Properties

Label 825.4.c.l.199.1
Level $825$
Weight $4$
Character 825.199
Analytic conductor $48.677$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [825,4,Mod(199,825)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(825, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("825.199");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 825 = 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 825.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(48.6765757547\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.2230106176.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 41x^{4} + 452x^{2} + 676 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 165)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 199.1
Root \(-4.26150i\) of defining polynomial
Character \(\chi\) \(=\) 825.199
Dual form 825.4.c.l.199.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.26150i q^{2} +3.00000i q^{3} -19.6833 q^{4} +15.7845 q^{6} -10.3207i q^{7} +61.4719i q^{8} -9.00000 q^{9} +11.0000 q^{11} -59.0500i q^{12} -63.9817i q^{13} -54.3024 q^{14} +165.967 q^{16} +17.1461i q^{17} +47.3535i q^{18} -90.2104 q^{19} +30.9621 q^{21} -57.8765i q^{22} +212.605i q^{23} -184.416 q^{24} -336.639 q^{26} -27.0000i q^{27} +203.146i q^{28} -57.5461 q^{29} -141.704 q^{31} -381.462i q^{32} +33.0000i q^{33} +90.2140 q^{34} +177.150 q^{36} -257.963i q^{37} +474.642i q^{38} +191.945 q^{39} -225.914 q^{41} -162.907i q^{42} +347.445i q^{43} -216.517 q^{44} +1118.62 q^{46} +404.364i q^{47} +497.902i q^{48} +236.483 q^{49} -51.4382 q^{51} +1259.37i q^{52} -259.568i q^{53} -142.060 q^{54} +634.433 q^{56} -270.631i q^{57} +302.779i q^{58} +853.067 q^{59} -203.699 q^{61} +745.573i q^{62} +92.8864i q^{63} -679.320 q^{64} +173.629 q^{66} +266.890i q^{67} -337.492i q^{68} -637.814 q^{69} +92.4460 q^{71} -553.247i q^{72} +242.026i q^{73} -1357.27 q^{74} +1775.64 q^{76} -113.528i q^{77} -1009.92i q^{78} +1021.60 q^{79} +81.0000 q^{81} +1188.65i q^{82} -706.415i q^{83} -609.438 q^{84} +1828.08 q^{86} -172.638i q^{87} +676.191i q^{88} +440.218 q^{89} -660.336 q^{91} -4184.77i q^{92} -425.111i q^{93} +2127.56 q^{94} +1144.38 q^{96} -197.761i q^{97} -1244.25i q^{98} -99.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 44 q^{4} + 24 q^{6} - 54 q^{9} + 66 q^{11} + 112 q^{14} + 100 q^{16} - 292 q^{19} + 24 q^{21} - 288 q^{24} - 1016 q^{26} - 136 q^{29} - 136 q^{31} + 352 q^{34} + 396 q^{36} - 392 q^{41} - 484 q^{44}+ \cdots - 594 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/825\mathbb{Z}\right)^\times\).

\(n\) \(376\) \(551\) \(727\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 5.26150i − 1.86022i −0.367281 0.930110i \(-0.619711\pi\)
0.367281 0.930110i \(-0.380289\pi\)
\(3\) 3.00000i 0.577350i
\(4\) −19.6833 −2.46042
\(5\) 0 0
\(6\) 15.7845 1.07400
\(7\) − 10.3207i − 0.557266i −0.960398 0.278633i \(-0.910119\pi\)
0.960398 0.278633i \(-0.0898813\pi\)
\(8\) 61.4719i 2.71670i
\(9\) −9.00000 −0.333333
\(10\) 0 0
\(11\) 11.0000 0.301511
\(12\) − 59.0500i − 1.42052i
\(13\) − 63.9817i − 1.36502i −0.730874 0.682512i \(-0.760887\pi\)
0.730874 0.682512i \(-0.239113\pi\)
\(14\) −54.3024 −1.03664
\(15\) 0 0
\(16\) 165.967 2.59324
\(17\) 17.1461i 0.244620i 0.992492 + 0.122310i \(0.0390301\pi\)
−0.992492 + 0.122310i \(0.960970\pi\)
\(18\) 47.3535i 0.620073i
\(19\) −90.2104 −1.08925 −0.544623 0.838681i \(-0.683327\pi\)
−0.544623 + 0.838681i \(0.683327\pi\)
\(20\) 0 0
\(21\) 30.9621 0.321738
\(22\) − 57.8765i − 0.560877i
\(23\) 212.605i 1.92744i 0.266913 + 0.963721i \(0.413996\pi\)
−0.266913 + 0.963721i \(0.586004\pi\)
\(24\) −184.416 −1.56849
\(25\) 0 0
\(26\) −336.639 −2.53925
\(27\) − 27.0000i − 0.192450i
\(28\) 203.146i 1.37111i
\(29\) −57.5461 −0.368484 −0.184242 0.982881i \(-0.558983\pi\)
−0.184242 + 0.982881i \(0.558983\pi\)
\(30\) 0 0
\(31\) −141.704 −0.820991 −0.410496 0.911863i \(-0.634644\pi\)
−0.410496 + 0.911863i \(0.634644\pi\)
\(32\) − 381.462i − 2.10730i
\(33\) 33.0000i 0.174078i
\(34\) 90.2140 0.455046
\(35\) 0 0
\(36\) 177.150 0.820139
\(37\) − 257.963i − 1.14619i −0.819490 0.573093i \(-0.805743\pi\)
0.819490 0.573093i \(-0.194257\pi\)
\(38\) 474.642i 2.02624i
\(39\) 191.945 0.788097
\(40\) 0 0
\(41\) −225.914 −0.860533 −0.430266 0.902702i \(-0.641580\pi\)
−0.430266 + 0.902702i \(0.641580\pi\)
\(42\) − 162.907i − 0.598503i
\(43\) 347.445i 1.23221i 0.787666 + 0.616103i \(0.211289\pi\)
−0.787666 + 0.616103i \(0.788711\pi\)
\(44\) −216.517 −0.741844
\(45\) 0 0
\(46\) 1118.62 3.58547
\(47\) 404.364i 1.25495i 0.778638 + 0.627473i \(0.215911\pi\)
−0.778638 + 0.627473i \(0.784089\pi\)
\(48\) 497.902i 1.49721i
\(49\) 236.483 0.689455
\(50\) 0 0
\(51\) −51.4382 −0.141231
\(52\) 1259.37i 3.35853i
\(53\) − 259.568i − 0.672726i −0.941732 0.336363i \(-0.890803\pi\)
0.941732 0.336363i \(-0.109197\pi\)
\(54\) −142.060 −0.358000
\(55\) 0 0
\(56\) 634.433 1.51392
\(57\) − 270.631i − 0.628877i
\(58\) 302.779i 0.685462i
\(59\) 853.067 1.88237 0.941185 0.337891i \(-0.109713\pi\)
