Properties

Label 825.4.c.s
Level $825$
Weight $4$
Character orbit 825.c
Analytic conductor $48.677$
Analytic rank $0$
Dimension $10$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [825,4,Mod(199,825)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(825, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("825.199");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 825 = 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 825.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(48.6765757547\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 43x^{8} + 631x^{6} + 3625x^{4} + 7104x^{2} + 900 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{9}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + 3 \beta_{2} q^{3} + (\beta_{3} - 1) q^{4} - 3 \beta_{4} q^{6} + ( - \beta_{9} - \beta_{7} + 4 \beta_{2}) q^{7} + (\beta_{5} + 2 \beta_1) q^{8} - 9 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_1 q^{2} + 3 \beta_{2} q^{3} + (\beta_{3} - 1) q^{4} - 3 \beta_{4} q^{6} + ( - \beta_{9} - \beta_{7} + 4 \beta_{2}) q^{7} + (\beta_{5} + 2 \beta_1) q^{8} - 9 q^{9} - 11 q^{11} + (3 \beta_{7} - 3 \beta_{2}) q^{12} + ( - \beta_{9} - \beta_{7} - 3 \beta_{5} - 6 \beta_{2} + 4 \beta_1) q^{13} + (\beta_{6} - 11 \beta_{4} - \beta_{3} + 1) q^{14} + (2 \beta_{6} + 5 \beta_{3} - 27) q^{16} + (7 \beta_{9} - 6 \beta_{7} + 10 \beta_{2}) q^{17} - 9 \beta_1 q^{18} + ( - \beta_{8} + 2 \beta_{6} - 16 \beta_{4} - 9 \beta_{3} + 18) q^{19} + (3 \beta_{6} + 3 \beta_{3} - 12) q^{21} - 11 \beta_1 q^{22} + (4 \beta_{9} - 15 \beta_{7} + 2 \beta_{5} - 29 \beta_{2} + 12 \beta_1) q^{23} + (3 \beta_{8} - 6 \beta_{4}) q^{24} + ( - 5 \beta_{6} - \beta_{4} + 18 \beta_{3} - 32) q^{26} - 27 \beta_{2} q^{27} + ( - 7 \beta_{9} + 2 \beta_{7} - 2 \beta_{5} - 66 \beta_{2} + 4 \beta_1) q^{28} + (11 \beta_{8} + \beta_{6} - 4 \beta_{4} + 6 \beta_{3} + 22) q^{29} + (11 \beta_{8} + 3 \beta_{6} + 3 \beta_{3} - 58) q^{31} + (2 \beta_{9} - 2 \beta_{7} + 11 \beta_{5} + 2 \beta_{2} - 40 \beta_1) q^{32} - 33 \beta_{2} q^{33} + ( - 13 \beta_{8} - 7 \beta_{6} - 26 \beta_{4} + 7 \beta_{3} - 7) q^{34} + ( - 9 \beta_{3} + 9) q^{36} + ( - 5 \beta_{9} - 15 \beta_{7} - 11 \beta_{5} - 39 \beta_{2} - 24 \beta_1) q^{37} + (19 \beta_{7} - 11 \beta_{5} - 141 \beta_{2} + 59 \beta_1) q^{38} + ( - 9 \beta_{8} + 3 \beta_{6} - 12 \beta_{4} + 3 \beta_{3} + 18) q^{39} + ( - 12 \beta_{8} - 7 \beta_{6} - 68 \beta_{4} + 4 \beta_{3} - 16) q^{41} + (3 \beta_{9} - 3 \beta_{7} + 3 \beta_{2} - 33 \beta_1) q^{42} + (3 \beta_{9} - 45 \beta_{7} + 11 \beta_{5} - 62 \beta_{2} + 12 \beta_1) q^{43} + ( - 11 \beta_{3} + 11) q^{44} + ( - 19 \beta_{8} - 38 \beta_{4} + 6 \beta_{3} - 114) q^{46} + ( - 33 \beta_{9} + 33 \beta_{7} - 11 \beta_{5} - 33 \beta_{2} - 4 \beta_1) q^{47} + (6 \beta_{9} + 15 \beta_{7} - 81 \beta_{2}) q^{48} + (11 \beta_{8} - 11 \beta_{6} - 8 \beta_{4} - 18 \beta_{3} + 94) q^{49} + ( - 21 \beta_{6} + 18 \beta_{3} - 30) q^{51} + ( - 13 \beta_{9} - 2 \beta_{7} - \beta_{5} - 62 \beta_{2} - 80 \beta_1) q^{52} + ( - 14 \beta_{9} + 24 \beta_{7} + 26 \beta_{5} - 182 \beta_{2} + 24 \beta_1) q^{53} + 27 \beta_{4} q^{54} + (9 \beta_{8} + 11 \beta_{6} - 26 \beta_{4} - \beta_{3} - 19) q^{56} + (6 \beta_{9} - 27 \beta_{7} + 3 \beta_{5} + 54 \beta_{2} - 48 \beta_1) q^{57} + (23 \beta_{9} - 52 \beta_{7} + 5 \beta_{5} - 46 \beta_{2} - 10 \beta_1) q^{58} + ( - 11 \beta_{8} - 5 \beta_{6} - 44 \beta_{4} + 5 \beta_{3} + 235) q^{59} + (2 \beta_{8} + 22 \beta_{6} - 116 \beta_{4} - 53 \beta_{3} - 24) q^{61} + (25 \beta_{9} - 58 \beta_{7} - 8 \beta_{2} - 79 \beta_1) q^{62} + (9 \beta_{9} + 9 \beta_{7} - 36 \beta_{2}) q^{63} + ( - 4 \beta_{8} + 36 \beta_{6} - 8 \beta_{4} - 53 \beta_{3} + 131) q^{64} + 33 \beta_{4} q^{66} + (22 \beta_{9} - 19 \beta_{7} + 20 \beta_{5} - 150 \beta_{2} - 160 \beta_1) q^{67} + (23 \beta_{9} + 50 \beta_{7} + 14 \beta_{5} - 148 \beta_{2} - 28 \beta_1) q^{68} + (6 \beta_{8} - 12 \beta_{6} - 36 \beta_{4} + 45 \beta_{3} + 87) q^{69} + (22 \beta_{8} - 2 \beta_{6} - 132 \beta_{4} - 39 \beta_{3} - 95) q^{71} + ( - 9 \beta_{5} - 18 \beta_1) q^{72} + ( - 44 \beta_{9} + 22 \beta_{7} - 38 \beta_{5} - 64 \beta_{2} - 8 \beta_1) q^{73} + ( - 10 \beta_{8} - 17 \beta_{6} - 46 \beta_{4} + 26 \beta_{3} + 232) q^{74} + (11 \beta_{8} - 6 \beta_{6} + 108 \beta_{4} + 42 \beta_{3} - 376) q^{76} + (11 \beta_{9} + 11 \beta_{7} - 44 \beta_{2}) q^{77} + ( - 15 \beta_{9} + 54 \beta_{7} - 96 \beta_{2} - 3 \beta_1) q^{78} + ( - 6 \beta_{8} - 39 \beta_{6} - 116 \beta_{4} + 2 \beta_{3} + 520) q^{79} + 81 q^{81} + ( - 31 \beta_{9} + 135 \beta_{7} + 11 \beta_{5} - 607 \beta_{2} - 22 \beta_1) q^{82} + ( - 15 \beta_{9} - 2 \beta_{7} - 35 \beta_{5} - 330 \beta_{2} + 32 \beta_1) q^{83} + ( - 6 \beta_{8} + 21 \beta_{6} - 12 \beta_{4} - 6 \beta_{3} + 198) q^{84} + ( - 48 \beta_{8} + 19 \beta_{6} - 157 \beta_{4} - 40 \beta_{3} + \cdots - 122) q^{86}+ \cdots + 99 q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 6 q^{4} - 6 q^{6} - 90 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 10 q - 6 q^{4} - 6 q^{6} - 90 q^{9} - 110 q^{11} - 16 q^{14} - 250 q^{16} + 114 q^{19} - 108 q^{21} - 18 q^{24} - 250 q^{26} + 214 q^{29} - 590 q^{31} - 68 q^{34} + 54 q^{36} + 186 q^{39} - 256 q^{41} + 66 q^{44} - 1154 q^{46} + 830 q^{49} - 228 q^{51} + 54 q^{54} - 264 q^{56} + 2304 q^{59} - 688 q^{61} + 1090 q^{64} + 66 q^{66} + 966 q^{69} - 1414 q^{71} + 2352 q^{74} - 3398 q^{76} + 4988 q^{79} + 810 q^{81} + 1944 q^{84} - 1598 q^{86} + 4870 q^{89} - 1608 q^{91} + 1004 q^{94} + 138 q^{96} + 990 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{10} + 43x^{8} + 631x^{6} + 3625x^{4} + 7104x^{2} + 900 