) 7.63496e6 0.725424
\(645\) 0 0
\(646\) 1.11356e6 0.104987
\(647\) −3.14204e6 −0.295087 −0.147544 0.989056i \(-0.547137\pi\)
−0.147544 + 0.989056i \(0.547137\pi\)
\(648\) −1.29121e6 −0.120798
\(649\) −6.12047e6 −0.570391
\(650\) 0 0
\(651\) −8.50019e6 −0.786097
\(652\) 1.70018e6 0.156630
\(653\) −9.82598e6 −0.901764 −0.450882 0.892583i \(-0.648891\pi\)
−0.450882 + 0.892583i \(0.648891\pi\)
\(654\) 9.60998e6 0.878574
\(655\) 0 0
\(656\) 7.30942e6 0.663167
\(657\) 38568.0 0.00348589
\(658\) 1.02341e7 0.921482
\(659\) −1.78524e7 −1.60134 −0.800670 0.599105i \(-0.795523\pi\)
−0.800670 + 0.599105i \(0.795523\pi\)
\(660\) 0 0
\(661\) 1.02807e7 0.915207 0.457603 0.889156i \(-0.348708\pi\)
0.457603 + 0.889156i \(0.348708\pi\)
\(662\) 1.30353e7 1.15605
\(663\) 1.63000e6 0.144014
\(664\) −5.04664e6 −0.444204
\(665\) 0 0
\(666\) −109298. −0.00954827
\(667\) −1.59872e7 −1.39142
\(668\) 662242. 0.0574216
\(669\) 3.44607e6 0.297686
\(670\) 0 0
\(671\) 724106. 0.0620863
\(672\) 6.16983e6 0.527047
\(673\) 2.22873e7 1.89679 0.948394 0.317094i \(-0.102707\pi\)
0.948394 + 0.317094i \(0.102707\pi\)
\(674\) −1.10690e7 −0.938549
\(675\) 0 0
\(676\) 3.42702e6 0.288436
\(677\) 1.56465e7 1.31204 0.656018 0.754745i \(-0.272239\pi\)
0.656018 + 0.754745i \(0.272239\pi\)
\(678\) −7.54712e6 −0.630532
\(679\) −1.97323e6 −0.164249
\(680\) 0 0
\(681\) 3.64262e6 0.300986
\(682\) −3.03199e6 −0.249613
\(683\) 1.82208e7 1.49457 0.747283 0.664506i \(-0.231358\pi\)
0.747283 + 0.664506i \(0.231358\pi\)
\(684\) 385333. 0.0314917
\(685\) 0 0
\(686\) −3.86719e6 −0.313751
\(687\) 5.98404e6 0.483730
\(688\) 75619.5 0.00609064
\(689\) −5.25837e6 −0.421991
\(690\) 0 0
\(691\) 1.07957e7 0.860116 0.430058 0.902801i \(-0.358493\pi\)
0.430058 + 0.902801i \(0.358493\pi\)
\(692\) 1.59520e6 0.126634
\(693\) 1.65459e6 0.130875
\(694\) −7.88239e6 −0.621240
\(695\) 0 0
\(696\) −7.47524e6 −0.584927
\(697\) 9.13244e6 0.712041
\(698\) −1.72951e6 −0.134364
\(699\) −553783. −0.0428693
\(700\) 0 0
\(701\) −7.59781e6 −0.583973 −0.291987 0.956422i \(-0.594316\pi\)
−0.291987 + 0.956422i \(0.594316\pi\)
\(702\) −947740. −0.0725849
\(703\) 120041. 0.00916098
\(704\) 4.13447e6 0.314404
\(705\) 0 0
\(706\) 1.09369e7 0.825811
\(707\) −2.28872e7 −1.72204
\(708\) 5.43516e6 0.407502
\(709\) 1.26638e7 0.946122 0.473061 0.881030i \(-0.343149\pi\)
0.473061 + 0.881030i \(0.343149\pi\)
\(710\) 0 0
\(711\) −6.88700e6 −0.510924
\(712\) −355798. −0.0263029
\(713\) 2.11926e7 1.56121
\(714\) −4.24616e6 −0.311710
\(715\) 0 0
\(716\) 2.24758e6 0.163845
\(717\) 1.54086e7 1.11935
\(718\) 1.69091e7 1.22408
