Defining parameters
Level: | \( N \) | = | \( 825 = 3 \cdot 5^{2} \cdot 11 \) |
Weight: | \( k \) | = | \( 6 \) |
Nonzero newspaces: | \( 42 \) | ||
Sturm bound: | \(288000\) | ||
Trace bound: | \(10\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(825))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 121120 | 81938 | 39182 |
Cusp forms | 118880 | 81198 | 37682 |
Eisenstein series | 2240 | 740 | 1500 |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(825))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(825))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_1(825)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(33))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(55))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(75))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(165))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(275))\)\(^{\oplus 2}\)