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{9} + 37\nu^{7} + 445\nu^{5} + 1891\nu^{3} + 2202\nu ) / 720 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} + 9 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{8} + 31\nu^{6} + 289\nu^{4} + 817\nu^{2} + 150 ) / 120 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{3} + 14\nu \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( \nu^{4} + 19\nu^{2} + 46 ) / 2 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( \nu^{9} + 49\nu^{7} + 757\nu^{5} + 4039\nu^{3} + 6306\nu ) / 240 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( -\nu^{8} - 46\nu^{6} - 619\nu^{4} - 2242\nu^{2} - 600 ) / 60 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( \nu^{9} + 55\nu^{7} + 1093\nu^{5} + 8893\nu^{3} + 22398\nu ) / 360 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} - 9 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{5} - 14\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 2\beta_{6} - 19\beta_{3} + 125 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 2\beta_{9} - 2\beta_{7} - 21\beta_{5} + 2\beta_{2} + 216\beta_1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -4\beta_{8} - 44\beta_{6} - 8\beta_{4} + 323\beta_{3} - 1925 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( -52\beta_{9} + 72\beta_{7} + 367\beta_{5} - 112\beta_{2} - 3452\beta_1 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 124\beta_{8} + 786\beta_{6} + 368\beta_{4} - 5339\beta_{3} + 30753 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( 1034\beta_{9} - 1774\beta_{7} - 6125\beta_{5} + 3974\beta_{2} + 55876\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/825\mathbb{Z}\right)^\times\).

\(n\) \(376\) \(551\) \(727\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
199.1
4.08549i
3.98707i
2.51748i
1.98454i
0.368634i
0.368634i
1.98454i
2.51748i
3.98707i
4.08549i
4.08549i 3.00000i −8.69126 0 −12.2565 7.95915i 2.82414i −9.00000 0
199.2 3.98707i 3.00000i −7.89672 0 11.9612 12.5627i 0.411800i −9.00000 0
199.3 2.51748i 3.00000i 1.66228 0 −7.55245 18.4627i 24.3246i −9.00000 0
199.4 1.98454i 3.00000i 4.06159 0 5.95363 5.59777i 23.9367i −9.00000 0
199.5 0.368634i 3.00000i 7.86411 0 −1.10590 26.5824i 5.84806i −9.00000 0
199.6 0.368634i 3.00000i 7.86411 0 −1.10590 26.5824i 5.84806i −9.00000 0
199.7 1.98454i 3.00000i 4.06159 0 5.95363 5.59777i 23.9367i −9.00000 0
199.8 2.51748i 3.00000i 1.66228 0 −7.55245 18.4627i 24.3246i −9.00000 0
199.9 3.98707i 3.00000i −7.89672 0 11.9612 12.5627i 0.411800i −9.00000 0
199.10 4.08549i 3.00000i −8.69126 0 −12.2565 7.95915i 2.82414i −9.00000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 199.10
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 825.4.c.s 10
5.b even 2 1 inner 825.4.c.s 10
5.c odd 4 1 825.4.a.x 5
5.c odd 4 1 825.4.a.y yes 5
