Properties

Label 825.6.a.g.1.1
Level $825$
Weight $6$
Character 825.1
Self dual yes
Analytic conductor $132.317$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [825,6,Mod(1,825)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(825, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("825.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 825 = 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 825.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(132.316651346\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.18257.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 26x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 165)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-4.78415\) of defining polynomial
Character \(\chi\) \(=\) 825.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.78415 q^{2} +9.00000 q^{3} +1.45634 q^{4} -52.0573 q^{6} -17.6498 q^{7} +176.669 q^{8} +81.0000 q^{9} +O(q^{10})\) \(q-5.78415 q^{2} +9.00000 q^{3} +1.45634 q^{4} -52.0573 q^{6} -17.6498 q^{7} +176.669 q^{8} +81.0000 q^{9} +121.000 q^{11} +13.1070 q^{12} -674.396 q^{13} +102.089 q^{14} -1068.48 q^{16} +2117.62 q^{17} -468.516 q^{18} -2307.79 q^{19} -158.848 q^{21} -699.882 q^{22} +3072.47 q^{23} +1590.02 q^{24} +3900.80 q^{26} +729.000 q^{27} -25.7040 q^{28} -1437.44 q^{29} -5157.66 q^{31} +526.846 q^{32} +1089.00 q^{33} -12248.6 q^{34} +117.963 q^{36} -6928.88 q^{37} +13348.6 q^{38} -6069.56 q^{39} +2844.78 q^{41} +918.799 q^{42} +11665.3 q^{43} +176.217 q^{44} -17771.6 q^{46} -3451.40 q^{47} -9616.34 q^{48} -16495.5 q^{49} +19058.6 q^{51} -982.146 q^{52} +18167.6 q^{53} -4216.64 q^{54} -3118.17 q^{56} -20770.1 q^{57} +8314.36 q^{58} -8976.88 q^{59} -378.820 q^{61} +29832.7 q^{62} -1429.63 q^{63} +31144.1 q^{64} -6298.93 q^{66} +12233.7 q^{67} +3083.97 q^{68} +27652.2 q^{69} +55867.0 q^{71} +14310.2 q^{72} -19739.6 q^{73} +40077.6 q^{74} -3360.92 q^{76} -2135.62 q^{77} +35107.2 q^{78} -13495.8 q^{79} +6561.00 q^{81} -16454.6 q^{82} -42078.3 q^{83} -231.336 q^{84} -67474.0 q^{86} -12937.0 q^{87} +21376.9 q^{88} -81223.2 q^{89} +11902.9 q^{91} +4474.55 q^{92} -46419.0 q^{93} +19963.4 q^{94} +4741.62 q^{96} -152101. q^{97} +95412.3 q^{98} +9801.00 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 2 q^{2} + 27 q^{3} - 42 q^{4} - 18 q^{6} + 68 q^{7} + 24 q^{8} + 243 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q - 2 q^{2} + 27 q^{3} - 42 q^{4} - 18 q^{6} + 68 q^{7} + 24 q^{8} + 243 q^{9} + 363 q^{11} - 378 q^{12} - 290 q^{13} + 916 q^{14} - 590 q^{16} - 434 q^{17} - 162 q^{18} - 2856 q^{19} + 612 q^{21} - 242 q^{22} + 640 q^{23} + 216 q^{24} + 2132 q^{26} + 2187 q^{27} + 580 q^{28} - 4538 q^{29} - 14968 q^{31} + 2496 q^{32} + 3267 q^{33} - 13704 q^{34} - 3402 q^{36} + 6190 q^{37} + 11668 q^{38} - 2610 q^{39} - 8926 q^{41} + 8244 q^{42} + 33592 q^{43} - 5082 q^{44} - 35680 q^{46} + 24640 q^{47} - 5310 q^{48} - 14693 q^{49} - 3906 q^{51} - 18780 q^{52} + 22934 q^{53} - 1458 q^{54} - 40012 q^{56} - 25704 q^{57} + 32304 q^{58} - 13756 q^{59} + 24602 q^{61} + 7704 q^{62} + 5508 q^{63} + 35474 q^{64} - 2178 q^{66} - 16868 q^{67} + 71288 q^{68} + 5760 q^{69} + 4856 q^{71} + 1944 q^{72} - 1910 q^{73} + 29404 q^{74} + 6116 q^{76} + 8228 q^{77} + 19188 q^{78} - 36844 q^{79} + 19683 q^{81} - 84000 q^{82} + 48796 q^{83} + 5220 q^{84} - 83492 q^{86} - 40842 q^{87} + 2904 q^{88} - 188978 q^{89} - 93208 q^{91} + 6976 q^{92} - 134712 q^{93} + 70472 q^{94} + 22464 q^{96} - 247526 q^{97} + 154654 q^{98} + 29403 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −5.78415 −1.02250 −0.511251 0.859431i \(-0.670818\pi\)
−0.511251 + 0.859431i \(0.670818\pi\)
\(3\) 9.00000 0.577350
\(4\) 1.45634 0.0455105
\(5\) 0 0
\(6\) −52.0573 −0.590342
\(7\) −17.6498 −0.136143 −0.0680713 0.997680i \(-0.521685\pi\)
−0.0680713 + 0.997680i \(0.521685\pi\)
\(8\) 176.669 0.975968
\(9\) 81.0000 0.333333
\(10\) 0 0
\(11\) 121.000 0.301511
\(12\) 13.1070 0.0262755
\(13\) −674.396 −1.10677 −0.553384 0.832926i \(-0.686664\pi\)
−0.553384 + 0.832926i \(0.686664\pi\)
\(14\) 102.089 0.139206
\(15\) 0 0
\(16\) −1068.48 −1.04344
\(17\) 2117.62 1.77716 0.888579 0.458724i \(-0.151693\pi\)
0.888579 + 0.458724i \(0.151693\pi\)
\(18\) −468.516 −0.340834
\(19\) −2307.79 −1.46660 −0.733302 0.679903i \(-0.762022\pi\)
−0.733302 + 0.679903i \(0.762022\pi\)
\(20\) 0 0
\(21\) −158.848 −0.0786019
\(22\) −699.882 −0.308296
\(23\) 3072.47 1.21107 0.605534 0.795820i \(-0.292960\pi\)
0.605534 + 0.795820i \(0.292960\pi\)
\(24\) 1590.02 0.563475
\(25\) 0 0
\(26\) 3900.80 1.13167
\(27\) 729.000 0.192450
\(28\) −25.7040 −0.00619591
\(29\) −1437.44 −0.317391 −0.158696 0.987328i \(-0.550729\pi\)
−0.158696 + 0.987328i \(0.550729\pi\)
\(30\) 0 0
\(31\) −5157.66 −0.963937 −0.481969 0.876188i \(-0.660078\pi\)
−0.481969 + 0.876188i \(0.660078\pi\)
\(32\) 526.846 0.0909513
\(33\) 1089.00 0.174078
\(34\) −12248.6 −1.81715
\(35\) 0 0
\(36\) 117.963 0.0151702
\(37\) −6928.88 −0.832067 −0.416034 0.909349i \(-0.636580\pi\)
−0.416034 + 0.909349i \(0.636580\pi\)
\(38\) 13348.6 1.49961