0.941185 + 0.337891i \(0.109713\pi\)
\(60\) 0 0
\(61\) −203.699 −0.427558 −0.213779 0.976882i \(-0.568577\pi\)
−0.213779 + 0.976882i \(0.568577\pi\)
\(62\) 745.573i 1.52722i
\(63\) 92.8864i 0.185755i
\(64\) −679.320 −1.32680
\(65\) 0 0
\(66\) 173.629 0.323823
\(67\) 266.890i 0.486653i 0.969944 + 0.243327i \(0.0782387\pi\)
−0.969944 + 0.243327i \(0.921761\pi\)
\(68\) − 337.492i − 0.601866i
\(69\) −637.814 −1.11281
\(70\) 0 0
\(71\) 92.4460 0.154526 0.0772629 0.997011i \(-0.475382\pi\)
0.0772629 + 0.997011i \(0.475382\pi\)
\(72\) − 553.247i − 0.905566i
\(73\) 242.026i 0.388040i 0.980998 + 0.194020i \(0.0621527\pi\)
−0.980998 + 0.194020i \(0.937847\pi\)
\(74\) −1357.27 −2.13216
\(75\) 0 0
\(76\) 1775.64 2.68000
\(77\) − 113.528i − 0.168022i
\(78\) − 1009.92i − 1.46603i
\(79\) 1021.60 1.45492 0.727460 0.686150i \(-0.240701\pi\)
0.727460 + 0.686150i \(0.240701\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 1188.65i 1.60078i
\(83\) − 706.415i − 0.934206i −0.884203 0.467103i \(-0.845298\pi\)
0.884203 0.467103i \(-0.154702\pi\)
\(84\) −609.438 −0.791609
\(85\) 0 0
\(86\) 1828.08 2.29217
\(87\) − 172.638i − 0.212745i
\(88\) 676.191i 0.819116i
\(89\) 440.218 0.524304 0.262152 0.965027i \(-0.415568\pi\)
0.262152 + 0.965027i \(0.415568\pi\)
\(90\) 0 0
\(91\) −660.336 −0.760682
\(92\) − 4184.77i − 4.74231i
\(93\) − 425.111i − 0.473999i
\(94\) 2127.56 2.33448
\(95\) 0 0
\(96\) 1144.38 1.21665
\(97\) − 197.761i − 0.207006i −0.994629 0.103503i \(-0.966995\pi\)
0.994629 0.103503i \(-0.0330051\pi\)
\(98\) − 1244.25i − 1.28254i
\(99\) −99.0000 −0.100504
\(100\) 0 0
\(101\) 1400.62 1.37987 0.689937 0.723870i \(-0.257638\pi\)
0.689937 + 0.723870i \(0.257638\pi\)
\(102\) 270.642i 0.262721i
\(103\) 1345.70i 1.28734i 0.765304 + 0.643669i \(0.222589\pi\)
−0.765304 + 0.643669i \(0.777411\pi\)
\(104\) 3933.07 3.70836
\(105\) 0 0
\(106\) −1365.72 −1.25142
\(107\) − 889.178i − 0.803366i −0.915779 0.401683i \(-0.868425\pi\)
0.915779 0.401683i \(-0.131575\pi\)
\(108\) 531.450i 0.473508i
\(109\) −1256.29 −1.10395 −0.551974 0.833861i \(-0.686125\pi\)
−0.551974 + 0.833861i \(0.686125\pi\)
\(110\) 0 0
\(111\) 773.890 0.661751
\(112\) − 1712.90i − 1.44512i
\(113\) 2394.01i 1.99301i 0.0835448 + 0.996504i \(0.473376\pi\)
−0.0835448 + 0.996504i \(0.526624\pi\)
\(114\) −1423.93 −1.16985
\(115\) 0 0
\(116\) 1132.70 0.906626
\(117\) 575.835i 0.455008i
\(118\) − 4488.41i − 3.50162i
\(119\) 176.960 0.136318
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 1071.76i 0.795352i
\(123\) − 677.742i − 0.496829i
\(124\) 2789.20 2.01998
\(125\) 0 0
\(126\) 488.721 0.345546
\(127\) 2065.57i 1.44322i 0.692298 + 0.721612i \(0.256598\pi\)
−0.692298 + 0.721612i \(0.743402\pi\)
\(128\) 522.548i 0.360837i
\(129\) −1042.33 −0.711414
\(130\) 0 0
\(131\) 785.526 0.523907 0.261953 0.965081i \(-0.415633\pi\)
0.261953 + 0.965081i \(0.415633\pi\)
\(132\) − 649.550i − 0.428304i
\(133\) 931.035i 0.607000i
\(134\) 1404.24 0.905282
\(135\) 0 0
\(136\) −1054.00 −0.664558
\(137\) 1276.24i 0.795885i 0.917410 + 0.397942i \(0.130276\pi\)
−0.917410 + 0.397942i \(0.869724\pi\)
\(138\) 3355.86i 2.07007i
\(139\) 2703.21 1.64952 0.824760 0.565482i \(-0.191310\pi\)
0.824760 + 0.565482i \(0.191310\pi\)
\(140\) 0 0
\(141\) −1213.09 −0.724544
\(142\) − 486.405i − 0.287452i
\(143\) − 703.798i − 0.411570i
\(144\) −1493.71 −0.864413
\(145\) 0 0
\(146\) 1273.42 0.721840
\(147\) 709.449i 0.398057i
\(148\) 5077.58i 2.82010i
\(149\) 2400.99 1.32011 0.660056 0.751217i \(-0.270533\pi\)
0.660056 + 0.751217i \(0.270533\pi\)
\(150\) 0 0
\(151\) −2517.30 −1.35665 −0.678326 0.734761i \(-0.737294\pi\)
−0.678326 + 0.734761i \(0.737294\pi\)
\(152\) − 5545.40i − 2.95916i
\(153\) − 154.315i − 0.0815399i
\(154\) −597.326 −0.312558
\(155\) 0 0
\(156\) −3778.12 −1.93905
\(157\) 1391.42i 0.707310i 0.935376 + 0.353655i \(0.115061\pi\)
−0.935376 + 0.353655i \(0.884939\pi\)
\(158\) − 5375.13i − 2.70647i
\(159\) 778.705 0.388398
\(160\) 0 0
\(161\) 2194.23 1.07410
\(162\) − 426.181i − 0.206691i
\(163\) 2720.53i 1.30729i 0.756802 + 0.653644i \(0.226761\pi\)
−0.756802 + 0.653644i \(0.773239\pi\)
\(164\) 4446.74 2.11727
\(165\) 0 0
\(166\) −3716.80 −1.73783
\(167\) 2950.25i 1.36705i 0.729927 + 0.683525i \(0.239554\pi\)
−0.729927 + 0.683525i \(0.760446\pi\)
\(168\) 1903.30i 0.874064i
\(169\) −1896.65 −0.863292
\(170\) 0 0
\(171\) 811.894 0.363082
\(172\) − 6838.88i − 3.03174i
\(173\) − 537.049i − 0.236018i −0.993013 0.118009i \(-0.962349\pi\)
0.993013 0.118009i \(-0.0376511\pi\)
\(174\) −908.336 −0.395752
\(175\) 0 0
\(176\) 1825.64 0.781891
\(177\) 2559.20i 1.08679i
\(178\) − 2316.21i − 0.975320i
\(179\) −2891.25 −1.20728 −0.603638 0.797259i \(-0.706283\pi\)
−0.603638 + 0.797259i \(0.706283\pi\)
\(180\) 0 0
\(181\) 435.209 0.178723 0.0893615 0.995999i \(-0.471517\pi\)
0.0893615 + 0.995999i \(0.471517\pi\)
\(182\) 3474.36i 1.41504i
\(183\) − 611.098i − 0.246851i
\(184\) −13069.2 −5.23628
\(185\) 0 0
\(186\) −2236.72 −0.881743
