Properties

Label 825.4.c.l
Level $825$
Weight $4$
Character orbit 825.c
Analytic conductor $48.677$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [825,4,Mod(199,825)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(825, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("825.199");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 825 = 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 825.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(48.6765757547\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.2230106176.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 41x^{4} + 452x^{2} + 676 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 165)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{2} + \beta_1) q^{2} + 3 \beta_{2} q^{3} + (\beta_{5} + \beta_{3} - 7) q^{4} + ( - 3 \beta_{3} + 3) q^{6} + ( - 2 \beta_{4} - 2 \beta_{2} - 2 \beta_1) q^{7} + (4 \beta_{4} + 15 \beta_{2} - 3 \beta_1) q^{8}+ \cdots - 99 q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 44 q^{4} + 24 q^{6} - 54 q^{9} + 66 q^{11} + 112 q^{14} + 100 q^{16} - 292 q^{19} + 24 q^{21} - 288 q^{24} - 1016 q^{26} - 136 q^{29} - 136 q^{31} + 352 q^{34} + 396 q^{36} - 392 q^{41} - 484 q^{44}+ \cdots - 594 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} + 41x^{4} + 452x^{2} + 676 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{5} + 15\nu^{3} - 94\nu ) / 156 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{4} + 21\nu^{2} + 26 ) / 6 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{5} + 28\nu^{3} + 153\nu ) / 13 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{4} + 27\nu^{2} + 110 ) / 6 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{5} - \beta_{3} - 14 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{4} - 12\beta_{2} - 19\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -21\beta_{5} + 27\beta_{3} + 268 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -15\beta_{4} + 336\beta_{2} + 379\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/825\mathbb{Z}\right)^\times\).

\(n\) \(376\) \(551\) \(727\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
199.1
4.26150i
4.59056i
1.32906i
1.32906i
4.59056i
4.26150i
5.26150i 3.00000i −19.6833 0 15.7845 10.3207i 61.4719i −9.00000 0
199.2 3.59056i 3.00000i −4.89212 0 −10.7717 16.1465i 11.1590i −9.00000 0
199.3 2.32906i 3.00000i 2.57547 0 6.98719 22.4672i 24.6309i −9.00000 0
199.4 2.32906i 3.00000i 2.57547 0 6.98719 22.4672i 24.6309i −9.00000 0
199.5 3.59056i 3.00000i −4.89212 0 −10.7717 16.1465i 11.1590i −9.00000 0
199.6 5.26150i 3.00000i −19.6833 0 15.7845 10.3207i 61.4719i −9.00000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 199.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 825.4.c.l 6
5.b even 2 1 inner 825.4.c.l 6
5.c odd 4 1 165.4.a.d 3
5.c odd 4 1 825.4.a.s 3
15.e even 4 1 495.4.a.l 3
15.e even 4 1 2475.4.a.s 3
55.e even 4 1 1815.4.a.s 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
165.4.a.d 3 5.c odd 4 1
495.4.a.l 3 15.e even 4 1
825.4.a.s 3 5.c odd 4 1
825.4.c.l 6 1.a even 1 1 trivial
825.4.c.l 6 5.b even 2 1 inner
1815.4.a.s 3 55.e even 4 1
2475.4.a.s 3 15.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(825, [\chi])\):

\( T_{2}^{6} + 46T_{2}^{4} + 577T_{2}^{2} + 1936 \) Copy content Toggle raw display
\( T_{7}^{6} + 872T_{7}^{4} + 213136T_{7}^{2} + 14017536 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} + 46 T^{4} + \cdots + 1936 \) Copy content Toggle raw display
$3$ \( (T^{2} + 9)^{3} \) Copy content Toggle raw display
$5$ \( T^{6} \) Copy content Toggle raw display
$7$ \( T^{6} + 872 T^{4} + \cdots + 14017536 \) Copy content Toggle raw display
$11$ \( (T - 11)^{6} \) Copy content Toggle raw display
$13$ \( T^{6} + \cdots + 1165812736 \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots + 55273890816 \) Copy content Toggle raw display
$19$ \( (T^{3} + 146 T^{2} + \cdots + 30960)^{2} \) Copy content Toggle raw display
$23$ \( T^{6} + 45344 T^{4} + \cdots + 2768896 \) Copy content Toggle raw display
$29$ \( (T^{3} + 68 T^{2} + \cdots - 3163056)^{2} \) Copy content Toggle raw display
$31$ \( (T^{3} + 68 T^{2} + \cdots - 1812096)^{2} \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots + 383101578304 \) Copy content Toggle raw display
$41$ \( (T^{3} + 196 T^{2} + \cdots - 4364208)^{2} \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots + 978058072166400 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots + 439614082584576 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots + 15\!\cdots\!04 \) Copy content Toggle raw display
$59$ \( (T^{3} - 1044 T^{2} + \cdots + 84227264)^{2} \) Copy content Toggle raw display
$61$ \( (T^{3} - 642 T^{2} + \cdots + 22757384)^{2} \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots + 76\!\cdots\!96 \) Copy content Toggle raw display
$71$ \( (T^{3} + 544 T^{2} + \cdots + 6553600)^{2} \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots + 31464740110336 \) Copy content Toggle raw display
$79$ \( (T^{3} - 1586 T^{2} + \cdots + 14694992)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots + 85\!\cdots\!56 \) Copy content Toggle raw display
$89$ \( (T^{3} - 2122 T^{2} + \cdots - 293444632)^{2} \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots + 49\!\cdots\!96 \) Copy content Toggle raw display
show more
show less