\(39\) −6069.56 −0.638993
\(40\) 0 0
\(41\) 2844.78 0.264295 0.132147 0.991230i \(-0.457813\pi\)
0.132147 + 0.991230i \(0.457813\pi\)
\(42\) 918.799 0.0803706
\(43\) 11665.3 0.962113 0.481057 0.876689i \(-0.340253\pi\)
0.481057 + 0.876689i \(0.340253\pi\)
\(44\) 176.217 0.0137219
\(45\) 0 0
\(46\) −17771.6 −1.23832
\(47\) −3451.40 −0.227903 −0.113952 0.993486i \(-0.536351\pi\)
−0.113952 + 0.993486i \(0.536351\pi\)
\(48\) −9616.34 −0.602430
\(49\) −16495.5 −0.981465
\(50\) 0 0
\(51\) 19058.6 1.02604
\(52\) −982.146 −0.0503695
\(53\) 18167.6 0.888401 0.444200 0.895927i \(-0.353488\pi\)
0.444200 + 0.895927i \(0.353488\pi\)
\(54\) −4216.64 −0.196781
\(55\) 0 0
\(56\) −3118.17 −0.132871
\(57\) −20770.1 −0.846744
\(58\) 8314.36 0.324533
\(59\) −8976.88 −0.335734 −0.167867 0.985810i \(-0.553688\pi\)
−0.167867 + 0.985810i \(0.553688\pi\)
\(60\) 0 0
\(61\) −378.820 −0.0130349 −0.00651746 0.999979i \(-0.502075\pi\)
−0.00651746 + 0.999979i \(0.502075\pi\)
\(62\) 29832.7 0.985628
\(63\) −1429.63 −0.0453808
\(64\) 31144.1 0.950441
\(65\) 0 0
\(66\) −6298.93 −0.177995
\(67\) 12233.7 0.332945 0.166473 0.986046i \(-0.446762\pi\)
0.166473 + 0.986046i \(0.446762\pi\)
\(68\) 3083.97 0.0808793
\(69\) 27652.2 0.699210
\(70\) 0 0
\(71\) 55867.0 1.31525 0.657627 0.753344i \(-0.271560\pi\)
0.657627 + 0.753344i \(0.271560\pi\)
\(72\) 14310.2 0.325323
\(73\) −19739.6 −0.433541 −0.216771 0.976223i \(-0.569552\pi\)
−0.216771 + 0.976223i \(0.569552\pi\)
\(74\) 40077.6 0.850791
\(75\) 0 0
\(76\) −3360.92 −0.0667459
\(77\) −2135.62 −0.0410485
\(78\) 35107.2 0.653371
\(79\) −13495.8 −0.243293 −0.121647 0.992573i \(-0.538817\pi\)
−0.121647 + 0.992573i \(0.538817\pi\)
\(80\) 0 0
\(81\) 6561.00 0.111111
\(82\) −16454.6 −0.270242
\(83\) −42078.3 −0.670444 −0.335222 0.942139i \(-0.608811\pi\)
−0.335222 + 0.942139i \(0.608811\pi\)
\(84\) −231.336 −0.00357721
\(85\) 0 0
\(86\) −67474.0 −0.983763
\(87\) −12937.0 −0.183246
\(88\) 21376.9 0.294265
\(89\) −81223.2 −1.08694 −0.543469 0.839429i \(-0.682890\pi\)
−0.543469 + 0.839429i \(0.682890\pi\)
\(90\) 0 0
\(91\) 11902.9 0.150678
\(92\) 4474.55 0.0551163
\(93\) −46419.0 −0.556530
\(94\) 19963.4 0.233031
\(95\) 0 0
\(96\) 4741.62 0.0525108
\(97\) −152101. −1.64136 −0.820680 0.571388i \(-0.806405\pi\)
−0.820680 + 0.571388i \(0.806405\pi\)
\(98\) 95412.3 1.00355
\(99\) 9801.00 0.100504
\(100\) 0 0
\(101\) 95207.6 0.928684 0.464342 0.885656i \(-0.346291\pi\)
0.464342 + 0.885656i \(0.346291\pi\)
\(102\) −110238. −1.04913
\(103\) 150824. 1.40081 0.700403 0.713748i \(-0.253004\pi\)
0.700403 + 0.713748i \(0.253004\pi\)
\(104\) −119145. −1.08017
\(105\) 0 0
\(106\) −105084. −0.908392
\(107\) −192242. −1.62327 −0.811633 0.584168i \(-0.801421\pi\)
−0.811633 + 0.584168i \(0.801421\pi\)
\(108\) 1061.67 0.00875850
\(109\) 96302.8 0.776377 0.388188 0.921580i \(-0.373101\pi\)
0.388188 + 0.921580i \(0.373101\pi\)
\(110\) 0 0
\(111\) −62359.9 −0.480394
\(112\) 18858.5 0.142056
\(113\) 210371. 1.54985 0.774926 0.632052i \(-0.217787\pi\)
0.774926 + 0.632052i \(0.217787\pi\)
\(114\) 120138. 0.865798
\(115\) 0 0
\(116\) −2093.39 −0.0144446
\(117\) −54626.1 −0.368923
\(118\) 51923.6 0.343289
\(119\) −37375.5 −0.241947
\(120\) 0 0
\(121\) 14641.0 0.0909091
\(122\) 2191.15 0.0133282
\(123\) 25603.0 0.152591
\(124\) −7511.29 −0.0438692
\(125\) 0 0
\(126\) 8269.19 0.0464020
\(127\) 63529.8 0.349517 0.174758 0.984611i \(-0.444086\pi\)
0.174758 + 0.984611i \(0.444086\pi\)
\(128\) −197001. −1.06278
\(129\) 104988. 0.555476
\(130\) 0 0
\(131\) −88396.0 −0.450043 −0.225022 0.974354i \(-0.572245\pi\)
−0.225022 + 0.974354i \(0.572245\pi\)
\(132\) 1585.95 0.00792236
\(133\) 40732.0 0.199667
\(134\) −70761.8 −0.340437
\(135\) 0 0
\(136\) 374118. 1.73445
\(137\) 42642.4 0.194106 0.0970532 0.995279i \(-0.469058\pi\)
0.0970532 + 0.995279i \(0.469058\pi\)
\(138\) −159945. −0.714944
\(139\) 169503. 0.744114 0.372057 0.928210i \(-0.378653\pi\)
0.372057 + 0.928210i \(0.378653\pi\)
\(140\) 0 0
\(141\) −31062.6 −0.131580
\(142\) −323143. −1.34485
\(143\) −81601.9 −0.333703
\(144\) −86547.0 −0.347813
\(145\) 0 0
\(146\) 114176. 0.443297
\(147\) −148459. −0.566649
\(148\) −10090.8 −0.0378678
\(149\) −72462.8 −0.267393 −0.133696 0.991022i \(-0.542685\pi\)
−0.133696 + 0.991022i \(0.542685\pi\)
\(150\) 0 0
\(151\) −61316.2 −0.218843 −0.109422 0.993995i \(-0.534900\pi\)
−0.109422 + 0.993995i \(0.534900\pi\)
\(152\) −407716. −1.43136
\(153\) 171527. 0.592386
\(154\) 12352.7 0.0419722
\(155\) 0 0
\(156\) −8839.32 −0.0290809
\(157\) −505789. −1.63765 −0.818824 0.574045i \(-0.805373\pi\)
−0.818824 + 0.574045i \(0.805373\pi\)
\(158\) 78061.5 0.248768
\(159\) 163509. 0.512919
\(160\) 0 0
\(161\) −54228.4 −0.164878
\(162\) −37949.8 −0.113611
\(163\) −387702. −1.14295 −0.571477 0.820618i \(-0.693629\pi\)
−0.571477 + 0.820618i \(0.693629\pi\)
\(164\) 4142.95 0.0120282
\(165\) 0 0
\(166\) 243387. 0.685530
\(167\) 635422. 1.76308 0.881538 0.472113i \(-0.156509\pi\)
0.881538 + 0.472113i \(0.156509\pi\)
\(168\) −28063.5 −0.0767129
\(169\) 83516.8 0.224935