\(187\) 188.607i 0.0737556i
\(188\) − 7959.23i − 3.08769i
\(189\) −278.659 −0.107246
\(190\) 0 0
\(191\) −3779.49 −1.43180 −0.715901 0.698202i \(-0.753984\pi\)
−0.715901 + 0.698202i \(0.753984\pi\)
\(192\) − 2037.96i − 0.766027i
\(193\) − 3751.91i − 1.39932i −0.714476 0.699660i \(-0.753335\pi\)
0.714476 0.699660i \(-0.246665\pi\)
\(194\) −1040.52 −0.385076
\(195\) 0 0
\(196\) −4654.78 −1.69635
\(197\) − 3920.73i − 1.41797i −0.705223 0.708986i \(-0.749153\pi\)
0.705223 0.708986i \(-0.250847\pi\)
\(198\) 520.888i 0.186959i
\(199\) 597.084 0.212694 0.106347 0.994329i \(-0.466085\pi\)
0.106347 + 0.994329i \(0.466085\pi\)
\(200\) 0 0
\(201\) −800.669 −0.280969
\(202\) − 7369.37i − 2.56687i
\(203\) 593.917i 0.205344i
\(204\) 1012.48 0.347488
\(205\) 0 0
\(206\) 7080.40 2.39473
\(207\) − 1913.44i − 0.642480i
\(208\) − 10618.9i − 3.53984i
\(209\) −992.314 −0.328420
\(210\) 0 0
\(211\) −4384.55 −1.43054 −0.715272 0.698846i \(-0.753697\pi\)
−0.715272 + 0.698846i \(0.753697\pi\)
\(212\) 5109.17i 1.65519i
\(213\) 277.338i 0.0892155i
\(214\) −4678.41 −1.49444
\(215\) 0 0
\(216\) 1659.74 0.522829
\(217\) 1462.48i 0.457510i
\(218\) 6609.95i 2.05359i
\(219\) −726.077 −0.224035
\(220\) 0 0
\(221\) 1097.03 0.333912
\(222\) − 4071.82i − 1.23100i
\(223\) 2333.03i 0.700587i 0.936640 + 0.350294i \(0.113918\pi\)
−0.936640 + 0.350294i \(0.886082\pi\)
\(224\) −3936.95 −1.17433
\(225\) 0 0
\(226\) 12596.1 3.70743
\(227\) − 2120.00i − 0.619864i −0.950759 0.309932i \(-0.899694\pi\)
0.950759 0.309932i \(-0.100306\pi\)
\(228\) 5326.93i 1.54730i
\(229\) −2347.12 −0.677301 −0.338651 0.940912i \(-0.609970\pi\)
−0.338651 + 0.940912i \(0.609970\pi\)
\(230\) 0 0
\(231\) 340.583 0.0970075
\(232\) − 3537.47i − 1.00106i
\(233\) 375.499i 0.105578i 0.998606 + 0.0527891i \(0.0168111\pi\)
−0.998606 + 0.0527891i \(0.983189\pi\)
\(234\) 3029.75 0.846415
\(235\) 0 0
\(236\) −16791.2 −4.63142
\(237\) 3064.79i 0.839998i
\(238\) − 931.072i − 0.253582i
\(239\) 1428.15 0.386524 0.193262 0.981147i \(-0.438093\pi\)
0.193262 + 0.981147i \(0.438093\pi\)
\(240\) 0 0
\(241\) 190.819 0.0510032 0.0255016 0.999675i \(-0.491882\pi\)
0.0255016 + 0.999675i \(0.491882\pi\)
\(242\) − 636.641i − 0.169111i
\(243\) 243.000i 0.0641500i
\(244\) 4009.49 1.05197
\(245\) 0 0
\(246\) −3565.94 −0.924211
\(247\) 5771.81i 1.48685i
\(248\) − 8710.79i − 2.23039i
\(249\) 2119.24 0.539364
\(250\) 0 0
\(251\) −6294.80 −1.58297 −0.791483 0.611191i \(-0.790691\pi\)
−0.791483 + 0.611191i \(0.790691\pi\)
\(252\) − 1828.31i − 0.457036i
\(253\) 2338.65i 0.581145i
\(254\) 10868.0 2.68471
\(255\) 0 0
\(256\) −2685.18 −0.655561
\(257\) 4459.44i 1.08238i 0.840900 + 0.541191i \(0.182026\pi\)
−0.840900 + 0.541191i \(0.817974\pi\)
\(258\) 5484.24i 1.32339i
\(259\) −2662.36 −0.638731
\(260\) 0 0
\(261\) 517.915 0.122828
\(262\) − 4133.04i − 0.974581i
\(263\) 4416.65i 1.03552i 0.855525 + 0.517761i \(0.173234\pi\)
−0.855525 + 0.517761i \(0.826766\pi\)
\(264\) −2028.57 −0.472917
\(265\) 0 0
\(266\) 4898.64 1.12915
\(267\) 1320.65i 0.302707i
\(268\) − 5253.28i − 1.19737i
\(269\) −1914.86 −0.434020 −0.217010 0.976169i \(-0.569630\pi\)
−0.217010 + 0.976169i \(0.569630\pi\)
\(270\) 0 0
\(271\) 6088.34 1.36472 0.682362 0.731014i \(-0.260953\pi\)
0.682362 + 0.731014i \(0.260953\pi\)
\(272\) 2845.69i 0.634357i
\(273\) − 1981.01i − 0.439180i
\(274\) 6714.91 1.48052
\(275\) 0 0
\(276\) 12554.3 2.73798
\(277\) − 832.321i − 0.180539i −0.995917 0.0902696i \(-0.971227\pi\)
0.995917 0.0902696i \(-0.0287729\pi\)
\(278\) − 14222.9i − 3.06847i
\(279\) 1275.33 0.273664
\(280\) 0 0
\(281\) −2545.32 −0.540360 −0.270180 0.962810i \(-0.587083\pi\)
−0.270180 + 0.962810i \(0.587083\pi\)
\(282\) 6382.67i 1.34781i
\(283\) 5911.71i 1.24175i 0.783911 + 0.620874i \(0.213222\pi\)
−0.783911 + 0.620874i \(0.786778\pi\)
\(284\) −1819.65 −0.380198
\(285\) 0 0
\(286\) −3703.03 −0.765611
\(287\) 2331.59i 0.479545i
\(288\) 3433.15i 0.702433i
\(289\) 4619.01 0.940161
\(290\) 0 0
\(291\) 593.282 0.119515
\(292\) − 4763.87i − 0.954742i
\(293\) 6871.03i 1.37000i 0.728543 + 0.685000i \(0.240198\pi\)
−0.728543 + 0.685000i \(0.759802\pi\)
\(294\) 3732.76 0.740473
\(295\) 0 0
\(296\) 15857.5 3.11384
\(297\) − 297.000i − 0.0580259i
\(298\) − 12632.8i − 2.45570i
\(299\) 13602.8 2.63100
\(300\) 0 0
\(301\) 3585.88 0.686666
\(302\) 13244.7i 2.52367i
\(303\) 4201.87i 0.796670i
\(304\) −14972.0 −2.82468
\(305\) 0 0
\(306\) −811.926 −0.151682
\(307\) 200.179i 0.0372144i 0.999827 + 0.0186072i \(0.00592320\pi\)
−0.999827 + 0.0186072i \(0.994077\pi\)
\(308\) 2234.61i 0.413404i
\(309\) −4037.10 −0.743245
\(310\) 0 0
\(311\) 5734.93 1.04565 0.522827 0.852439i \(-0.324878\pi\)
0.522827 + 0.852439i \(0.324878\pi\)
\(312\) 11799.2i 2.14102i
\(313\) 3077.36i 0.555727i 0.960621 + 0.277864i \(0.0896264\pi\)
−0.960621 + 0.277864i \(0.910374\pi\)
\(314\) 7320.97 1.31575
\(315\) 0 0
\(316\) −20108.5 −3.57971
\(317\) 2142.38i 0.379584i 0.981824 + 0.189792i \(0.0607813\pi\)