\(719\) −8.16704e6 −0.589172 −0.294586 0.955625i \(-0.595182\pi\)
−0.294586 + 0.955625i \(0.595182\pi\)
\(720\) 0 0
\(721\) 1.49388e7 1.07023
\(722\) −1.03792e7 −0.741004
\(723\) 1.18723e7 0.844677
\(724\) 7.78729e6 0.552128
\(725\) 0 0
\(726\) 590186. 0.0415573
\(727\) −1.99934e6 −0.140298 −0.0701488 0.997537i \(-0.522347\pi\)
−0.0701488 + 0.997537i \(0.522347\pi\)
\(728\) 9.64343e6 0.674377
\(729\) 531441. 0.0370370
\(730\) 0 0
\(731\) 94479.6 0.00653950
\(732\) −643028. −0.0443560
\(733\) −2.26768e7 −1.55892 −0.779458 0.626455i \(-0.784505\pi\)
−0.779458 + 0.626455i \(0.784505\pi\)
\(734\) 1.78419e7 1.22237
\(735\) 0 0
\(736\) −1.53826e7 −1.04673
\(737\) −2.71653e6 −0.184224
\(738\) −5.30992e6 −0.358878
\(739\) −1.49990e7 −1.01030 −0.505151 0.863031i \(-0.668563\pi\)
−0.505151 + 0.863031i \(0.668563\pi\)
\(740\) 0 0
\(741\) 1.04090e6 0.0696407
\(742\) 1.36981e7 0.913375
\(743\) 8.72196e6 0.579618 0.289809 0.957084i \(-0.406408\pi\)
0.289809 + 0.957084i \(0.406408\pi\)
\(744\) 9.90914e6 0.656302
\(745\) 0 0
\(746\) −1.40413e7 −0.923765
\(747\) 2.07712e6 0.136194
\(748\) 901396. 0.0589063
\(749\) −3.69277e7 −2.40518
\(750\) 0 0
\(751\) 3.03235e7 1.96191 0.980957 0.194227i \(-0.0622198\pi\)
0.980957 + 0.194227i \(0.0622198\pi\)
\(752\) −6.75947e6 −0.435881
\(753\) −2.14193e6 −0.137663
\(754\) −5.48679e6 −0.351471
\(755\) 0 0
\(756\) −1.46932e6 −0.0935002
\(757\) −999401. −0.0633870 −0.0316935 0.999498i \(-0.510090\pi\)
−0.0316935 + 0.999498i \(0.510090\pi\)
\(758\) −1.12419e7 −0.710669
\(759\) −4.12520e6 −0.259921
\(760\) 0 0
\(761\) 1.23318e7 0.771904 0.385952 0.922519i \(-0.373873\pi\)
0.385952 + 0.922519i \(0.373873\pi\)
\(762\) −1.11771e6 −0.0697336
\(763\) 4.02461e7 2.50272
\(764\) 8.42445e6 0.522166
\(765\) 0 0
\(766\) 1.88244e7 1.15918
\(767\) 1.46820e7 0.901150
\(768\) −8.90970e6 −0.545080
\(769\) −3.88179e6 −0.236710 −0.118355 0.992971i \(-0.537762\pi\)
−0.118355 + 0.992971i \(0.537762\pi\)
\(770\) 0 0
\(771\) 1.71332e7 1.03801
\(772\) −1.04041e6 −0.0628293
\(773\) −2.35138e7 −1.41539 −0.707693 0.706520i \(-0.750264\pi\)
−0.707693 + 0.706520i \(0.750264\pi\)
\(774\) −54933.7 −0.00329600
\(775\) 0 0
\(776\) 2.30030e6 0.137129
\(777\) −457732. −0.0271994
\(778\) −8.56244e6 −0.507164
\(779\) 5.83186e6 0.344321
\(780\) 0 0
\(781\) 1.21214e6 0.0711088
\(782\) 1.05865e7 0.619064
\(783\) 3.07669e6 0.179341
\(784\) −5.83934e6 −0.339292
\(785\) 0 0
\(786\) −1.30857e7 −0.755511
\(787\) −2.16876e6 −0.124817 −0.0624086 0.998051i \(-0.519878\pi\)
−0.0624086 + 0.998051i \(0.519878\pi\)
\(788\) −7.97049e6 −0.457266