\(170\) 0 0
\(171\) −186931. −0.488868
\(172\) 16988.6 0.0437862
\(173\) 679820. 1.72695 0.863473 0.504395i \(-0.168284\pi\)
0.863473 + 0.504395i \(0.168284\pi\)
\(174\) 74829.3 0.187369
\(175\) 0 0
\(176\) −129286. −0.314609
\(177\) −80792.0 −0.193836
\(178\) 469807. 1.11140
\(179\) −63083.3 −0.147157 −0.0735787 0.997289i \(-0.523442\pi\)
−0.0735787 + 0.997289i \(0.523442\pi\)
\(180\) 0 0
\(181\) 523614. 1.18800 0.593998 0.804466i \(-0.297549\pi\)
0.593998 + 0.804466i \(0.297549\pi\)
\(182\) −68848.3 −0.154069
\(183\) −3409.38 −0.00752571
\(184\) 542810. 1.18196
\(185\) 0 0
\(186\) 268494. 0.569053
\(187\) 256232. 0.535833
\(188\) −5026.39 −0.0103720
\(189\) −12866.7 −0.0262006
\(190\) 0 0
\(191\) −684311. −1.35728 −0.678641 0.734470i \(-0.737431\pi\)
−0.678641 + 0.734470i \(0.737431\pi\)
\(192\) 280297. 0.548738
\(193\) −527417. −1.01920 −0.509601 0.860411i \(-0.670207\pi\)
−0.509601 + 0.860411i \(0.670207\pi\)
\(194\) 879777. 1.67829
\(195\) 0 0
\(196\) −24023.0 −0.0446669
\(197\) 467139. 0.857591 0.428796 0.903402i \(-0.358938\pi\)
0.428796 + 0.903402i \(0.358938\pi\)
\(198\) −56690.4 −0.102765
\(199\) −436613. −0.781563 −0.390782 0.920483i \(-0.627795\pi\)
−0.390782 + 0.920483i \(0.627795\pi\)
\(200\) 0 0
\(201\) 110104. 0.192226
\(202\) −550694. −0.949581
\(203\) 25370.5 0.0432104
\(204\) 27755.7 0.0466957
\(205\) 0 0
\(206\) −872389. −1.43233
\(207\) 248870. 0.403689
\(208\) 720580. 1.15484
\(209\) −279243. −0.442198
\(210\) 0 0
\(211\) −747312. −1.15557 −0.577785 0.816189i \(-0.696083\pi\)
−0.577785 + 0.816189i \(0.696083\pi\)
\(212\) 26458.2 0.0404315
\(213\) 502803. 0.759362
\(214\) 1.11196e6 1.65979
\(215\) 0 0
\(216\) 128792. 0.187825
\(217\) 91031.6 0.131233
\(218\) −557029. −0.793847
\(219\) −177656. −0.250305
\(220\) 0 0
\(221\) −1.42812e6 −1.96690
\(222\) 360699. 0.491204
\(223\) −870654. −1.17242 −0.586211 0.810159i \(-0.699381\pi\)
−0.586211 + 0.810159i \(0.699381\pi\)
\(224\) −9298.71 −0.0123823
\(225\) 0 0
\(226\) −1.21682e6 −1.58473
\(227\) −82323.8 −0.106038 −0.0530189 0.998594i \(-0.516884\pi\)
−0.0530189 + 0.998594i \(0.516884\pi\)
\(228\) −30248.3 −0.0385357
\(229\) −340134. −0.428609 −0.214305 0.976767i \(-0.568748\pi\)
−0.214305 + 0.976767i \(0.568748\pi\)
\(230\) 0 0
\(231\) −19220.6 −0.0236994
\(232\) −253951. −0.309763
\(233\) 248384. 0.299732 0.149866 0.988706i \(-0.452116\pi\)
0.149866 + 0.988706i \(0.452116\pi\)
\(234\) 315965. 0.377224
\(235\) 0 0
\(236\) −13073.4 −0.0152794
\(237\) −121462. −0.140465
\(238\) 216185. 0.247391
\(239\) −1.37978e6 −1.56248 −0.781242 0.624229i \(-0.785413\pi\)
−0.781242 + 0.624229i \(0.785413\pi\)
\(240\) 0 0
\(241\) −1.53382e6 −1.70110 −0.850552 0.525891i \(-0.823732\pi\)
−0.850552 + 0.525891i \(0.823732\pi\)
\(242\) −84685.7 −0.0929547
\(243\) 59049.0 0.0641500
\(244\) −551.689 −0.000593225 0
\(245\) 0 0
\(246\) −148091. −0.156024
\(247\) 1.55637e6 1.62319
\(248\) −911199. −0.940772
\(249\) −378704. −0.387081
\(250\) 0 0
\(251\) 338591. 0.339227 0.169614 0.985511i \(-0.445748\pi\)
0.169614 + 0.985511i \(0.445748\pi\)
\(252\) −2082.02 −0.00206530
\(253\) 371769. 0.365151
\(254\) −367466. −0.357382
\(255\) 0 0
\(256\) 142872. 0.136253
\(257\) −1.60985e6 −1.52038 −0.760189 0.649702i \(-0.774894\pi\)
−0.760189 + 0.649702i \(0.774894\pi\)
\(258\) −607266. −0.567976
\(259\) 122293. 0.113280
\(260\) 0 0
\(261\) −116433. −0.105797
\(262\) 511295. 0.460170
\(263\) −458118. −0.408402 −0.204201 0.978929i \(-0.565460\pi\)
−0.204201 + 0.978929i \(0.565460\pi\)
\(264\) 192393. 0.169894
\(265\) 0 0
\(266\) −235600. −0.204160
\(267\) −731009. −0.627544
\(268\) 17816.4 0.0151525
\(269\) −692380. −0.583397 −0.291698 0.956510i \(-0.594220\pi\)
−0.291698 + 0.956510i \(0.594220\pi\)
\(270\) 0 0
\(271\) −486690. −0.402558 −0.201279 0.979534i \(-0.564510\pi\)
−0.201279 + 0.979534i \(0.564510\pi\)
\(272\) −2.26264e6 −1.85436
\(273\) 107126. 0.0869941
\(274\) −246650. −0.198474
\(275\) 0 0
\(276\) 40270.9 0.0318214
\(277\) −2.38271e6 −1.86583 −0.932915 0.360098i \(-0.882743\pi\)
−0.932915 + 0.360098i \(0.882743\pi\)
\(278\) −980428. −0.760858
\(279\) −417771. −0.321312
\(280\) 0 0
\(281\) 1.12154e6 0.847320 0.423660 0.905821i \(-0.360745\pi\)
0.423660 + 0.905821i \(0.360745\pi\)
\(282\) 179670. 0.134541
\(283\) −965956. −0.716954 −0.358477 0.933539i \(-0.616704\pi\)
−0.358477 + 0.933539i \(0.616704\pi\)
\(284\) 81361.1 0.0598578
\(285\) 0 0
\(286\) 471997. 0.341212
\(287\) −50209.6 −0.0359817
\(288\) 42674.5 0.0303171
\(289\) 3.06446e6 2.15829
\(290\) 0 0
\(291\) −1.36891e6 −0.947640
\(292\) −28747.4 −0.0197307
\(293\) −2.20819e6 −1.50269 −0.751343 0.659912i \(-0.770594\pi\)
−0.751343 + 0.659912i \(0.770594\pi\)
\(294\) 858711. 0.579400
\(295\) 0 0
\(296\) −1.22412e6 −0.812071
\(297\) 88209.0 0.0580259
\(298\) 419135. 0.273410
\(299\) −2.07206e6 −1.34037
\(300\) 0 0
\(301\) −205891. −0.130985
\(302\) 354662. 0.223768
\(303\) 856868. 0.536176
\(304\) 2.46584e6 1.53031
\(305\) 0 0
\(306\) −992139. −0.605716
\(307\) −805480. −0.487763 −0.243881 0.969805i \(-0.578421\pi\)
