Properties

Label 825.4.c.i.199.3
Level $825$
Weight $4$
Character 825.199
Analytic conductor $48.677$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [825,4,Mod(199,825)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(825, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("825.199");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 825 = 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 825.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(48.6765757547\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{33})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 17x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 33)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 199.3
Root \(2.37228i\) of defining polynomial
Character \(\chi\) \(=\) 825.199
Dual form 825.4.c.i.199.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.37228i q^{2} +3.00000i q^{3} +2.37228 q^{4} -7.11684 q^{6} -6.74456i q^{7} +24.6060i q^{8} -9.00000 q^{9} +11.0000 q^{11} +7.11684i q^{12} -60.9783i q^{13} +16.0000 q^{14} -39.3940 q^{16} +99.1684i q^{17} -21.3505i q^{18} -24.7011 q^{19} +20.2337 q^{21} +26.0951i q^{22} +112.000i q^{23} -73.8179 q^{24} +144.658 q^{26} -27.0000i q^{27} -16.0000i q^{28} +21.1249 q^{29} -318.717 q^{31} +103.394i q^{32} +33.0000i q^{33} -235.255 q^{34} -21.3505 q^{36} +150.380i q^{37} -58.5979i q^{38} +182.935 q^{39} -252.745 q^{41} +48.0000i q^{42} +214.016i q^{43} +26.0951 q^{44} -265.696 q^{46} -105.870i q^{47} -118.182i q^{48} +297.511 q^{49} -297.505 q^{51} -144.658i q^{52} +325.652i q^{53} +64.0516 q^{54} +165.957 q^{56} -74.1032i q^{57} +50.1143i q^{58} -196.000 q^{59} -402.641 q^{61} -756.087i q^{62} +60.7011i q^{63} -560.432 q^{64} -78.2853 q^{66} -27.4132i q^{67} +235.255i q^{68} -336.000 q^{69} -300.500 q^{71} -221.454i q^{72} +427.815i q^{73} -356.745 q^{74} -58.5979 q^{76} -74.1902i q^{77} +433.973i q^{78} -97.5488 q^{79} +81.0000 q^{81} -599.581i q^{82} +1104.62i q^{83} +48.0000 q^{84} -507.707 q^{86} +63.3748i q^{87} +270.666i q^{88} -463.022 q^{89} -411.272 q^{91} +265.696i q^{92} -956.152i q^{93} +251.152 q^{94} -310.182 q^{96} +1798.36i q^{97} +705.779i q^{98} -99.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{4} + 6 q^{6} - 36 q^{9} + 44 q^{11} + 64 q^{14} - 238 q^{16} + 108 q^{19} + 12 q^{21} - 54 q^{24} + 188 q^{26} - 444 q^{29} - 80 q^{31} - 964 q^{34} + 18 q^{36} + 456 q^{39} - 988 q^{41} - 22 q^{44}+ \cdots - 396 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/825\mathbb{Z}\right)^\times\).

\(n\) \(376\) \(551\) \(727\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.37228i 0.838728i 0.907818 + 0.419364i \(0.137747\pi\)
−0.907818 + 0.419364i \(0.862253\pi\)
\(3\) 3.00000i 0.577350i
\(4\) 2.37228 0.296535
\(5\) 0 0
\(6\) −7.11684 −0.484240
\(7\) − 6.74456i − 0.364172i −0.983283 0.182086i \(-0.941715\pi\)