\(789\) 8.16317e6 0.466838
\(790\) 0 0
\(791\) −3.16069e7 −1.79614
\(792\) −1.92884e6 −0.109266
\(793\) −1.73701e6 −0.0980890
\(794\) −1.62328e7 −0.913784
\(795\) 0 0
\(796\) 8.34075e6 0.466576
\(797\) 1.85869e7 1.03648 0.518241 0.855235i \(-0.326587\pi\)
0.518241 + 0.855235i \(0.326587\pi\)
\(798\) −2.71155e6 −0.150733
\(799\) −8.44534e6 −0.468005
\(800\) 0 0
\(801\) 146441. 0.00806456
\(802\) −9.94556e6 −0.546001
\(803\) 57613.9 0.00315310
\(804\) 2.41237e6 0.131614
\(805\) 0 0
\(806\) 7.27326e6 0.394359
\(807\) 6.28637e6 0.339794
\(808\) 2.66808e7 1.43771
\(809\) 2.99966e7 1.61139 0.805694 0.592332i \(-0.201793\pi\)
0.805694 + 0.592332i \(0.201793\pi\)
\(810\) 0 0
\(811\) −1.54479e6 −0.0824740 −0.0412370 0.999149i \(-0.513130\pi\)
−0.0412370 + 0.999149i \(0.513130\pi\)
\(812\) −8.50640e6 −0.452747
\(813\) 1.07188e7 0.568747
\(814\) −163272. −0.00863674
\(815\) 0 0
\(816\) 2.80451e6 0.147446
\(817\) 60333.5 0.00316230
\(818\) 92108.3 0.00481299
\(819\) −3.96908e6 −0.206767
\(820\) 0 0
\(821\) −2.60445e7 −1.34852 −0.674261 0.738493i \(-0.735538\pi\)
−0.674261 + 0.738493i \(0.735538\pi\)
\(822\) 2.40850e6 0.124328
\(823\) 9.56891e6 0.492451 0.246226 0.969213i \(-0.420810\pi\)
0.246226 + 0.969213i \(0.420810\pi\)
\(824\) −1.74150e7 −0.893521
\(825\) 0 0
\(826\) −3.82467e7 −1.95049
\(827\) −1.07164e7 −0.544860 −0.272430 0.962176i \(-0.587827\pi\)
−0.272430 + 0.962176i \(0.587827\pi\)
\(828\) 3.66330e6 0.185694
\(829\) −1.64337e7 −0.830519 −0.415259 0.909703i \(-0.636309\pi\)
−0.415259 + 0.909703i \(0.636309\pi\)
\(830\) 0 0
\(831\) 1.03599e7 0.520419
\(832\) −9.91791e6 −0.496720
\(833\) −7.29572e6 −0.364297
\(834\) −4.74235e6 −0.236091
\(835\) 0 0
\(836\) 575620. 0.0284853
\(837\) −4.07845e6 −0.201225
\(838\) −1.03322e7 −0.508257
\(839\) 9.64356e6 0.472969 0.236484 0.971635i \(-0.424005\pi\)
0.236484 + 0.971635i \(0.424005\pi\)
\(840\) 0 0
\(841\) −2.69916e6 −0.131595
\(842\) 2.24118e7 1.08942
\(843\) −1.38781e7 −0.672604
\(844\) 6.66485e6 0.322058
\(845\) 0 0
\(846\) 4.91041e6 0.235881
\(847\) 2.47166e6 0.118381
\(848\) −9.04732e6 −0.432046
\(849\) −1.15731e7 −0.551035
\(850\) 0 0
\(851\) 1.14121e6 0.0540186
\(852\) −1.07641e6 −0.0508019
\(853\) 2.52742e7 1.18934 0.594669 0.803971i \(-0.297283\pi\)
0.594669 + 0.803971i \(0.297283\pi\)
\(854\) 4.52492e6 0.212308
\(855\) 0 0
\(856\) 4.30486e7 2.00805
\(857\) 262739. 0.0122200 0.00611002 0.999981i \(-0.498055\pi\)
0.00611002 + 0.999981i \(0.498055\pi\)
\(858\) −1.41576e6 −0.0656555
\(859\) −9.43849e6 −0.436435 −0.218218 0.975900i \(-0.570024\pi\)
−0.218218 + 0.975900i \(0.570024\pi\)