−0.243881 + 0.969805i \(0.578421\pi\)
\(308\) −3110.18 −0.00186814
\(309\) 1.35742e6 0.808756
\(310\) 0 0
\(311\) −870766. −0.510505 −0.255253 0.966874i \(-0.582159\pi\)
−0.255253 + 0.966874i \(0.582159\pi\)
\(312\) −1.07230e6 −0.623636
\(313\) 3.16630e6 1.82680 0.913400 0.407063i \(-0.133447\pi\)
0.913400 + 0.407063i \(0.133447\pi\)
\(314\) 2.92556e6 1.67450
\(315\) 0 0
\(316\) −19654.4 −0.0110724
\(317\) −1.72288e6 −0.962955 −0.481478 0.876458i \(-0.659900\pi\)
−0.481478 + 0.876458i \(0.659900\pi\)
\(318\) −945759. −0.524460
\(319\) −173930. −0.0956970
\(320\) 0 0
\(321\) −1.73018e6 −0.937193
\(322\) 313665. 0.168588
\(323\) −4.88703e6 −2.60639
\(324\) 9555.02 0.00505672
\(325\) 0 0
\(326\) 2.24252e6 1.16867
\(327\) 866725. 0.448241
\(328\) 502584. 0.257943
\(329\) 60916.3 0.0310273
\(330\) 0 0
\(331\) −3.20493e6 −1.60786 −0.803932 0.594722i \(-0.797262\pi\)
−0.803932 + 0.594722i \(0.797262\pi\)
\(332\) −61280.1 −0.0305122
\(333\) −561239. −0.277356
\(334\) −3.67537e6 −1.80275
\(335\) 0 0
\(336\) 169726. 0.0820163
\(337\) −2.44638e6 −1.17341 −0.586703 0.809802i \(-0.699575\pi\)
−0.586703 + 0.809802i \(0.699575\pi\)
\(338\) −483073. −0.229996
\(339\) 1.89334e6 0.894807
\(340\) 0 0
\(341\) −624077. −0.290638
\(342\) 1.08124e6 0.499869
\(343\) 587781. 0.269762
\(344\) 2.06090e6 0.938992
\(345\) 0 0
\(346\) −3.93218e6 −1.76581
\(347\) 3.05055e6 1.36005 0.680025 0.733189i \(-0.261969\pi\)
0.680025 + 0.733189i \(0.261969\pi\)
\(348\) −18840.5 −0.00833960
\(349\) −3.08755e6 −1.35691 −0.678454 0.734643i \(-0.737350\pi\)
−0.678454 + 0.734643i \(0.737350\pi\)
\(350\) 0 0
\(351\) −491635. −0.212998
\(352\) 63748.4 0.0274228
\(353\) −2.98932e6 −1.27684 −0.638418 0.769690i \(-0.720411\pi\)
−0.638418 + 0.769690i \(0.720411\pi\)
\(354\) 467312. 0.198198
\(355\) 0 0
\(356\) −118288. −0.0494671
\(357\) −336380. −0.139688
\(358\) 364883. 0.150469
\(359\) −2.29991e6 −0.941836 −0.470918 0.882177i \(-0.656077\pi\)
−0.470918 + 0.882177i \(0.656077\pi\)
\(360\) 0 0
\(361\) 2.84981e6 1.15093
\(362\) −3.02866e6 −1.21473
\(363\) 131769. 0.0524864
\(364\) 17334.7 0.00685743
\(365\) 0 0
\(366\) 19720.3 0.00769505
\(367\) −3.58207e6 −1.38825 −0.694127 0.719852i \(-0.744210\pi\)
−0.694127 + 0.719852i \(0.744210\pi\)
\(368\) −3.28288e6 −1.26368
\(369\) 230427. 0.0880982
\(370\) 0 0
\(371\) −320655. −0.120949
\(372\) −67601.6 −0.0253279
\(373\) −511254. −0.190268 −0.0951338 0.995464i \(-0.530328\pi\)
−0.0951338 + 0.995464i \(0.530328\pi\)
\(374\) −1.48208e6 −0.547891
\(375\) 0 0
\(376\) −609755. −0.222426
\(377\) 969404. 0.351278
\(378\) 74422.7 0.0267902
\(379\) 2.45209e6 0.876877 0.438438 0.898761i \(-0.355532\pi\)
0.438438 + 0.898761i \(0.355532\pi\)
\(380\) 0 0
\(381\) 571768. 0.201794
\(382\) 3.95815e6 1.38782
\(383\) 1.46315e6 0.509674 0.254837 0.966984i \(-0.417978\pi\)
0.254837 + 0.966984i \(0.417978\pi\)
\(384\) −1.77301e6 −0.613596
\(385\) 0 0
\(386\) 3.05065e6 1.04214
\(387\) 944893. 0.320704
\(388\) −221511. −0.0746991
\(389\) −803978. −0.269383 −0.134691 0.990888i \(-0.543004\pi\)
−0.134691 + 0.990888i \(0.543004\pi\)
\(390\) 0 0
\(391\) 6.50633e6 2.15226
\(392\) −2.91424e6 −0.957878
\(393\) −795564. −0.259833
\(394\) −2.70200e6 −0.876889
\(395\) 0 0
\(396\) 14273.5 0.00457397
\(397\) 2.87304e6 0.914883 0.457441 0.889240i \(-0.348766\pi\)
0.457441 + 0.889240i \(0.348766\pi\)
\(398\) 2.52543e6 0.799150
\(399\) 366588. 0.115278
\(400\) 0 0
\(401\) −3.45072e6 −1.07164 −0.535820 0.844332i \(-0.679998\pi\)
−0.535820 + 0.844332i \(0.679998\pi\)
\(402\) −636856. −0.196551
\(403\) 3.47831e6 1.06685
\(404\) 138654. 0.0422649
\(405\) 0 0
\(406\) −146747. −0.0441827
\(407\) −838394. −0.250878
\(408\) 3.36706e6 1.00138
\(409\) −1.17776e6 −0.348136 −0.174068 0.984734i \(-0.555691\pi\)
−0.174068 + 0.984734i \(0.555691\pi\)
\(410\) 0 0
\(411\) 383781. 0.112067
\(412\) 219651. 0.0637513
\(413\) 158440. 0.0457077
\(414\) −1.43950e6 −0.412773
\(415\) 0 0
\(416\) −355303. −0.100662
\(417\) 1.52552e6 0.429614
\(418\) 1.61518e6 0.452148
\(419\) −443011. −0.123276 −0.0616381 0.998099i \(-0.519632\pi\)
−0.0616381 + 0.998099i \(0.519632\pi\)
\(420\) 0 0
\(421\) −3.41894e6 −0.940127 −0.470063 0.882633i \(-0.655769\pi\)
−0.470063 + 0.882633i \(0.655769\pi\)
\(422\) 4.32256e6 1.18157
\(423\) −279563. −0.0759677
\(424\) 3.20966e6 0.867050
\(425\) 0 0
\(426\) −2.90829e6 −0.776450
\(427\) 6686.08 0.00177461
\(428\) −279969. −0.0738756
\(429\) −734417. −0.192664
\(430\) 0 0
\(431\) −4.24640e6 −1.10110 −0.550551 0.834801i \(-0.685583\pi\)
−0.550551 + 0.834801i \(0.685583\pi\)
\(432\) −778923. −0.200810
\(433\) 1.03407e6 0.265050 0.132525 0.991180i \(-0.457691\pi\)
0.132525 + 0.991180i \(0.457691\pi\)
\(434\) −526540. −0.134186
\(435\) 0 0
\(436\) 140249. 0.0353333
\(437\) −7.09063e6 −1.77616
\(438\) 1.02759e6 0.255937
\(439\) 3.55155e6 0.879542 0.439771 0.898110i \(-0.355060\pi\)
0.439771 + 0.898110i \(0.355060\pi\)
\(440\) 0 0
\(441\) −1.33613e6 −0.327155
\(442\) 8.26043e6 2.01116
\(443\) −2.35135e6 −0.569257 −0.284629 0.958638i \(-0.591870\pi\)