−0.981824 + 0.189792i \(0.939219\pi\)
\(318\) − 4097.15i − 0.722506i
\(319\) −633.007 −0.111102
\(320\) 0 0
\(321\) 2667.54 0.463823
\(322\) − 11544.9i − 1.99806i
\(323\) − 1546.75i − 0.266451i
\(324\) −1594.35 −0.273380
\(325\) 0 0
\(326\) 14314.0 2.43184
\(327\) − 3768.86i − 0.637365i
\(328\) − 13887.4i − 2.33781i
\(329\) 4173.32 0.699339
\(330\) 0 0
\(331\) −1618.23 −0.268719 −0.134359 0.990933i \(-0.542898\pi\)
−0.134359 + 0.990933i \(0.542898\pi\)
\(332\) 13904.6i 2.29854i
\(333\) 2321.67i 0.382062i
\(334\) 15522.7 2.54301
\(335\) 0 0
\(336\) 5138.70 0.834343
\(337\) 2406.47i 0.388988i 0.980904 + 0.194494i \(0.0623064\pi\)
−0.980904 + 0.194494i \(0.937694\pi\)
\(338\) 9979.23i 1.60591i
\(339\) −7182.04 −1.15066
\(340\) 0 0
\(341\) −1558.74 −0.247538
\(342\) − 4271.78i − 0.675413i
\(343\) − 5980.67i − 0.941475i
\(344\) −21358.1 −3.34753
\(345\) 0 0
\(346\) −2825.68 −0.439045
\(347\) − 6612.89i − 1.02305i −0.859268 0.511525i \(-0.829081\pi\)
0.859268 0.511525i \(-0.170919\pi\)
\(348\) 3398.10i 0.523441i
\(349\) −349.871 −0.0536623 −0.0268311 0.999640i \(-0.508542\pi\)
−0.0268311 + 0.999640i \(0.508542\pi\)
\(350\) 0 0
\(351\) −1727.50 −0.262699
\(352\) − 4196.08i − 0.635374i
\(353\) − 1723.29i − 0.259835i −0.991525 0.129917i \(-0.958529\pi\)
0.991525 0.129917i \(-0.0414712\pi\)
\(354\) 13465.2 2.02166
\(355\) 0 0
\(356\) −8664.97 −1.29001
\(357\) 530.879i 0.0787033i
\(358\) 15212.3i 2.24580i
\(359\) −5875.74 −0.863816 −0.431908 0.901918i \(-0.642159\pi\)
−0.431908 + 0.901918i \(0.642159\pi\)
\(360\) 0 0
\(361\) 1278.92 0.186458
\(362\) − 2289.85i − 0.332464i
\(363\) 363.000i 0.0524864i
\(364\) 12997.6 1.87159
\(365\) 0 0
\(366\) −3215.29 −0.459197
\(367\) − 5368.28i − 0.763548i −0.924256 0.381774i \(-0.875313\pi\)
0.924256 0.381774i \(-0.124687\pi\)
\(368\) 35285.5i 4.99832i
\(369\) 2033.23 0.286844
\(370\) 0 0
\(371\) −2678.93 −0.374887
\(372\) 8367.60i 1.16624i
\(373\) − 10393.9i − 1.44282i −0.692506 0.721412i \(-0.743493\pi\)
0.692506 0.721412i \(-0.256507\pi\)
\(374\) 992.354 0.137202
\(375\) 0 0
\(376\) −24857.0 −3.40931
\(377\) 3681.90i 0.502990i
\(378\) 1466.16i 0.199501i
\(379\) −10918.9 −1.47986 −0.739928 0.672686i \(-0.765140\pi\)
−0.739928 + 0.672686i \(0.765140\pi\)
\(380\) 0 0
\(381\) −6196.70 −0.833246
\(382\) 19885.8i 2.66347i
\(383\) 11663.6i 1.55609i 0.628210 + 0.778044i \(0.283788\pi\)
−0.628210 + 0.778044i \(0.716212\pi\)
\(384\) −1567.64 −0.208329
\(385\) 0 0
\(386\) −19740.7 −2.60304
\(387\) − 3127.00i − 0.410735i
\(388\) 3892.59i 0.509321i
\(389\) 5827.00 0.759487 0.379744 0.925092i \(-0.376012\pi\)
0.379744 + 0.925092i \(0.376012\pi\)
\(390\) 0 0
\(391\) −3645.34 −0.471490
\(392\) 14537.1i 1.87304i
\(393\) 2356.58i 0.302478i
\(394\) −20628.9 −2.63774
\(395\) 0 0
\(396\) 1948.65 0.247281
\(397\) 7366.99i 0.931332i 0.884961 + 0.465666i \(0.154185\pi\)
−0.884961 + 0.465666i \(0.845815\pi\)
\(398\) − 3141.55i − 0.395658i
\(399\) −2793.11 −0.350452
\(400\) 0 0
\(401\) 14604.2 1.81870 0.909349 0.416035i \(-0.136581\pi\)
0.909349 + 0.416035i \(0.136581\pi\)
\(402\) 4212.72i 0.522665i
\(403\) 9066.43i 1.12067i
\(404\) −27569.0 −3.39507
\(405\) 0 0
\(406\) 3124.89 0.381985
\(407\) − 2837.60i − 0.345588i
\(408\) − 3162.00i − 0.383683i
\(409\) −12581.2 −1.52103 −0.760515 0.649320i \(-0.775054\pi\)
−0.760515 + 0.649320i \(0.775054\pi\)
\(410\) 0 0
\(411\) −3828.71 −0.459504
\(412\) − 26487.9i − 3.16739i
\(413\) − 8804.26i − 1.04898i
\(414\) −10067.6 −1.19516
\(415\) 0 0
\(416\) −24406.6 −2.87651
\(417\) 8109.63i 0.952351i
\(418\) 5221.06i 0.610934i
\(419\) 3776.01 0.440263 0.220131 0.975470i \(-0.429351\pi\)
0.220131 + 0.975470i \(0.429351\pi\)
\(420\) 0 0
\(421\) 12683.4 1.46830 0.734148 0.678989i \(-0.237582\pi\)
0.734148 + 0.678989i \(0.237582\pi\)
\(422\) 23069.3i 2.66113i
\(423\) − 3639.27i − 0.418316i
\(424\) 15956.2 1.82759
\(425\) 0 0
\(426\) 1459.21 0.165960
\(427\) 2102.32i 0.238263i
\(428\) 17502.0i 1.97662i
\(429\) 2111.39 0.237620
\(430\) 0 0
\(431\) 14152.6 1.58168 0.790841 0.612022i \(-0.209644\pi\)
0.790841 + 0.612022i \(0.209644\pi\)
\(432\) − 4481.12i − 0.499069i
\(433\) 10950.2i 1.21532i 0.794197 + 0.607661i \(0.207892\pi\)
−0.794197 + 0.607661i \(0.792108\pi\)
\(434\) 7694.84 0.851070
\(435\) 0 0
\(436\) 24727.9 2.71618
\(437\) − 19179.2i − 2.09946i
\(438\) 3820.25i 0.416755i
\(439\) 11221.0 1.21993 0.609964 0.792429i \(-0.291184\pi\)
0.609964 + 0.792429i \(0.291184\pi\)
\(440\) 0 0
\(441\) −2128.35 −0.229818
\(442\) − 5772.04i − 0.621149i
\(443\) − 9647.11i − 1.03465i −0.855790 0.517323i \(-0.826929\pi\)
0.855790 0.517323i \(-0.173071\pi\)
\(444\) −15232.7 −1.62818
\(445\) 0 0
\(446\) 12275.2 1.30325
\(447\) 7202.96i 0.762167i
\(448\) 7011.07i 0.739379i
\(449\) −6482.03 −0.681305 −0.340652 0.940189i \(-0.610648\pi\)
−0.340652 + 0.940189i \(0.610648\pi\)
\(450\) 0 0
\(451\) −2485.05 −0.259460
\(452\) − 47122.2i − 4.90363i
\(453\) − 7551.89i − 0.783264i
\(454\) −11154.4 −1.15308
\(455\) 0 0
\(456\) 16636.2 1.70847