\(860\) 0 0
\(861\) −2.22376e7 −1.02231
\(862\) −1.21022e7 −0.554748
\(863\) −3.78002e7 −1.72769 −0.863847 0.503754i \(-0.831952\pi\)
−0.863847 + 0.503754i \(0.831952\pi\)
\(864\) 2.96032e6 0.134913
\(865\) 0 0
\(866\) 1.75718e7 0.796200
\(867\) −9.27473e6 −0.419038
\(868\) 1.12760e7 0.507993
\(869\) −1.02880e7 −0.462148
\(870\) 0 0
\(871\) 6.51653e6 0.291052
\(872\) −4.69171e7 −2.08949
\(873\) −946768. −0.0420444
\(874\) 6.76041e6 0.299360
\(875\) 0 0
\(876\) −51162.9 −0.00225266
\(877\) −2.42348e7 −1.06400 −0.531999 0.846745i \(-0.678559\pi\)
−0.531999 + 0.846745i \(0.678559\pi\)
\(878\) −238554. −0.0104436
\(879\) −9.79220e6 −0.427472
\(880\) 0 0
\(881\) 1.97060e7 0.855377 0.427689 0.903926i \(-0.359328\pi\)
0.427689 + 0.903926i \(0.359328\pi\)
\(882\) 4.24198e6 0.183610
\(883\) 2.09867e7 0.905822 0.452911 0.891556i \(-0.350386\pi\)
0.452911 + 0.891556i \(0.350386\pi\)
\(884\) −2.16230e6 −0.0930649
\(885\) 0 0
\(886\) −1.48010e7 −0.633441
\(887\) 3.47934e7 1.48487 0.742434 0.669919i \(-0.233671\pi\)
0.742434 + 0.669919i \(0.233671\pi\)
\(888\) 533604. 0.0227084
\(889\) −4.68091e6 −0.198644
\(890\) 0 0
\(891\) 793881. 0.0335013
\(892\) −4.57143e6 −0.192371
\(893\) −5.39309e6 −0.226313
\(894\) 2.12784e6 0.0890421
\(895\) 0 0
\(896\) 3.89902e6 0.162250
\(897\) 9.89569e6 0.410644
\(898\) 1.36427e7 0.564559
\(899\) −2.36115e7 −0.974370
\(900\) 0 0
\(901\) −1.13038e7 −0.463887
\(902\) −7.93210e6 −0.324617
\(903\) −230059. −0.00938903
\(904\) 3.68460e7 1.49958
\(905\) 0 0
\(906\) −1.73383e7 −0.701756
\(907\) 4.14396e7 1.67262 0.836310 0.548257i \(-0.184709\pi\)
0.836310 + 0.548257i \(0.184709\pi\)
\(908\) −4.83217e6 −0.194503
\(909\) −1.09814e7 −0.440807
\(910\) 0 0
\(911\) −4.55462e7 −1.81826 −0.909131 0.416511i \(-0.863253\pi\)
−0.909131 + 0.416511i \(0.863253\pi\)
\(912\) 1.79093e6 0.0713002
\(913\) 3.10285e6 0.123193
\(914\) 1.19657e7 0.473774
\(915\) 0 0
\(916\) −7.93822e6 −0.312597
\(917\) −5.48022e7 −2.15216
\(918\) −2.03734e6 −0.0797914
\(919\) 8.41097e6 0.328517 0.164258 0.986417i \(-0.447477\pi\)
0.164258 + 0.986417i \(0.447477\pi\)
\(920\) 0 0
\(921\) 5.22306e6 0.202897
\(922\) −1.47976e7 −0.573277
\(923\) −2.90772e6 −0.112343
\(924\) −2.19491e6 −0.0845741
\(925\) 0 0
\(926\) 3.43530e7 1.31655
\(927\) 7.16773e6 0.273957
\(928\) 1.71383e7 0.653278
\(929\) 1.89074e6 0.0718773 0.0359386 0.999354i \(-0.488558\pi\)
0.0359386 + 0.999354i \(0.488558\pi\)
\(930\) 0 0
\(931\) −4.65895e6 −0.176163
\(932\) 734628. 0.0277031
\(933\) −1.51746e7 −0.570706
\(934\) 3.54337e7 1.32907
\(935\) 0 0
\(936\) 4.62698e6 0.172627