0.983283 0.182086i \(-0.0582850\pi\)
\(8\) 24.6060i 1.08744i
\(9\) −9.00000 −0.333333
\(10\) 0 0
\(11\) 11.0000 0.301511
\(12\) 7.11684i 0.171205i
\(13\) − 60.9783i − 1.30095i −0.759529 0.650474i \(-0.774570\pi\)
0.759529 0.650474i \(-0.225430\pi\)
\(14\) 16.0000 0.305441
\(15\) 0 0
\(16\) −39.3940 −0.615532
\(17\) 99.1684i 1.41482i 0.706805 + 0.707408i \(0.250136\pi\)
−0.706805 + 0.707408i \(0.749864\pi\)
\(18\) − 21.3505i − 0.279576i
\(19\) −24.7011 −0.298253 −0.149127 0.988818i \(-0.547646\pi\)
−0.149127 + 0.988818i \(0.547646\pi\)
\(20\) 0 0
\(21\) 20.2337 0.210255
\(22\) 26.0951i 0.252886i
\(23\) 112.000i 1.01537i 0.861541 + 0.507687i \(0.169499\pi\)
−0.861541 + 0.507687i \(0.830501\pi\)
\(24\) −73.8179 −0.627834
\(25\) 0 0
\(26\) 144.658 1.09114
\(27\) − 27.0000i − 0.192450i
\(28\) − 16.0000i − 0.107990i
\(29\) 21.1249 0.135269 0.0676345 0.997710i \(-0.478455\pi\)
0.0676345 + 0.997710i \(0.478455\pi\)
\(30\) 0 0
\(31\) −318.717 −1.84656 −0.923279 0.384130i \(-0.874502\pi\)
−0.923279 + 0.384130i \(0.874502\pi\)
\(32\) 103.394i 0.571177i
\(33\) 33.0000i 0.174078i
\(34\) −235.255 −1.18665
\(35\) 0 0
\(36\) −21.3505 −0.0988451
\(37\) 150.380i 0.668172i 0.942543 + 0.334086i \(0.108428\pi\)
−0.942543 + 0.334086i \(0.891572\pi\)
\(38\) − 58.5979i − 0.250153i
\(39\) 182.935 0.751103
\(40\) 0 0
\(41\) −252.745 −0.962733 −0.481367 0.876519i \(-0.659859\pi\)
−0.481367 + 0.876519i \(0.659859\pi\)
\(42\) 48.0000i 0.176347i
\(43\) 214.016i 0.759004i 0.925191 + 0.379502i \(0.123905\pi\)
−0.925191 + 0.379502i \(0.876095\pi\)
\(44\) 26.0951 0.0894087
\(45\) 0 0
\(46\) −265.696 −0.851623
\(47\) − 105.870i − 0.328567i −0.986413 0.164284i \(-0.947469\pi\)
0.986413 0.164284i \(-0.0525312\pi\)
\(48\) − 118.182i − 0.355377i
\(49\) 297.511 0.867379
\(50\) 0 0
\(51\) −297.505 −0.816845
\(52\) − 144.658i − 0.385777i
\(53\) 325.652i 0.843995i 0.906597 + 0.421998i \(0.138671\pi\)
−0.906597 + 0.421998i \(0.861329\pi\)
\(54\) 64.0516 0.161413
\(55\) 0 0
\(56\) 165.957 0.396016
\(57\) − 74.1032i − 0.172197i
\(58\) 50.1143i 0.113454i
\(59\) −196.000 −0.432492 −0.216246 0.976339i \(-0.569381\pi\)
−0.216246 + 0.976339i \(0.569381\pi\)
\(60\) 0 0
\(61\) −402.641 −0.845130 −0.422565 0.906333i \(-0.638870\pi\)
−0.422565 + 0.906333i \(0.638870\pi\)
\(62\) − 756.087i − 1.54876i
\(63\) 60.7011i 0.121391i
\(64\) −560.432 −1.09459
\(65\) 0 0
\(66\) −78.2853 −0.146004
\(67\) − 27.4132i − 0.0499860i −0.999688 0.0249930i \(-0.992044\pi\)
0.999688 0.0249930i \(-0.00795634\pi\)
\(68\) 235.255i 0.419543i
\(69\) −336.000 −0.586227
\(70\) 0 0
\(71\) −300.500 −0.502292 −0.251146 0.967949i \(-0.580807\pi\)
−0.251146 + 0.967949i \(0.580807\pi\)
\(72\) − 221.454i − 0.362480i
\(73\) 427.815i 0.685917i 0.939351 + 0.342959i \(0.111429\pi\)
−0.939351 + 0.342959i \(0.888571\pi\)
\(74\) −356.745 −0.560415
\(75\) 0 0