\(457\) 11319.8i 1.15868i 0.815085 + 0.579342i \(0.196690\pi\)
−0.815085 + 0.579342i \(0.803310\pi\)
\(458\) 12349.4i 1.25993i
\(459\) 462.944 0.0470771
\(460\) 0 0
\(461\) −8406.73 −0.849329 −0.424664 0.905351i \(-0.639608\pi\)
−0.424664 + 0.905351i \(0.639608\pi\)
\(462\) − 1791.98i − 0.180455i
\(463\) − 9758.56i − 0.979523i −0.871857 0.489761i \(-0.837084\pi\)
0.871857 0.489761i \(-0.162916\pi\)
\(464\) −9550.78 −0.955568
\(465\) 0 0
\(466\) 1975.68 0.196399
\(467\) − 16388.7i − 1.62394i −0.583701 0.811969i \(-0.698396\pi\)
0.583701 0.811969i \(-0.301604\pi\)
\(468\) − 11334.4i − 1.11951i
\(469\) 2754.49 0.271195
\(470\) 0 0
\(471\) −4174.27 −0.408365
\(472\) 52439.6i 5.11384i
\(473\) 3821.89i 0.371524i
\(474\) 16125.4 1.56258
\(475\) 0 0
\(476\) −3483.16 −0.335400
\(477\) 2336.11i 0.224242i
\(478\) − 7514.20i − 0.719020i
\(479\) −13829.0 −1.31913 −0.659567 0.751646i \(-0.729260\pi\)
−0.659567 + 0.751646i \(0.729260\pi\)
\(480\) 0 0
\(481\) −16504.9 −1.56457
\(482\) − 1004.00i − 0.0948771i
\(483\) 6582.69i 0.620130i
\(484\) −2381.68 −0.223674
\(485\) 0 0
\(486\) 1278.54 0.119333
\(487\) 13264.4i 1.23423i 0.786875 + 0.617113i \(0.211698\pi\)
−0.786875 + 0.617113i \(0.788302\pi\)
\(488\) − 12521.8i − 1.16155i
\(489\) −8161.58 −0.754763
\(490\) 0 0
\(491\) −7468.22 −0.686428 −0.343214 0.939257i \(-0.611516\pi\)
−0.343214 + 0.939257i \(0.611516\pi\)
\(492\) 13340.2i 1.22241i
\(493\) − 986.690i − 0.0901385i
\(494\) 30368.4 2.76586
\(495\) 0 0
\(496\) −23518.2 −2.12903
\(497\) − 954.109i − 0.0861119i
\(498\) − 11150.4i − 1.00334i
\(499\) 5276.64 0.473377 0.236688 0.971586i \(-0.423938\pi\)
0.236688 + 0.971586i \(0.423938\pi\)
\(500\) 0 0
\(501\) −8850.76 −0.789267
\(502\) 33120.1i 2.94466i
\(503\) 10956.8i 0.971253i 0.874166 + 0.485626i \(0.161408\pi\)
−0.874166 + 0.485626i \(0.838592\pi\)
\(504\) −5709.90 −0.504641
\(505\) 0 0
\(506\) 12304.8 1.08106
\(507\) − 5689.96i − 0.498422i
\(508\) − 40657.3i − 3.55093i
\(509\) −12734.4 −1.10892 −0.554462 0.832209i \(-0.687076\pi\)
−0.554462 + 0.832209i \(0.687076\pi\)
\(510\) 0 0
\(511\) 2497.87 0.216242
\(512\) 18308.4i 1.58032i
\(513\) 2435.68i 0.209626i
\(514\) 23463.3 2.01347
\(515\) 0 0
\(516\) 20516.6 1.75038
\(517\) 4448.00i 0.378381i
\(518\) 14008.0i 1.18818i
\(519\) 1611.15 0.136265
\(520\) 0 0
\(521\) −5650.70 −0.475166 −0.237583 0.971367i \(-0.576355\pi\)
−0.237583 + 0.971367i \(0.576355\pi\)
\(522\) − 2725.01i − 0.228487i
\(523\) − 14103.2i − 1.17914i −0.807716 0.589572i \(-0.799297\pi\)
0.807716 0.589572i \(-0.200703\pi\)
\(524\) −15461.8 −1.28903
\(525\) 0 0
\(526\) 23238.2 1.92630
\(527\) − 2429.66i − 0.200830i
\(528\) 5476.92i 0.451425i
\(529\) −33033.8 −2.71503
\(530\) 0 0
\(531\) −7677.60 −0.627457
\(532\) − 18325.9i − 1.49347i
\(533\) 14454.4i 1.17465i
\(534\) 6948.62 0.563102
\(535\) 0 0
\(536\) −16406.2 −1.32209
\(537\) − 8673.75i − 0.697021i
\(538\) 10075.0i 0.807372i
\(539\) 2601.31 0.207878
\(540\) 0 0
\(541\) −6391.90 −0.507965 −0.253983 0.967209i \(-0.581741\pi\)
−0.253983 + 0.967209i \(0.581741\pi\)
\(542\) − 32033.8i − 2.53869i
\(543\) 1305.63i 0.103186i
\(544\) 6540.57 0.515486
\(545\) 0 0
\(546\) −10423.1 −0.816971
\(547\) 20786.7i 1.62482i 0.583088 + 0.812409i \(0.301844\pi\)
−0.583088 + 0.812409i \(0.698156\pi\)
\(548\) − 25120.6i − 1.95821i
\(549\) 1833.29 0.142519
\(550\) 0 0
\(551\) 5191.26 0.401370
\(552\) − 39207.6i − 3.02317i
\(553\) − 10543.6i − 0.810777i
\(554\) −4379.26 −0.335843
\(555\) 0 0
\(556\) −53208.2 −4.05851
\(557\) − 15125.9i − 1.15064i −0.817928 0.575320i \(-0.804877\pi\)
0.817928 0.575320i \(-0.195123\pi\)
\(558\) − 6710.16i − 0.509075i
\(559\) 22230.1 1.68199
\(560\) 0 0
\(561\) −565.820 −0.0425828
\(562\) 13392.2i 1.00519i
\(563\) − 8706.42i − 0.651744i −0.945414 0.325872i \(-0.894342\pi\)
0.945414 0.325872i \(-0.105658\pi\)
\(564\) 23877.7 1.78268
\(565\) 0 0
\(566\) 31104.4 2.30992
\(567\) − 835.977i − 0.0619184i
\(568\) 5682.83i 0.419800i
\(569\) −7067.76 −0.520731 −0.260366 0.965510i \(-0.583843\pi\)
−0.260366 + 0.965510i \(0.583843\pi\)
\(570\) 0 0
\(571\) −3326.42 −0.243794 −0.121897 0.992543i \(-0.538898\pi\)
−0.121897 + 0.992543i \(0.538898\pi\)
\(572\) 13853.1i 1.01264i
\(573\) − 11338.5i − 0.826651i
\(574\) 12267.7 0.892060
\(575\) 0 0
\(576\) 6113.88 0.442266
\(577\) − 3308.06i − 0.238676i −0.992854 0.119338i \(-0.961923\pi\)
0.992854 0.119338i \(-0.0380773\pi\)
\(578\) − 24302.9i − 1.74891i
\(579\) 11255.7 0.807897
\(580\) 0 0
\(581\) −7290.70 −0.520601
\(582\) − 3121.55i − 0.222324i
\(583\) − 2855.25i − 0.202834i
\(584\) −14877.8 −1.05419
\(585\) 0 0
\(586\) 36151.9 2.54850
\(587\) − 5694.88i − 0.400431i −0.979752 0.200215i \(-0.935836\pi\)
0.979752 0.200215i \(-0.0641642\pi\)
\(588\) − 13964.3i − 0.979387i
\(589\) 12783.1 0.894262
\(590\) 0 0
\(591\) 11762.2 0.818666
\(592\) − 42813.5i − 2.97234i
\(593\) 3907.69i 0.270606i 0.990804 + 0.135303i \(0.0432008\pi\)
−0.990804 + 0.135303i \(0.956799\pi\)
\(594\) −1562.66 −0.107941