\(937\) −3.58861e7 −1.33530 −0.667648 0.744477i \(-0.732699\pi\)
−0.667648 + 0.744477i \(0.732699\pi\)
\(938\) −1.69756e7 −0.629966
\(939\) 1.35295e7 0.500747
\(940\) 0 0
\(941\) 3.25537e7 1.19847 0.599235 0.800573i \(-0.295472\pi\)
0.599235 + 0.800573i \(0.295472\pi\)
\(942\) 6.08643e6 0.223478
\(943\) 5.54427e7 2.03032
\(944\) 2.52612e7 0.922624
\(945\) 0 0
\(946\) −82061.5 −0.00298134
\(947\) −6.44146e6 −0.233405 −0.116702 0.993167i \(-0.537232\pi\)
−0.116702 + 0.993167i \(0.537232\pi\)
\(948\) 9.13605e6 0.330170
\(949\) −138206. −0.00498153
\(950\) 0 0
\(951\) −1.17915e7 −0.422782
\(952\) 2.07303e7 0.741332
\(953\) −2.40023e7 −0.856093 −0.428046 0.903757i \(-0.640798\pi\)
−0.428046 + 0.903757i \(0.640798\pi\)
\(954\) 6.57242e6 0.233805
\(955\) 0 0
\(956\) −2.04405e7 −0.723347
\(957\) 4.59604e6 0.162220
\(958\) 2.43699e7 0.857905
\(959\) 1.00867e7 0.354162
\(960\) 0 0
\(961\) 2.67012e6 0.0932656
\(962\) 391662. 0.0136450
\(963\) −1.77181e7 −0.615676
\(964\) −1.57494e7 −0.545849
\(965\) 0 0
\(966\) −2.57783e7 −0.888815
\(967\) −4.13239e7 −1.42113 −0.710567 0.703630i \(-0.751561\pi\)
−0.710567 + 0.703630i \(0.751561\pi\)
\(968\) −2.88136e6 −0.0988345
\(969\) 2.23760e6 0.0765549
\(970\) 0 0
\(971\) 8.46004e6 0.287955 0.143977 0.989581i \(-0.454011\pi\)
0.143977 + 0.989581i \(0.454011\pi\)
\(972\) −704991. −0.0239341
\(973\) −1.98607e7 −0.672531
\(974\) 3.81042e7 1.28699
\(975\) 0 0
\(976\) −2.98863e6 −0.100426
\(977\) −1.33050e7 −0.445942 −0.222971 0.974825i \(-0.571575\pi\)
−0.222971 + 0.974825i \(0.571575\pi\)
\(978\) −5.74039e6 −0.191909
\(979\) 218757. 0.00729467
\(980\) 0 0
\(981\) 1.93103e7 0.640645
\(982\) −1.49672e6 −0.0495293
\(983\) −2.90239e7 −0.958014 −0.479007 0.877811i \(-0.659003\pi\)
−0.479007 + 0.877811i \(0.659003\pi\)
\(984\) 2.59237e7 0.853510
\(985\) 0 0
\(986\) −1.17948e7 −0.386366
\(987\) 2.05645e7 0.671933
\(988\) −1.38082e6 −0.0450033
\(989\) 573582. 0.0186468
\(990\) 0 0
\(991\) −4.88551e7 −1.58025 −0.790125 0.612946i \(-0.789984\pi\)
−0.790125 + 0.612946i \(0.789984\pi\)
\(992\) −2.27184e7 −0.732992
\(993\) 2.61931e7 0.842974
\(994\) 7.57460e6 0.243161
\(995\) 0 0
\(996\) −2.75543e6 −0.0880118
\(997\) 2.19218e7 0.698453 0.349227 0.937038i \(-0.386444\pi\)
0.349227 + 0.937038i \(0.386444\pi\)
\(998\) −1.56787e7 −0.498293
\(999\) −219623. −0.00696248
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 825.6.a.g.1.3 3
5.4 even 2 165.6.a.c.1.1 3
15.14 odd 2 495.6.a.b.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
165.6.a.c.1.1 3 5.4 even 2
495.6.a.b.1.3 3 15.14 odd 2
825.6.a.g.1.3 3 1.1 even 1 trivial