\(76\) −58.5979 −0.0884426
\(77\) − 74.1902i − 0.109802i
\(78\) 433.973i 0.629971i
\(79\) −97.5488 −0.138925 −0.0694627 0.997585i \(-0.522128\pi\)
−0.0694627 + 0.997585i \(0.522128\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) − 599.581i − 0.807472i
\(83\) 1104.62i 1.46082i 0.683011 + 0.730408i \(0.260670\pi\)
−0.683011 + 0.730408i \(0.739330\pi\)
\(84\) 48.0000 0.0623480
\(85\) 0 0
\(86\) −507.707 −0.636598
\(87\) 63.3748i 0.0780976i
\(88\) 270.666i 0.327876i
\(89\) −463.022 −0.551463 −0.275732 0.961235i \(-0.588920\pi\)
−0.275732 + 0.961235i \(0.588920\pi\)
\(90\) 0 0
\(91\) −411.272 −0.473769
\(92\) 265.696i 0.301094i
\(93\) − 956.152i − 1.06611i
\(94\) 251.152 0.275578
\(95\) 0 0
\(96\) −310.182 −0.329769
\(97\) 1798.36i 1.88243i 0.337810 + 0.941214i \(0.390314\pi\)
−0.337810 + 0.941214i \(0.609686\pi\)
\(98\) 705.779i 0.727495i
\(99\) −99.0000 −0.100504
\(100\) 0 0
\(101\) 741.918 0.730927 0.365463 0.930826i \(-0.380911\pi\)
0.365463 + 0.930826i \(0.380911\pi\)
\(102\) − 705.766i − 0.685111i
\(103\) 389.837i 0.372930i 0.982462 + 0.186465i \(0.0597031\pi\)
−0.982462 + 0.186465i \(0.940297\pi\)
\(104\) 1500.43 1.41470
\(105\) 0 0
\(106\) −772.538 −0.707882
\(107\) − 1538.42i − 1.38995i −0.719032 0.694977i \(-0.755415\pi\)
0.719032 0.694977i \(-0.244585\pi\)
\(108\) − 64.0516i − 0.0570682i
\(109\) −779.783 −0.685226 −0.342613 0.939477i \(-0.611312\pi\)
−0.342613 + 0.939477i \(0.611312\pi\)
\(110\) 0 0
\(111\) −451.141 −0.385770
\(112\) 265.696i 0.224160i
\(113\) − 1514.55i − 1.26086i −0.776246 0.630430i \(-0.782878\pi\)
0.776246 0.630430i \(-0.217122\pi\)
\(114\) 175.794 0.144426
\(115\) 0 0
\(116\) 50.1143 0.0401120
\(117\) 548.804i 0.433649i
\(118\) − 464.967i − 0.362743i
\(119\) 668.848 0.515237
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) − 955.179i − 0.708834i
\(123\) − 758.234i − 0.555834i
\(124\) −756.087 −0.547569
\(125\) 0 0
\(126\) −144.000 −0.101814
\(127\) − 2302.74i − 1.60894i −0.593992 0.804471i \(-0.702449\pi\)
0.593992 0.804471i \(-0.297551\pi\)
\(128\) − 502.350i − 0.346890i
\(129\) −642.049 −0.438211
\(130\) 0 0
\(131\) −2020.59 −1.34763 −0.673815 0.738900i \(-0.735345\pi\)
−0.673815 + 0.738900i \(0.735345\pi\)
\(132\) 78.2853i 0.0516201i
\(133\) 166.598i 0.108616i
\(134\) 65.0319 0.0419246
\(135\) 0 0
\(136\) −2440.14 −1.53853
\(137\) − 1475.40i − 0.920088i −0.887896 0.460044i \(-0.847834\pi\)
0.887896 0.460044i \(-0.152166\pi\)
\(138\) − 797.087i − 0.491685i
\(139\) 1623.71 0.990802 0.495401 0.868665i \(-0.335021\pi\)
0.495401 + 0.868665i \(0.335021\pi\)
\(140\) 0 0
\(141\) 317.609 0.189698
\(142\) − 712.870i − 0.421287i
\(143\) − 670.761i − 0.392251i
\(144\) 354.546 0.205177
\(145\) 0 0
\(146\) −1014.90 −0.575298
\(147\) 892.533i 0.500781i
\(148\) 356.745i 0.198137i
\(149\) 1104.11 0.607064 0.303532 0.952821i \(-0.401834\pi\)