\(595\) 0 0
\(596\) −47259.5 −3.24803
\(597\) 1791.25i 0.122799i
\(598\) − 71571.1i − 4.89425i
\(599\) −10727.2 −0.731720 −0.365860 0.930670i \(-0.619225\pi\)
−0.365860 + 0.930670i \(0.619225\pi\)
\(600\) 0 0
\(601\) 3348.98 0.227301 0.113650 0.993521i \(-0.463746\pi\)
0.113650 + 0.993521i \(0.463746\pi\)
\(602\) − 18867.1i − 1.27735i
\(603\) − 2402.01i − 0.162218i
\(604\) 49548.8 3.33793
\(605\) 0 0
\(606\) 22108.1 1.48198
\(607\) − 21539.9i − 1.44032i −0.693806 0.720162i \(-0.744068\pi\)
0.693806 0.720162i \(-0.255932\pi\)
\(608\) 34411.8i 2.29537i
\(609\) −1781.75 −0.118555
\(610\) 0 0
\(611\) 25871.9 1.71303
\(612\) 3037.43i 0.200622i
\(613\) 9284.33i 0.611730i 0.952075 + 0.305865i \(0.0989457\pi\)
−0.952075 + 0.305865i \(0.901054\pi\)
\(614\) 1053.24 0.0692270
\(615\) 0 0
\(616\) 6978.77 0.456465
\(617\) − 20711.3i − 1.35139i −0.737181 0.675695i \(-0.763844\pi\)
0.737181 0.675695i \(-0.236156\pi\)
\(618\) 21241.2i 1.38260i
\(619\) 13282.9 0.862496 0.431248 0.902233i \(-0.358073\pi\)
0.431248 + 0.902233i \(0.358073\pi\)
\(620\) 0 0
\(621\) 5740.33 0.370936
\(622\) − 30174.3i − 1.94515i
\(623\) − 4543.36i − 0.292177i
\(624\) 31856.6 2.04373
\(625\) 0 0
\(626\) 16191.5 1.03378
\(627\) − 2976.94i − 0.189613i
\(628\) − 27387.9i − 1.74028i
\(629\) 4423.06 0.280380
\(630\) 0 0
\(631\) −14789.9 −0.933086 −0.466543 0.884498i \(-0.654501\pi\)
−0.466543 + 0.884498i \(0.654501\pi\)
\(632\) 62799.5i 3.95258i
\(633\) − 13153.6i − 0.825925i
\(634\) 11272.1 0.706109
\(635\) 0 0
\(636\) −15327.5 −0.955622
\(637\) − 15130.6i − 0.941123i
\(638\) 3330.57i 0.206675i
\(639\) −832.014 −0.0515086
\(640\) 0 0
\(641\) −5808.52 −0.357914 −0.178957 0.983857i \(-0.557272\pi\)
−0.178957 + 0.983857i \(0.557272\pi\)
\(642\) − 14035.2i − 0.862813i
\(643\) 18891.2i 1.15862i 0.815106 + 0.579311i \(0.196678\pi\)
−0.815106 + 0.579311i \(0.803322\pi\)
\(644\) −43189.8 −2.64273
\(645\) 0 0
\(646\) −8138.24 −0.495657
\(647\) − 243.046i − 0.0147684i −0.999973 0.00738418i \(-0.997650\pi\)
0.999973 0.00738418i \(-0.00235048\pi\)
\(648\) 4979.22i 0.301855i
\(649\) 9383.74 0.567556
\(650\) 0 0
\(651\) −4387.44 −0.264144
\(652\) − 53549.0i − 3.21648i
\(653\) 15920.4i 0.954081i 0.878881 + 0.477041i \(0.158291\pi\)
−0.878881 + 0.477041i \(0.841709\pi\)
\(654\) −19829.8 −1.18564
\(655\) 0 0
\(656\) −37494.4 −2.23157
\(657\) − 2178.23i − 0.129347i
\(658\) − 21957.9i − 1.30092i
\(659\) 7476.38 0.441940 0.220970 0.975281i \(-0.429078\pi\)
0.220970 + 0.975281i \(0.429078\pi\)
\(660\) 0 0
\(661\) −14920.1 −0.877948 −0.438974 0.898500i \(-0.644658\pi\)
−0.438974 + 0.898500i \(0.644658\pi\)
\(662\) 8514.30i 0.499876i
\(663\) 3291.10i 0.192784i
\(664\) 43424.7 2.53796
\(665\) 0 0
\(666\) 12215.5 0.710720
\(667\) − 12234.6i − 0.710232i
\(668\) − 58070.8i − 3.36351i
\(669\) −6999.08 −0.404484
\(670\) 0 0
\(671\) −2240.69 −0.128914
\(672\) − 11810.9i − 0.677997i
\(673\) − 563.692i − 0.0322864i −0.999870 0.0161432i \(-0.994861\pi\)
0.999870 0.0161432i \(-0.00513876\pi\)
\(674\) 12661.6 0.723602
\(675\) 0 0
\(676\) 37332.5 2.12406
\(677\) 13280.2i 0.753914i 0.926231 + 0.376957i \(0.123030\pi\)
−0.926231 + 0.376957i \(0.876970\pi\)
\(678\) 37788.3i 2.14049i
\(679\) −2041.03 −0.115357
\(680\) 0 0
\(681\) 6359.99 0.357879
\(682\) 8201.30i 0.460475i
\(683\) − 6856.80i − 0.384141i −0.981381 0.192070i \(-0.938480\pi\)
0.981381 0.192070i \(-0.0615202\pi\)
\(684\) −15980.8 −0.893334
\(685\) 0 0
\(686\) −31467.3 −1.75135
\(687\) − 7041.36i − 0.391040i
\(688\) 57664.5i 3.19541i
\(689\) −16607.6 −0.918287
\(690\) 0 0
\(691\) −28374.6 −1.56211 −0.781057 0.624460i \(-0.785319\pi\)
−0.781057 + 0.624460i \(0.785319\pi\)
\(692\) 10570.9i 0.580702i
\(693\) 1021.75i 0.0560073i
\(694\) −34793.7 −1.90310
\(695\) 0 0
\(696\) 10612.4 0.577963
\(697\) − 3873.54i − 0.210503i
\(698\) 1840.84i 0.0998237i
\(699\) −1126.50 −0.0609556
\(700\) 0 0
\(701\) 667.753 0.0359781 0.0179891 0.999838i \(-0.494274\pi\)
0.0179891 + 0.999838i \(0.494274\pi\)
\(702\) 9089.26i 0.488678i
\(703\) 23271.0i 1.24848i
\(704\) −7472.52 −0.400044
\(705\) 0 0
\(706\) −9067.10 −0.483349
\(707\) − 14455.4i − 0.768956i
\(708\) − 50373.6i − 2.67395i
\(709\) −23667.8 −1.25368 −0.626842 0.779147i \(-0.715653\pi\)
−0.626842 + 0.779147i \(0.715653\pi\)
\(710\) 0 0
\(711\) −9194.37 −0.484973
\(712\) 27061.0i 1.42438i
\(713\) − 30126.9i − 1.58241i
\(714\) 2793.22 0.146405
\(715\) 0 0
\(716\) 56909.5 2.97040
\(717\) 4284.45i 0.223160i
\(718\) 30915.2i 1.60689i
\(719\) −11835.5 −0.613896 −0.306948 0.951726i \(-0.599308\pi\)
−0.306948 + 0.951726i \(0.599308\pi\)
\(720\) 0 0
\(721\) 13888.6 0.717390
\(722\) − 6729.01i − 0.346853i
\(723\) 572.458i 0.0294467i
\(724\) −8566.38 −0.439733
\(725\) 0 0
\(726\) 1909.92 0.0976362
\(727\) 15633.2i 0.797530i 0.917053 + 0.398765i \(0.130561\pi\)
−0.917053 + 0.398765i \(0.869439\pi\)
\(728\) − 40592.1i − 2.06654i
\(729\) −729.000 −0.0370370
\(730\) 0 0
\(731\) −5957.31 −0.301422
\(732\) 12028.5i 0.607356i
