Properties

Label 825.6
Level 825
Weight 6
Dimension 81198
Nonzero newspaces 42
Sturm bound 288000
Trace bound 10

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 825 = 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) = \( 6 \)
Nonzero newspaces: \( 42 \)
Sturm bound: \(288000\)
Trace bound: \(10\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(825))\).

Total New Old
Modular forms 121120 81938 39182
Cusp forms 118880 81198 37682
Eisenstein series 2240 740 1500

Trace form

\( 81198 q - 20 q^{2} - 63 q^{3} + 286 q^{4} + 252 q^{5} - 997 q^{6} - 2168 q^{7} - 224 q^{8} + 991 q^{9} + 3408 q^{10} + 1534 q^{11} - 1350 q^{12} - 8888 q^{13} - 21474 q^{14} - 6852 q^{15} - 20738 q^{16}+ \cdots + 2783065 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(825))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
825.6.a \(\chi_{825}(1, \cdot)\) 825.6.a.a 1 1
825.6.a.b 1
825.6.a.c 2
825.6.a.d 2
825.6.a.e 2
825.6.a.f 3
825.6.a.g 3
825.6.a.h 3
825.6.a.i 3
825.6.a.j 3
825.6.a.k 5
825.6.a.l 5
825.6.a.m 7
825.6.a.n 7
825.6.a.o 7
825.6.a.p 8
825.6.a.q 8
825.6.a.r 9
825.6.a.s 9
825.6.a.t 10
825.6.a.u 10
825.6.a.v 13
825.6.a.w 13
825.6.a.x 13
825.6.a.y 13
825.6.c \(\chi_{825}(199, \cdot)\) n/a 148 1
825.6.d \(\chi_{825}(824, \cdot)\) n/a 356 1
825.6.f \(\chi_{825}(626, \cdot)\) n/a 374 1
825.6.j \(\chi_{825}(43, \cdot)\) n/a 360 2
825.6.k \(\chi_{825}(518, \cdot)\) n/a 600 2
825.6.m \(\chi_{825}(16, \cdot)\) n/a 1200 4
825.6.n \(\chi_{825}(301, \cdot)\) n/a 760 4
825.6.o \(\chi_{825}(421, \cdot)\) n/a 1200 4
825.6.p \(\chi_{825}(181, \cdot)\) n/a 1200 4
825.6.q \(\chi_{825}(166, \cdot)\) n/a 992 4
825.6.r \(\chi_{825}(31, \cdot)\) n/a 1200 4
825.6.s \(\chi_{825}(479, \cdot)\) n/a 2384 4
825.6.v \(\chi_{825}(379, \cdot)\) n/a 1200 4
825.6.x \(\chi_{825}(131, \cdot)\) n/a 2384 4
825.6.bd \(\chi_{825}(281, \cdot)\) n/a 2384 4
825.6.bf \(\chi_{825}(266, \cdot)\) n/a 2384 4
825.6.bi \(\chi_{825}(101, \cdot)\) n/a 1496 4
825.6.bj \(\chi_{825}(116, \cdot)\) n/a 2384 4
825.6.bl \(\chi_{825}(34, \cdot)\) n/a 1008 4
825.6.bo \(\chi_{825}(134, \cdot)\) n/a 2384 4
825.6.br \(\chi_{825}(29, \cdot)\) n/a 2384 4
825.6.bs \(\chi_{825}(74, \cdot)\) n/a 1424 4
825.6.bu \(\chi_{825}(239, \cdot)\) n/a 2384 4
825.6.bv \(\chi_{825}(229, \cdot)\) n/a 1200 4
825.6.bx \(\chi_{825}(49, \cdot)\) n/a 720 4
825.6.by \(\chi_{825}(4, \cdot)\) n/a 1200 4
825.6.cb \(\chi_{825}(169, \cdot)\) n/a 1200 4
825.6.ce \(\chi_{825}(164, \cdot)\) n/a 2384 4
825.6.cg \(\chi_{825}(41, \cdot)\) n/a 2384 4
825.6.ci \(\chi_{825}(113, \cdot)\) n/a 4768 8
825.6.cl \(\chi_{825}(28, \cdot)\) n/a 2400 8
825.6.cm \(\chi_{825}(13, \cdot)\) n/a 2400 8
825.6.cs \(\chi_{825}(23, \cdot)\) n/a 4000 8
825.6.ct \(\chi_{825}(218, \cdot)\) n/a 2848 8
825.6.cu \(\chi_{825}(53, \cdot)\) n/a 4768 8
825.6.cv \(\chi_{825}(38, \cdot)\) n/a 4768 8
825.6.cw \(\chi_{825}(7, \cdot)\) n/a 1440 8
825.6.cx \(\chi_{825}(52, \cdot)\) n/a 2400 8
825.6.cy \(\chi_{825}(172, \cdot)\) n/a 2400 8
825.6.cz \(\chi_{825}(142, \cdot)\) n/a 2400 8
825.6.df \(\chi_{825}(47, \cdot)\) n/a 4768 8

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(825))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_1(825)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(33))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(55))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(75))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(165))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(275))\)\(^{\oplus 2}\)