15.e even 4 1 2475.4.a.bi 5
15.e even 4 1 2475.4.a.bj 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
825.4.a.x 5 5.c odd 4 1
825.4.a.y yes 5 5.c odd 4 1
825.4.c.s 10 1.a even 1 1 trivial
825.4.c.s 10 5.b even 2 1 inner
2475.4.a.bi 5 15.e even 4 1
2475.4.a.bj 5 15.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(825, [\chi])\):

\( T_{2}^{10} + 43T_{2}^{8} + 631T_{2}^{6} + 3625T_{2}^{4} + 7104T_{2}^{2} + 900 \) Copy content Toggle raw display
\( T_{7}^{10} + 1300T_{7}^{8} + 522294T_{7}^{6} + 78865816T_{7}^{4} + 4405598425T_{7}^{2} + 75458991204 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{10} + 43 T^{8} + 631 T^{6} + \cdots + 900 \) Copy content Toggle raw display
$3$ \( (T^{2} + 9)^{5} \) Copy content Toggle raw display
$5$ \( T^{10} \) Copy content Toggle raw display
$7$ \( T^{10} + 1300 T^{8} + \cdots + 75458991204 \) Copy content Toggle raw display
$11$ \( (T + 11)^{10} \) Copy content Toggle raw display
$13$ \( T^{10} + 9891 T^{8} + \cdots + 25\!\cdots\!24 \) Copy content Toggle raw display
$17$ \( T^{10} + 40518 T^{8} + \cdots + 89\!\cdots\!00 \) Copy content Toggle raw display
$19$ \( (T^{5} - 57 T^{4} - 11988 T^{3} + \cdots + 92396817)^{2} \) Copy content Toggle raw display
$23$ \( T^{10} + 64211 T^{8} + \cdots + 13\!\cdots\!16 \) Copy content Toggle raw display
$29$ \( (T^{5} - 107 T^{4} + \cdots - 16041054816)^{2} \) Copy content Toggle raw display
$31$ \( (T^{5} + 295 T^{4} - 33433 T^{3} + \cdots + 9419016168)^{2} \) Copy content Toggle raw display
$37$ \( T^{10} + 238398 T^{8} + \cdots + 13\!\cdots\!16 \) Copy content Toggle raw display
$41$ \( (T^{5} + 128 T^{4} + \cdots + 144243119304)^{2} \) Copy content Toggle raw display
$43$ \( T^{10} + 545979 T^{8} + \cdots + 11\!\cdots\!04 \) Copy content Toggle raw display
$47$ \( T^{10} + 928978 T^{8} + \cdots + 98\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( T^{10} + 1187744 T^{8} + \cdots + 42\!\cdots\!24 \) Copy content Toggle raw display
$59$ \( (T^{5} - 1152 T^{4} + \cdots + 849531990720)^{2} \) Copy content Toggle raw display
$61$ \( (T^{5} + 344 T^{4} + \cdots + 105472451720)^{2} \) Copy content Toggle raw display
$67$ \( T^{10} + 1790126 T^{8} + \cdots + 11\!\cdots\!00 \) Copy content Toggle raw display
$71$ \( (T^{5} + 707 T^{4} + \cdots + 13467667404912)^{2} \) Copy content Toggle raw display
$73$ \( T^{10} + 2445732 T^{8} + \cdots + 79\!\cdots\!56 \) Copy content Toggle raw display
$79$ \( (T^{5} - 2494 T^{4} + \cdots - 57405986771584)^{2} \) Copy content Toggle raw display
$83$ \( T^{10} + 1803841 T^{8} + \cdots + 49\!\cdots\!56 \) Copy content Toggle raw display
$89$ \( (T^{5} - 2435 T^{4} + \cdots + 205516733649744)^{2} \) Copy content Toggle raw display
$97$ \( T^{10} + 6962517 T^{8} + \cdots + 21\!\cdots\!25 \) Copy content Toggle raw display
show more
show less