\(733\) 14870.7i 0.749335i 0.927159 + 0.374668i \(0.122243\pi\)
−0.927159 + 0.374668i \(0.877757\pi\)
\(734\) −28245.2 −1.42037
\(735\) 0 0
\(736\) 81100.6 4.06169
\(737\) 2935.79i 0.146731i
\(738\) − 10697.8i − 0.533593i
\(739\) −20850.3 −1.03788 −0.518939 0.854812i \(-0.673673\pi\)
−0.518939 + 0.854812i \(0.673673\pi\)
\(740\) 0 0
\(741\) −17315.4 −0.858432
\(742\) 14095.2i 0.697372i
\(743\) 29254.7i 1.44448i 0.691641 + 0.722242i \(0.256888\pi\)
−0.691641 + 0.722242i \(0.743112\pi\)
\(744\) 26132.4 1.28771
\(745\) 0 0
\(746\) −54687.2 −2.68397
\(747\) 6357.73i 0.311402i
\(748\) − 3712.41i − 0.181470i
\(749\) −9176.95 −0.447688
\(750\) 0 0
\(751\) 10936.8 0.531411 0.265705 0.964054i \(-0.414395\pi\)
0.265705 + 0.964054i \(0.414395\pi\)
\(752\) 67111.2i 3.25438i
\(753\) − 18884.4i − 0.913926i
\(754\) 19372.3 0.935672
\(755\) 0 0
\(756\) 5484.94 0.263870
\(757\) − 8476.34i − 0.406972i −0.979078 0.203486i \(-0.934773\pi\)
0.979078 0.203486i \(-0.0652272\pi\)
\(758\) 57449.6i 2.75286i
\(759\) −7015.96 −0.335524
\(760\) 0 0
\(761\) 913.964 0.0435364 0.0217682 0.999763i \(-0.493070\pi\)
0.0217682 + 0.999763i \(0.493070\pi\)
\(762\) 32603.9i 1.55002i
\(763\) 12965.8i 0.615193i
\(764\) 74393.0 3.52283
\(765\) 0 0
\(766\) 61367.9 2.89466
\(767\) − 54580.6i − 2.56948i
\(768\) − 8055.53i − 0.378488i
\(769\) −32215.2 −1.51067 −0.755337 0.655337i \(-0.772527\pi\)
−0.755337 + 0.655337i \(0.772527\pi\)
\(770\) 0 0
\(771\) −13378.3 −0.624914
\(772\) 73850.2i 3.44291i
\(773\) − 72.6900i − 0.00338225i −0.999999 0.00169112i \(-0.999462\pi\)
0.999999 0.00169112i \(-0.000538302\pi\)
\(774\) −16452.7 −0.764058
\(775\) 0 0
\(776\) 12156.7 0.562373
\(777\) − 7987.09i − 0.368771i
\(778\) − 30658.7i − 1.41281i
\(779\) 20379.8 0.937332
\(780\) 0 0
\(781\) 1016.91 0.0465913
\(782\) 19179.9i 0.877075i
\(783\) 1553.75i 0.0709148i
\(784\) 39248.5 1.78792
\(785\) 0 0
\(786\) 12399.1 0.562675
\(787\) 487.318i 0.0220724i 0.999939 + 0.0110362i \(0.00351301\pi\)
−0.999939 + 0.0110362i \(0.996487\pi\)
\(788\) 77173.1i 3.48880i
\(789\) −13249.9 −0.597859
\(790\) 0 0
\(791\) 24707.9 1.11064
\(792\) − 6085.72i − 0.273039i
\(793\) 13033.0i 0.583627i
\(794\) 38761.4 1.73248
\(795\) 0 0
\(796\) −11752.6 −0.523317
\(797\) 31379.9i 1.39465i 0.716756 + 0.697324i \(0.245626\pi\)
−0.716756 + 0.697324i \(0.754374\pi\)
\(798\) 14695.9i 0.651917i
\(799\) −6933.25 −0.306985
\(800\) 0 0
\(801\) −3961.96 −0.174768
\(802\) − 76839.8i − 3.38318i
\(803\) 2662.28i 0.116999i
\(804\) 15759.8 0.691302
\(805\) 0 0
\(806\) 47703.0 2.08470
\(807\) − 5744.59i − 0.250581i
\(808\) 86099.0i 3.74870i
\(809\) −1824.26 −0.0792802 −0.0396401 0.999214i \(-0.512621\pi\)
−0.0396401 + 0.999214i \(0.512621\pi\)
\(810\) 0 0
\(811\) −4364.52 −0.188976 −0.0944878 0.995526i \(-0.530121\pi\)
−0.0944878 + 0.995526i \(0.530121\pi\)
\(812\) − 11690.3i − 0.505232i
\(813\) 18265.0i 0.787924i
\(814\) −14930.0 −0.642870
\(815\) 0 0
\(816\) −8537.06 −0.366246
\(817\) − 31343.1i − 1.34218i
\(818\) 66196.1i 2.82945i
\(819\) 5943.02 0.253561
\(820\) 0 0
\(821\) 3306.16 0.140543 0.0702714 0.997528i \(-0.477613\pi\)
0.0702714 + 0.997528i \(0.477613\pi\)
\(822\) 20144.7i 0.854779i
\(823\) 19183.7i 0.812519i 0.913758 + 0.406259i \(0.133167\pi\)
−0.913758 + 0.406259i \(0.866833\pi\)
\(824\) −82722.8 −3.49731
\(825\) 0 0
\(826\) −46323.6 −1.95134
\(827\) 20646.4i 0.868131i 0.900881 + 0.434066i \(0.142921\pi\)
−0.900881 + 0.434066i \(0.857079\pi\)
\(828\) 37663.0i 1.58077i
\(829\) −5345.44 −0.223950 −0.111975 0.993711i \(-0.535718\pi\)
−0.111975 + 0.993711i \(0.535718\pi\)
\(830\) 0 0
\(831\) 2496.96 0.104234
\(832\) 43464.0i 1.81111i
\(833\) 4054.75i 0.168654i
\(834\) 42668.8 1.77158
\(835\) 0 0
\(836\) 19532.1 0.808051
\(837\) 3826.00i 0.158000i
\(838\) − 19867.5i − 0.818985i
\(839\) −29284.9 −1.20504 −0.602519 0.798105i \(-0.705836\pi\)
−0.602519 + 0.798105i \(0.705836\pi\)
\(840\) 0 0
\(841\) −21077.4 −0.864219
\(842\) − 66733.8i − 2.73135i
\(843\) − 7635.97i − 0.311977i
\(844\) 86302.6 3.51974
\(845\) 0 0
\(846\) −19148.0 −0.778159
\(847\) − 1248.81i − 0.0506605i
\(848\) − 43079.9i − 1.74454i
\(849\) −17735.1 −0.716923
\(850\) 0 0
\(851\) 54844.2 2.20921
\(852\) − 5458.94i − 0.219507i
\(853\) 8070.62i 0.323954i 0.986795 + 0.161977i \(0.0517870\pi\)
−0.986795 + 0.161977i \(0.948213\pi\)
\(854\) 11061.4 0.443222
\(855\) 0 0
\(856\) 54659.5 2.18250
\(857\) − 11344.2i − 0.452169i −0.974108 0.226085i \(-0.927407\pi\)
0.974108 0.226085i \(-0.0725926\pi\)
\(858\) − 11109.1i − 0.442026i
\(859\) −25470.6 −1.01170 −0.505848 0.862623i \(-0.668820\pi\)
−0.505848 + 0.862623i \(0.668820\pi\)
\(860\) 0 0
\(861\) −6994.78 −0.276866
\(862\) − 74463.6i − 2.94228i
\(863\) 14558.4i 0.574243i 0.957894 + 0.287122i \(0.0926984\pi\)
−0.957894 + 0.287122i \(0.907302\pi\)
\(864\) −10299.5 −0.405550
\(865\) 0 0
\(866\) 57614.6 2.26077
\(867\) 13857.0i 0.542802i
\(868\) − 28786.5i − 1.12567i
\(869\) 11237.6 0.438675
\(870\) 0 0
\(871\) 17076.0 0.664294