−0.284629 + 0.958638i \(0.591870\pi\)
\(444\) −90816.9 −0.0218630
\(445\) 0 0
\(446\) 5.03599e6 1.19880
\(447\) −652165. −0.154379
\(448\) −549685. −0.129395
\(449\) 3.01947e6 0.706831 0.353415 0.935467i \(-0.385020\pi\)
0.353415 + 0.935467i \(0.385020\pi\)
\(450\) 0 0
\(451\) 344218. 0.0796878
\(452\) 306371. 0.0705345
\(453\) −551846. −0.126349
\(454\) 476173. 0.108424
\(455\) 0 0
\(456\) −3.66944e6 −0.826395
\(457\) −3.80671e6 −0.852626 −0.426313 0.904576i \(-0.640188\pi\)
−0.426313 + 0.904576i \(0.640188\pi\)
\(458\) 1.96738e6 0.438254
\(459\) 1.54375e6 0.342014
\(460\) 0 0
\(461\) 7.43481e6 1.62936 0.814680 0.579910i \(-0.196912\pi\)
0.814680 + 0.579910i \(0.196912\pi\)
\(462\) 111175. 0.0242327
\(463\) 108747. 0.0235757 0.0117879 0.999931i \(-0.496248\pi\)
0.0117879 + 0.999931i \(0.496248\pi\)
\(464\) 1.53588e6 0.331178
\(465\) 0 0
\(466\) −1.43669e6 −0.306477
\(467\) 6.85473e6 1.45445 0.727224 0.686400i \(-0.240810\pi\)
0.727224 + 0.686400i \(0.240810\pi\)
\(468\) −79553.9 −0.0167898
\(469\) −215923. −0.0453280
\(470\) 0 0
\(471\) −4.55210e6 −0.945496
\(472\) −1.58594e6 −0.327666
\(473\) 1.41151e6 0.290088
\(474\) 702554. 0.143626
\(475\) 0 0
\(476\) −54431.3 −0.0110111
\(477\) 1.47158e6 0.296134
\(478\) 7.98085e6 1.59764
\(479\) −9.48659e6 −1.88917 −0.944585 0.328266i \(-0.893536\pi\)
−0.944585 + 0.328266i \(0.893536\pi\)
\(480\) 0 0
\(481\) 4.67281e6 0.920905
\(482\) 8.87182e6 1.73938
\(483\) −488056. −0.0951922
\(484\) 21322.2 0.00413732
\(485\) 0 0
\(486\) −341548. −0.0655935
\(487\) −9.79771e6 −1.87198 −0.935992 0.352021i \(-0.885494\pi\)
−0.935992 + 0.352021i \(0.885494\pi\)
\(488\) −66925.7 −0.0127216
\(489\) −3.48932e6 −0.659885
\(490\) 0 0
\(491\) 9.17094e6 1.71676 0.858381 0.513012i \(-0.171470\pi\)
0.858381 + 0.513012i \(0.171470\pi\)
\(492\) 37286.5 0.00694447
\(493\) −3.04395e6 −0.564054
\(494\) −9.00225e6 −1.65972
\(495\) 0 0
\(496\) 5.51087e6 1.00581
\(497\) −986040. −0.179062
\(498\) 2.19048e6 0.395791
\(499\) −1.91031e6 −0.343441 −0.171720 0.985146i \(-0.554933\pi\)
−0.171720 + 0.985146i \(0.554933\pi\)
\(500\) 0 0
\(501\) 5.71880e6 1.01791
\(502\) −1.95846e6 −0.346861
\(503\) −7.08413e6 −1.24844 −0.624219 0.781250i \(-0.714583\pi\)
−0.624219 + 0.781250i \(0.714583\pi\)
\(504\) −252571. −0.0442902
\(505\) 0 0
\(506\) −2.15037e6 −0.373367
\(507\) 751651. 0.129866
\(508\) 92520.7 0.0159067
\(509\) −7.51321e6 −1.28538 −0.642689 0.766127i \(-0.722181\pi\)
−0.642689 + 0.766127i \(0.722181\pi\)
\(510\) 0 0
\(511\) 348398. 0.0590234
\(512\) 5.47764e6 0.923461
\(513\) −1.68238e6 −0.282248
\(514\) 9.31158e6 1.55459
\(515\) 0 0
\(516\) 152898. 0.0252800
\(517\) −417619. −0.0687154
\(518\) −707361. −0.115829
\(519\) 6.11838e6 0.997053
\(520\) 0 0
\(521\) −1.03994e7 −1.67847 −0.839235 0.543770i \(-0.816997\pi\)
−0.839235 + 0.543770i \(0.816997\pi\)
\(522\) 673463. 0.108178
\(523\) 9.14037e6 1.46120 0.730600 0.682806i \(-0.239241\pi\)
0.730600 + 0.682806i \(0.239241\pi\)
\(524\) −128734. −0.0204817
\(525\) 0 0
\(526\) 2.64982e6 0.417592
\(527\) −1.09220e7 −1.71307
\(528\) −1.16358e6 −0.181639
\(529\) 3.00374e6 0.466684
\(530\) 0 0
\(531\) −727128. −0.111911
\(532\) 59319.5 0.00908695
\(533\) −1.91850e6 −0.292513
\(534\) 4.22826e6 0.641665
\(535\) 0 0
\(536\) 2.16132e6 0.324944
\(537\) −567750. −0.0849613
\(538\) 4.00483e6 0.596524
\(539\) −1.99595e6 −0.295923
\(540\) 0 0
\(541\) 6.47380e6 0.950969 0.475484 0.879724i \(-0.342273\pi\)
0.475484 + 0.879724i \(0.342273\pi\)
\(542\) 2.81508e6 0.411617
\(543\) 4.71253e6 0.685890
\(544\) 1.11566e6 0.161635
\(545\) 0 0
\(546\) −619634. −0.0889516
\(547\) 226463. 0.0323616 0.0161808 0.999869i \(-0.494849\pi\)
0.0161808 + 0.999869i \(0.494849\pi\)
\(548\) 62101.6 0.00883388
\(549\) −30684.4 −0.00434497
\(550\) 0 0
\(551\) 3.31731e6 0.465487
\(552\) 4.88529e6 0.682406
\(553\) 238197. 0.0331226
\(554\) 1.37819e7 1.90781
\(555\) 0 0
\(556\) 246853. 0.0338650
\(557\) 5.45555e6 0.745076 0.372538 0.928017i \(-0.378488\pi\)
0.372538 + 0.928017i \(0.378488\pi\)
\(558\) 2.41645e6 0.328543
\(559\) −7.86706e6 −1.06484
\(560\) 0 0
\(561\) 2.30609e6 0.309364
\(562\) −6.48712e6 −0.866386
\(563\) 1.30266e7 1.73205 0.866024 0.500002i \(-0.166667\pi\)
0.866024 + 0.500002i \(0.166667\pi\)
\(564\) −45237.5 −0.00598827
\(565\) 0 0
\(566\) 5.58723e6 0.733087
\(567\) −115800. −0.0151269
\(568\) 9.86997e6 1.28365
\(569\) 3.02736e6 0.391998 0.195999 0.980604i \(-0.437205\pi\)
0.195999 + 0.980604i \(0.437205\pi\)
\(570\) 0 0
\(571\) 9.79560e6 1.25731 0.628653 0.777686i \(-0.283607\pi\)
0.628653 + 0.777686i \(0.283607\pi\)
\(572\) −118840. −0.0151870
\(573\) −6.15880e6 −0.783627
\(574\) 290420. 0.0367914
\(575\) 0 0
\(576\) 2.52267e6 0.316814
\(577\) −56282.7 −0.00703778 −0.00351889 0.999994i \(-0.501120\pi\)
−0.00351889 + 0.999994i \(0.501120\pi\)
\(578\) −1.77253e7 −2.20686
\(579\) −4.74675e6 −0.588437
\(580\) 0 0
\(581\) 742671. 0.0912759
\(582\) 7.91799e6 0.968963
\(583\) 2.19829e6 0.267863
\(584\) −3.48737e6 −0.423122
\(585\) 0 0
\(586\) 1.27725e7 1.53650
\(587\) 7.92842e6 0.949711 0.474855 0.880064i \(-0.342500\pi\)
0.474855 + 0.880064i \(0.342500\pi\)
\(588\) −216207. −0.0257885
\(589\) 1.19028e7 1.41371
\(590\) 0 0
\(591\) 4.20425e6 0.495130
\(592\) 7.40338e6 0.868212
\(593\) 5.11910e6 0.597801 0.298900 0.954284i \(-0.403380\pi\)
0.298900 + 0.954284i \(0.403380\pi\)
\(594\) −510214. −0.0593316
\(595\) 0 0
\(596\) −105530. −0.0121692
\(597\) −3.92952e6 −0.451236
\(598\) 1.19851e7 1.37053
\(599\) −1.00831e7 −1.14822 −0.574110 0.818778i \(-0.694652\pi\)
−0.574110 + 0.818778i \(0.694652\pi\)
\(600\) 0 0
\(601\) 1.32233e7 1.49332 0.746659 0.665207i \(-0.231657\pi\)
0.746659 + 0.665207i \(0.231657\pi\)
\(602\) 1.19090e6 0.133932
\(603\) 990934. 0.110982
\(604\) −89296.9 −0.00995965
\(605\) 0 0
\(606\) −4.95625e6 −0.548241
\(607\) −937160. −0.103239 −0.0516193 0.998667i \(-0.516438\pi\)
−0.0516193 + 0.998667i \(0.516438\pi\)
\(608\) −1.21585e6 −0.133390
\(609\) 228334. 0.0249475
\(610\) 0 0
\(611\) 2.32761e6 0.252236
\(612\) 249801. 0.0269598
\(613\) −3.05919e6 −0.328818 −0.164409 0.986392i \(-0.552572\pi\)
−0.164409 + 0.986392i \(0.552572\pi\)
\(614\) 4.65901e6 0.498738
\(615\) 0 0
\(616\) −377298. −0.0400620
\(617\) −8.74474e6 −0.924771 −0.462385 0.886679i \(-0.653006\pi\)
−0.462385 + 0.886679i \(0.653006\pi\)
\(618\) −7.85150e6 −0.826954
\(619\) −4.14486e6 −0.434793 −0.217397 0.976083i \(-0.569757\pi\)
−0.217397 + 0.976083i \(0.569757\pi\)
\(620\) 0 0
\(621\) 2.23983e6 0.233070
\(622\) 5.03664e6 0.521993
\(623\) 1.43357e6 0.147979
\(624\) 6.48522e6 0.666750
\(625\) 0 0
\(626\) −1.83143e7 −1.86791
\(627\) −2.51319e6 −0.255303
\(628\) −736598. −0.0745301
\(629\) −1.46727e7 −1.47872
\(630\) 0 0
\(631\) −4.44508e6 −0.444433 −0.222216 0.974997i \(-0.571329\pi\)
−0.222216 + 0.974997i \(0.571329\pi\)
\(632\) −2.38429e6 −0.237446
\(633\) −6.72581e6 −0.667168
\(634\) 9.96537e6 0.984624
\(635\) 0 0
\(636\) 238124. 0.0233432
\(637\) 1.11245e7 1.08625
\(638\) 1.00604e6 0.0978504
\(639\) 4.52523e6 0.438418
\(640\) 0 0
\(641\) 1.08278e7 1.04086 0.520432 0.853903i \(-0.325771\pi\)
0.520432 + 0.853903i \(0.325771\pi\)
\(642\) 1.00076e7 0.958282
\(643\) 1.23064e7 1.17383 0.586915 0.809649i \(-0.300342\pi\)
0.586915 + 0.809649i \(0.300342\pi\)
\(644\) −78974.7 −0.00750367
\(645\) 0 0
\(646\) 2.82673e7 2.66504
\(647\) 1.26477e7 1.18782 0.593912 0.804530i \(-0.297583\pi\)
0.593912 + 0.804530i \(0.297583\pi\)
\(648\) 1.15913e6 0.108441
\(649\) −1.08620e6 −0.101228
\(650\) 0 0
\(651\) 819284. 0.0757673
\(652\) −564624. −0.0520164
\(653\) 578855. 0.0531235 0.0265618 0.999647i \(-0.491544\pi\)
0.0265618 + 0.999647i \(0.491544\pi\)
\(654\) −5.01326e6 −0.458328
\(655\) 0 0
\(656\) −3.03959e6 −0.275775
\(657\) −1.59890e6 −0.144514
\(658\) −352349. −0.0317255
\(659\) 1.71481e7 1.53816 0.769081 0.639151i \(-0.220714\pi\)
0.769081 + 0.639151i \(0.220714\pi\)
\(660\) 0 0
\(661\) 6.99329e6 0.622555 0.311278 0.950319i \(-0.399243\pi\)
0.311278 + 0.950319i \(0.399243\pi\)
\(662\) 1.85378e7 1.64404
\(663\) −1.28530e7 −1.13559
\(664\) −7.43392e6 −0.654332
\(665\) 0 0
\(666\) 3.24629e6 0.283597
\(667\) −4.41649e6 −0.384382
\(668\) 925387. 0.0802384
\(669\) −7.83589e6 −0.676898
\(670\) 0 0
\(671\) −45837.2 −0.00393017
\(672\) −83688.4 −0.00714895
\(673\) −1.98109e7 −1.68604 −0.843018 0.537885i \(-0.819223\pi\)
−0.843018 + 0.537885i \(0.819223\pi\)
\(674\) 1.41502e7 1.19981
\(675\) 0 0
\(676\) 121628. 0.0102369
\(677\) 2.85012e6 0.238996 0.119498 0.992834i \(-0.461871\pi\)
0.119498 + 0.992834i \(0.461871\pi\)
\(678\) −1.09514e7 −0.914942
\(679\) 2.68455e6 0.223459
\(680\) 0 0
\(681\) −740914. −0.0612210
\(682\) 3.60975e6 0.297178
\(683\) −4.58865e6 −0.376386 −0.188193 0.982132i \(-0.560263\pi\)
−0.188193 + 0.982132i \(0.560263\pi\)
\(684\) −272235. −0.0222486
\(685\) 0 0
\(686\) −3.39981e6 −0.275832
\(687\) −3.06121e6 −0.247458
\(688\) −1.24642e7 −1.00391
\(689\) −1.22522e7 −0.983254
\(690\) 0 0
\(691\) −2.65609e6 −0.211616 −0.105808 0.994387i \(-0.533743\pi\)
−0.105808 + 0.994387i \(0.533743\pi\)
\(692\) 990046. 0.0785942
\(693\) −172985. −0.0136828
\(694\) −1.76448e7 −1.39065
\(695\) 0 0
\(696\) −2.28556e6 −0.178842
\(697\) 6.02416e6 0.469693
\(698\) 1.78588e7 1.38744
\(699\) 2.23546e6 0.173051
\(700\) 0 0
\(701\) −7.90907e6 −0.607898 −0.303949 0.952688i \(-0.598305\pi\)
−0.303949 + 0.952688i \(0.598305\pi\)
\(702\) 2.84369e6 0.217790
\(703\) 1.59904e7 1.22031
\(704\) 3.76843e6 0.286569
\(705\) 0 0
\(706\) 1.72906e7 1.30557
\(707\) −1.68039e6 −0.126433
\(708\) −117660. −0.00882158
\(709\) −2.38057e7 −1.77855 −0.889273 0.457378i \(-0.848789\pi\)
−0.889273 + 0.457378i \(0.848789\pi\)
\(710\) 0 0
\(711\) −1.09316e6 −0.0810978
\(712\) −1.43496e7 −1.06082
\(713\) −1.58468e7 −1.16739
\(714\) 1.94567e6 0.142831
\(715\) 0 0
\(716\) −91870.5 −0.00669720
\(717\) −1.24180e7 −0.902100
\(718\) 1.33030e7 0.963029
\(719\) −2.00866e7 −1.44905 −0.724527 0.689246i \(-0.757942\pi\)
−0.724527 + 0.689246i \(0.757942\pi\)
\(720\) 0 0
\(721\) −2.66201e6 −0.190709
\(722\) −1.64837e7 −1.17683
\(723\) −1.38043e7 −0.982133
\(724\) 762558. 0.0540663
\(725\) 0 0