\(872\) − 77226.3i − 2.99910i
\(873\) 1779.85i 0.0690019i
\(874\) −100911. −3.90546
\(875\) 0 0
\(876\) 14291.6 0.551220
\(877\) 185.528i 0.00714350i 0.999994 + 0.00357175i \(0.00113693\pi\)
−0.999994 + 0.00357175i \(0.998863\pi\)
\(878\) − 59039.1i − 2.26933i
\(879\) −20613.1 −0.790969
\(880\) 0 0
\(881\) 18950.1 0.724681 0.362340 0.932046i \(-0.381978\pi\)
0.362340 + 0.932046i \(0.381978\pi\)
\(882\) 11198.3i 0.427513i
\(883\) − 21258.3i − 0.810189i −0.914275 0.405095i \(-0.867239\pi\)
0.914275 0.405095i \(-0.132761\pi\)
\(884\) −21593.3 −0.821563
\(885\) 0 0
\(886\) −50758.2 −1.92467
\(887\) 35707.4i 1.35168i 0.737049 + 0.675839i \(0.236219\pi\)
−0.737049 + 0.675839i \(0.763781\pi\)
\(888\) 47572.5i 1.79778i
\(889\) 21318.1 0.804259
\(890\) 0 0
\(891\) 891.000 0.0335013
\(892\) − 45921.8i − 1.72374i
\(893\) − 36477.8i − 1.36695i
\(894\) 37898.4 1.41780
\(895\) 0 0
\(896\) 5393.06 0.201082
\(897\) 40808.4i 1.51901i
\(898\) 34105.2i 1.26738i
\(899\) 8154.49 0.302522
\(900\) 0 0
\(901\) 4450.58 0.164562
\(902\) 13075.1i 0.482653i
\(903\) 10757.6i 0.396447i
\(904\) −147165. −5.41440
\(905\) 0 0
\(906\) −39734.2 −1.45704
\(907\) − 6542.52i − 0.239516i −0.992803 0.119758i \(-0.961788\pi\)
0.992803 0.119758i \(-0.0382118\pi\)
\(908\) 41728.6i 1.52512i
\(909\) −12605.6 −0.459958
\(910\) 0 0
\(911\) 31171.2 1.13364 0.566821 0.823841i \(-0.308173\pi\)
0.566821 + 0.823841i \(0.308173\pi\)
\(912\) − 44915.9i − 1.63083i
\(913\) − 7770.56i − 0.281674i
\(914\) 59559.2 2.15541
\(915\) 0 0
\(916\) 46199.2 1.66644
\(917\) − 8107.19i − 0.291955i
\(918\) − 2435.78i − 0.0875737i
\(919\) −12031.9 −0.431877 −0.215938 0.976407i \(-0.569281\pi\)
−0.215938 + 0.976407i \(0.569281\pi\)
\(920\) 0 0
\(921\) −600.537 −0.0214857
\(922\) 44232.0i 1.57994i
\(923\) − 5914.85i − 0.210931i
\(924\) −6703.82 −0.238679
\(925\) 0 0
\(926\) −51344.7 −1.82213
\(927\) − 12111.3i − 0.429113i
\(928\) 21951.6i 0.776506i
\(929\) 12546.2 0.443085 0.221542 0.975151i \(-0.428891\pi\)
0.221542 + 0.975151i \(0.428891\pi\)
\(930\) 0 0
\(931\) −21333.2 −0.750986
\(932\) − 7391.07i − 0.259767i
\(933\) 17204.8i 0.603708i
\(934\) −86229.1 −3.02088
\(935\) 0 0
\(936\) −35397.7 −1.23612
\(937\) 17909.8i 0.624427i 0.950012 + 0.312214i \(0.101070\pi\)
−0.950012 + 0.312214i \(0.898930\pi\)
\(938\) − 14492.7i − 0.504483i
\(939\) −9232.08 −0.320849
\(940\) 0 0
\(941\) 829.893 0.0287500 0.0143750 0.999897i \(-0.495424\pi\)
0.0143750 + 0.999897i \(0.495424\pi\)
\(942\) 21962.9i 0.759650i
\(943\) − 48030.4i − 1.65863i
\(944\) 141581. 4.88144
\(945\) 0 0
\(946\) 20108.9 0.691116
\(947\) − 17654.9i − 0.605814i −0.953020 0.302907i \(-0.902043\pi\)
0.953020 0.302907i \(-0.0979572\pi\)
\(948\) − 60325.4i − 2.06675i
\(949\) 15485.2 0.529685
\(950\) 0 0
\(951\) −6427.14 −0.219153
\(952\) 10878.0i 0.370335i
\(953\) − 30736.6i − 1.04476i −0.852713 0.522380i \(-0.825044\pi\)
0.852713 0.522380i \(-0.174956\pi\)
\(954\) 12291.5 0.417139
\(955\) 0 0
\(956\) −28110.8 −0.951012
\(957\) − 1899.02i − 0.0641449i
\(958\) 72761.5i 2.45388i
\(959\) 13171.7 0.443519
\(960\) 0 0
\(961\) −9711.08 −0.325974
\(962\) 86840.6i 2.91045i
\(963\) 8002.61i 0.267789i
\(964\) −3755.97 −0.125489
\(965\) 0 0
\(966\) 34634.8 1.15358
\(967\) 23645.2i 0.786327i 0.919469 + 0.393163i \(0.128619\pi\)
−0.919469 + 0.393163i \(0.871381\pi\)
\(968\) 7438.10i 0.246973i
\(969\) 4640.26 0.153836
\(970\) 0 0
\(971\) 27402.0 0.905635 0.452818 0.891603i \(-0.350419\pi\)
0.452818 + 0.891603i \(0.350419\pi\)
\(972\) − 4783.05i − 0.157836i
\(973\) − 27899.1i − 0.919222i
\(974\) 69790.6 2.29593
\(975\) 0 0
\(976\) −33807.5 −1.10876
\(977\) − 49118.7i − 1.60844i −0.594332 0.804220i \(-0.702584\pi\)
0.594332 0.804220i \(-0.297416\pi\)
\(978\) 42942.1i 1.40403i
\(979\) 4842.40 0.158084
\(980\) 0 0
\(981\) 11306.6 0.367983
\(982\) 39294.0i 1.27691i
\(983\) − 52630.5i − 1.70768i −0.520533 0.853842i \(-0.674267\pi\)
0.520533 0.853842i \(-0.325733\pi\)
\(984\) 41662.1 1.34973
\(985\) 0 0
\(986\) −5191.47 −0.167677
\(987\) 12520.0i 0.403764i
\(988\) − 113609.i − 3.65827i
\(989\) −73868.4 −2.37500
\(990\) 0 0
\(991\) 45472.7 1.45761 0.728803 0.684724i \(-0.240077\pi\)
0.728803 + 0.684724i \(0.240077\pi\)
\(992\) 54054.5i 1.73007i
\(993\) − 4854.68i − 0.155145i
\(994\) −5020.04 −0.160187
\(995\) 0 0
\(996\) −41713.8 −1.32706
\(997\) 55068.1i 1.74927i 0.484779 + 0.874637i \(0.338900\pi\)
−0.484779 + 0.874637i \(0.661100\pi\)
\(998\) − 27763.0i − 0.880585i
\(999\) −6965.01 −0.220584
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 825.4.c.l.199.1 6
5.2 odd 4 825.4.a.s.1.3 3
5.3 odd 4 165.4.a.d.1.1 3
5.4 even 2 inner 825.4.c.l.199.6 6
15.2 even 4 2475.4.a.s.1.1 3
15.8 even 4 495.4.a.l.1.3 3
55.43 even 4 1815.4.a.s.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
165.4.a.d.1.1 3 5.3 odd 4
495.4.a.l.1.3 3 15.8 even 4
825.4.a.s.1.3 3 5.2 odd 4
825.4.c.l.199.1 6 1.1 even 1 trivial
825.4.c.l.199.6 6 5.4 even 2 inner
1815.4.a.s.1.3 3 55.43 even 4
2475.4.a.s.1.1 3 15.2 even 4