\(726\) −762171. −0.0536674
\(727\) 1.00897e7 0.708012 0.354006 0.935243i \(-0.384819\pi\)
0.354006 + 0.935243i \(0.384819\pi\)
\(728\) 2.10288e6 0.147057
\(729\) 531441. 0.0370370
\(730\) 0 0
\(731\) 2.47028e7 1.70983
\(732\) −4965.20 −0.000342499 0
\(733\) 1.48230e7 1.01901 0.509504 0.860468i \(-0.329829\pi\)
0.509504 + 0.860468i \(0.329829\pi\)
\(734\) 2.07192e7 1.41949
\(735\) 0 0
\(736\) 1.61872e6 0.110148
\(737\) 1.48028e6 0.100387
\(738\) −1.33282e6 −0.0900806
\(739\) −1.85393e7 −1.24877 −0.624383 0.781118i \(-0.714650\pi\)
−0.624383 + 0.781118i \(0.714650\pi\)
\(740\) 0 0
\(741\) 1.40073e7 0.937149
\(742\) 1.85471e6 0.123671
\(743\) 8.68829e6 0.577381 0.288690 0.957423i \(-0.406780\pi\)
0.288690 + 0.957423i \(0.406780\pi\)
\(744\) −8.20079e6 −0.543155
\(745\) 0 0
\(746\) 2.95717e6 0.194549
\(747\) −3.40834e6 −0.223481
\(748\) 373160. 0.0243860
\(749\) 3.39303e6 0.220995
\(750\) 0 0
\(751\) −1.37377e7 −0.888821 −0.444411 0.895823i \(-0.646587\pi\)
−0.444411 + 0.895823i \(0.646587\pi\)
\(752\) 3.68776e6 0.237803
\(753\) 3.04732e6 0.195853
\(754\) −5.60717e6 −0.359183
\(755\) 0 0
\(756\) −18738.2 −0.00119240
\(757\) −5.59097e6 −0.354607 −0.177304 0.984156i \(-0.556737\pi\)
−0.177304 + 0.984156i \(0.556737\pi\)
\(758\) −1.41832e7 −0.896608
\(759\) 3.34592e6 0.210820
\(760\) 0 0
\(761\) −2.44147e7 −1.52823 −0.764117 0.645078i \(-0.776825\pi\)
−0.764117 + 0.645078i \(0.776825\pi\)
\(762\) −3.30719e6 −0.206334
\(763\) −1.69972e6 −0.105698
\(764\) −996586. −0.0617706
\(765\) 0 0
\(766\) −8.46309e6 −0.521143
\(767\) 6.05397e6 0.371580
\(768\) 1.28584e6 0.0786657
\(769\) 1.99742e7 1.21802 0.609008 0.793164i \(-0.291568\pi\)
0.609008 + 0.793164i \(0.291568\pi\)
\(770\) 0 0
\(771\) −1.44886e7 −0.877790
\(772\) −768096. −0.0463844
\(773\) 2.64430e7 1.59170 0.795852 0.605492i \(-0.207024\pi\)
0.795852 + 0.605492i \(0.207024\pi\)
\(774\) −5.46540e6 −0.327921
\(775\) 0 0
\(776\) −2.68716e7 −1.60191
\(777\) 1.10064e6 0.0654021
\(778\) 4.65032e6 0.275445
\(779\) −6.56515e6 −0.387616
\(780\) 0 0
\(781\) 6.75991e6 0.396564
\(782\) −3.76336e7 −2.20069
\(783\) −1.04789e6 −0.0610819
\(784\) 1.76251e7 1.02410
\(785\) 0 0
\(786\) 4.60166e6 0.265679
\(787\) 2.87892e6 0.165689 0.0828443 0.996562i \(-0.473600\pi\)
0.0828443 + 0.996562i \(0.473600\pi\)
\(788\) 680310. 0.0390294
\(789\) −4.12306e6 −0.235791
\(790\) 0 0
\(791\) −3.71300e6 −0.211001
\(792\) 1.73153e6 0.0980884
\(793\) 255474. 0.0144266
\(794\) −1.66181e7 −0.935469
\(795\) 0 0
\(796\) −635855. −0.0355693
\(797\) 2.55634e7 1.42552 0.712759 0.701409i \(-0.247446\pi\)
0.712759 + 0.701409i \(0.247446\pi\)
\(798\) −2.12040e6 −0.117872
\(799\) −7.30875e6 −0.405020
\(800\) 0 0
\(801\) −6.57908e6 −0.362313
\(802\) 1.99595e7 1.09575
\(803\) −2.38849e6 −0.130718
\(804\) 160348. 0.00874829
\(805\) 0 0
\(806\) −2.01190e7 −1.09086
\(807\) −6.23142e6 −0.336824
\(808\) 1.68202e7 0.906365
\(809\) −2.32458e6 −0.124874 −0.0624371 0.998049i \(-0.519887\pi\)
−0.0624371 + 0.998049i \(0.519887\pi\)
\(810\) 0 0
\(811\) 1.44240e7 0.770076 0.385038 0.922901i \(-0.374188\pi\)
0.385038 + 0.922901i \(0.374188\pi\)
\(812\) 36947.9 0.00196653
\(813\) −4.38021e6 −0.232417
\(814\) 4.84939e6 0.256523
\(815\) 0 0
\(816\) −2.03638e7 −1.07061
\(817\) −2.69212e7 −1.41104
\(818\) 6.81233e6 0.355969
\(819\) 964137. 0.0502260
\(820\) 0 0
\(821\) 9.95289e6 0.515337 0.257668 0.966233i \(-0.417046\pi\)
0.257668 + 0.966233i \(0.417046\pi\)
\(822\) −2.21985e6 −0.114589
\(823\) −2.46452e7 −1.26833 −0.634165 0.773198i \(-0.718656\pi\)
−0.634165 + 0.773198i \(0.718656\pi\)
\(824\) 2.66460e7 1.36714
\(825\) 0 0
\(826\) −916439. −0.0467362
\(827\) 2.09014e7 1.06270 0.531351 0.847152i \(-0.321685\pi\)
0.531351 + 0.847152i \(0.321685\pi\)
\(828\) 362438. 0.0183721
\(829\) −8.31387e6 −0.420162 −0.210081 0.977684i \(-0.567373\pi\)
−0.210081 + 0.977684i \(0.567373\pi\)
\(830\) 0 0
\(831\) −2.14444e7 −1.07724
\(832\) −2.10034e7 −1.05192
\(833\) −3.49312e7 −1.74422
\(834\) −8.82385e6 −0.439282
\(835\) 0 0
\(836\) −406671. −0.0201246
\(837\) −3.75994e6 −0.185510
\(838\) 2.56244e6 0.126050
\(839\) −4.03176e7 −1.97738 −0.988690 0.149977i \(-0.952080\pi\)
−0.988690 + 0.149977i \(0.952080\pi\)
\(840\) 0 0
\(841\) −1.84449e7 −0.899263
\(842\) 1.97757e7 0.961282
\(843\) 1.00938e7 0.489200
\(844\) −1.08834e6 −0.0525905
\(845\) 0 0
\(846\) 1.61703e6 0.0776771
\(847\) −258410. −0.0123766
\(848\) −1.94118e7 −0.926992
\(849\) −8.69361e6 −0.413934
\(850\) 0 0
\(851\) −2.12888e7 −1.00769
\(852\) 732250. 0.0345589
\(853\) 2.11646e7 0.995951 0.497976 0.867191i \(-0.334077\pi\)
0.497976 + 0.867191i \(0.334077\pi\)
\(854\) −38673.3 −0.00181454
\(855\) 0 0
\(856\) −3.39633e7 −1.58425
\(857\) 1.03622e7 0.481946 0.240973 0.970532i \(-0.422533\pi\)
0.240973 + 0.970532i \(0.422533\pi\)
\(858\) 4.24797e6 0.196999
\(859\) −1.77409e7 −0.820336 −0.410168 0.912010i \(-0.634530\pi\)
−0.410168 + 0.912010i \(0.634530\pi\)
\(860\) 0 0
\(861\) −451886. −0.0207741
\(862\) 2.45618e7 1.12588
\(863\) 2.62577e6 0.120014 0.0600068 0.998198i \(-0.480888\pi\)
0.0600068 + 0.998198i \(0.480888\pi\)
\(864\) 384071. 0.0175036
\(865\) 0 0
\(866\) −5.98118e6 −0.271014
\(867\) 2.75802e7 1.24609
\(868\) 132572. 0.00597247
\(869\) −1.63299e6 −0.0733557
\(870\) 0 0
\(871\) −8.25039e6 −0.368493
\(872\) 1.70137e7 0.757718
\(873\) −1.23202e7 −0.547120
\(874\) 4.10132e7 1.81612
\(875\) 0 0
\(876\) −258727. −0.0113915
\(877\) −7.30171e6 −0.320572 −0.160286 0.987071i \(-0.551242\pi\)
−0.160286 + 0.987071i \(0.551242\pi\)
\(878\) −2.05427e7 −0.899334
\(879\) −1.98737e7 −0.867576
\(880\) 0 0
\(881\) 6.08524e6 0.264142 0.132071 0.991240i \(-0.457837\pi\)
0.132071 + 0.991240i \(0.457837\pi\)
\(882\) 7.72840e6 0.334517
\(883\) −1.66311e7 −0.717828 −0.358914 0.933371i \(-0.616853\pi\)
−0.358914 + 0.933371i \(0.616853\pi\)
\(884\) −2.07981e6 −0.0895146
\(885\) 0 0
\(886\) 1.36006e7 0.582067
\(887\) 1.47741e7 0.630511 0.315256 0.949007i \(-0.397910\pi\)
0.315256 + 0.949007i \(0.397910\pi\)
\(888\) −1.10171e7 −0.468849
\(889\) −1.12129e6 −0.0475841
\(890\) 0 0
\(891\) 793881. 0.0335013
\(892\) −1.26796e6 −0.0533574
\(893\) 7.96511e6 0.334244
\(894\) 3.77222e6 0.157853
\(895\) 0 0
\(896\) 3.47702e6 0.144689
\(897\) −1.86486e7 −0.773863
\(898\) −1.74651e7 −0.722736
\(899\) 7.41383e6 0.305945
\(900\) 0 0
\(901\) 3.84722e7 1.57883
\(902\) −1.99101e6 −0.0814810
\(903\) −1.85301e6 −0.0756240
\(904\) 3.71661e7 1.51261
\(905\) 0 0
\(906\) 3.19196e6 0.129192
\(907\) 9.23123e6 0.372599 0.186299 0.982493i \(-0.440351\pi\)
0.186299 + 0.982493i \(0.440351\pi\)
\(908\) −119891. −0.00482583
\(909\) 7.71181e6 0.309561
\(910\) 0 0
\(911\) −1.55931e7 −0.622495 −0.311247 0.950329i \(-0.600747\pi\)
−0.311247 + 0.950329i \(0.600747\pi\)
\(912\) 2.21925e7 0.883526
\(913\) −5.09147e6 −0.202146
\(914\) 2.20185e7 0.871812
\(915\) 0 0
\(916\) −495349. −0.0195062
\(917\) 1.56017e6 0.0612700
\(918\) −8.92925e6 −0.349710
\(919\) −4.21091e6 −0.164470 −0.0822351 0.996613i \(-0.526206\pi\)
−0.0822351 + 0.996613i \(0.526206\pi\)
\(920\) 0 0
\(921\) −7.24932e6 −0.281610
\(922\) −4.30040e7 −1.66602
\(923\) −3.76765e7 −1.45568
\(924\) −27991.6 −0.00107857
\(925\) 0 0
\(926\) −629009. −0.0241062
\(927\) 1.22168e7 0.466935
\(928\) −757310. −0.0288671
\(929\) 4.10363e7 1.56002 0.780008 0.625770i \(-0.215215\pi\)
0.780008 + 0.625770i \(0.215215\pi\)
\(930\) 0 0
\(931\) 3.80682e7 1.43942
\(932\) 361730. 0.0136410
\(933\) −7.83689e6 −0.294740
\(934\) −3.96488e7 −1.48718
\(935\) 0 0
\(936\) −9.65073e6 −0.360056
\(937\) −2.41565e7 −0.898844 −0.449422 0.893320i \(-0.648370\pi\)
−0.449422 + 0.893320i \(0.648370\pi\)
\(938\) 1.24893e6 0.0463479
\(939\) 2.84967e7 1.05470
\(940\) 0 0
\(941\) 3.13080e7 1.15261 0.576304 0.817236i \(-0.304495\pi\)
0.576304 + 0.817236i \(0.304495\pi\)
\(942\) 2.63300e7 0.966772
\(943\) 8.74049e6 0.320079
\(944\) 9.59164e6 0.350318
\(945\) 0 0
\(946\) −8.16436e6 −0.296616
\(947\) −5699.21 −0.000206509 0 −0.000103255 1.00000i \(-0.500033\pi\)
−0.000103255 1.00000i \(0.500033\pi\)
\(948\) −176889. −0.00639265
\(949\) 1.33123e7 0.479829
\(950\) 0 0
\(951\) −1.55059e7 −0.555963
\(952\) −6.60310e6 −0.236132
\(953\) 4.24159e7 1.51285 0.756427 0.654078i \(-0.226943\pi\)
0.756427 + 0.654078i \(0.226943\pi\)
\(954\) −8.51183e6 −0.302797
\(955\) 0 0
\(956\) −2.00942e6 −0.0711094
\(957\) −1.56537e6 −0.0552507
\(958\) 5.48718e7 1.93168
\(959\) −752628. −0.0264261
\(960\) 0 0
\(961\) −2.02765e6 −0.0708247
\(962\) −2.70282e7 −0.941628
\(963\) −1.55716e7 −0.541089
\(964\) −2.23375e6 −0.0774180
\(965\) 0 0
\(966\) 2.82298e6 0.0973342
\(967\) −1.43147e7 −0.492284 −0.246142 0.969234i \(-0.579163\pi\)
−0.246142 + 0.969234i \(0.579163\pi\)
\(968\) 2.58661e6 0.0887243
\(969\) −4.39833e7 −1.50480
\(970\) 0 0
\(971\) −1.06931e7 −0.363960 −0.181980 0.983302i \(-0.558251\pi\)
−0.181980 + 0.983302i \(0.558251\pi\)
\(972\) 85995.1 0.00291950
\(973\) −2.99168e6 −0.101306
\(974\) 5.66714e7 1.91411
\(975\) 0 0
\(976\) 404762. 0.0136011
\(977\) −5.44429e7 −1.82476 −0.912378 0.409349i \(-0.865756\pi\)
−0.912378 + 0.409349i \(0.865756\pi\)
\(978\) 2.01827e7 0.674734
\(979\) −9.82800e6 −0.327724
\(980\) 0 0
\(981\) 7.80052e6 0.258792
\(982\) −5.30461e7 −1.75539
\(983\) −4.16457e7 −1.37463 −0.687316 0.726359i \(-0.741211\pi\)
−0.687316 + 0.726359i \(0.741211\pi\)
\(984\) 4.52325e6 0.148923
\(985\) 0 0
\(986\) 1.76067e7 0.576746
\(987\) 548247. 0.0179136
\(988\) 2.26659e6 0.0738722
\(989\) 3.58414e7 1.16518
\(990\) 0 0
\(991\) −9.62055e6 −0.311183 −0.155591 0.987821i \(-0.549728\pi\)
−0.155591 + 0.987821i \(0.549728\pi\)
\(992\) −2.71730e6 −0.0876714
\(993\) −2.88444e7 −0.928300
\(994\) 5.70340e6 0.183091
\(995\) 0 0
\(996\) −551520. −0.0176162
\(997\) −3.05865e7 −0.974523 −0.487262 0.873256i \(-0.662004\pi\)
−0.487262 + 0.873256i \(0.662004\pi\)
\(998\) 1.10495e7 0.351169
\(999\) −5.05115e6 −0.160131
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 825.6.a.g.1.1 3
5.4 even 2 165.6.a.c.1.3 3
15.14 odd 2 495.6.a.b.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
165.6.a.c.1.3 3 5.4 even 2
495.6.a.b.1.1 3 15.14 odd 2
825.6.a.g.1.1 3 1.1 even 1 trivial