0.303532 + 0.952821i \(0.401834\pi\)
\(150\) 0 0
\(151\) 2980.07 1.60606 0.803029 0.595940i \(-0.203221\pi\)
0.803029 + 0.595940i \(0.203221\pi\)
\(152\) − 607.794i − 0.324333i
\(153\) − 892.516i − 0.471605i
\(154\) 176.000 0.0920941
\(155\) 0 0
\(156\) 433.973 0.222728
\(157\) − 2844.67i − 1.44605i −0.690823 0.723024i \(-0.742751\pi\)
0.690823 0.723024i \(-0.257249\pi\)
\(158\) − 231.413i − 0.116521i
\(159\) −976.956 −0.487281
\(160\) 0 0
\(161\) 755.391 0.369771
\(162\) 192.155i 0.0931920i
\(163\) − 1528.51i − 0.734492i −0.930124 0.367246i \(-0.880301\pi\)
0.930124 0.367246i \(-0.119699\pi\)
\(164\) −599.581 −0.285484
\(165\) 0 0
\(166\) −2620.47 −1.22523
\(167\) 383.881i 0.177878i 0.996037 + 0.0889388i \(0.0283476\pi\)
−0.996037 + 0.0889388i \(0.971652\pi\)
\(168\) 497.870i 0.228640i
\(169\) −1521.35 −0.692466
\(170\) 0 0
\(171\) 222.310 0.0994178
\(172\) 507.707i 0.225071i
\(173\) 2702.85i 1.18783i 0.804529 + 0.593914i \(0.202418\pi\)
−0.804529 + 0.593914i \(0.797582\pi\)
\(174\) −150.343 −0.0655027
\(175\) 0 0
\(176\) −433.334 −0.185590
\(177\) − 588.000i − 0.249699i
\(178\) − 1098.42i − 0.462528i
\(179\) 2777.61 1.15982 0.579911 0.814680i \(-0.303087\pi\)
0.579911 + 0.814680i \(0.303087\pi\)
\(180\) 0 0
\(181\) −3993.61 −1.64001 −0.820007 0.572354i \(-0.806030\pi\)
−0.820007 + 0.572354i \(0.806030\pi\)
\(182\) − 975.652i − 0.397363i
\(183\) − 1207.92i − 0.487936i
\(184\) −2755.87 −1.10416
\(185\) 0 0
\(186\) 2268.26 0.894177
\(187\) 1090.85i 0.426583i
\(188\) − 251.152i − 0.0974317i
\(189\) −182.103 −0.0700850
\(190\) 0 0
\(191\) 895.587 0.339280 0.169640 0.985506i \(-0.445740\pi\)
0.169640 + 0.985506i \(0.445740\pi\)
\(192\) − 1681.30i − 0.631964i
\(193\) 1328.24i 0.495382i 0.968839 + 0.247691i \(0.0796718\pi\)
−0.968839 + 0.247691i \(0.920328\pi\)
\(194\) −4266.21 −1.57885
\(195\) 0 0
\(196\) 705.779 0.257208
\(197\) − 154.114i − 0.0557370i −0.999612 0.0278685i \(-0.991128\pi\)
0.999612 0.0278685i \(-0.00887197\pi\)
\(198\) − 234.856i − 0.0842953i
\(199\) −1316.15 −0.468842 −0.234421 0.972135i \(-0.575319\pi\)
−0.234421 + 0.972135i \(0.575319\pi\)
\(200\) 0 0
\(201\) 82.2397 0.0288594
\(202\) 1760.04i 0.613049i
\(203\) − 142.478i − 0.0492612i
\(204\) −705.766 −0.242223
\(205\) 0 0
\(206\) −924.803 −0.312787
\(207\) − 1008.00i − 0.338458i
\(208\) 2402.18i 0.800775i
\(209\) −271.712 −0.0899268
\(210\) 0 0
\(211\) −1735.76 −0.566324 −0.283162 0.959072i \(-0.591383\pi\)
−0.283162 + 0.959072i \(0.591383\pi\)
\(212\) 772.538i 0.250274i
\(213\) − 901.499i − 0.289999i
\(214\) 3649.57 1.16579
\(215\) 0 0
\(216\) 664.361 0.209278
\(217\) 2149.61i 0.672465i
\(218\) − 1849.86i − 0.574718i
\(219\) −1283.44 −0.396014
\(220\) 0 0
\(221\) 6047.12 1.84060
\(222\) − 1070.23i − 0.323556i
\(223\) 1663.71i 0.499597i 0.968298 + 0.249798i \(0.0803643\pi\)
−0.968298 + 0.249798i \(0.919636\pi\)
\(224\) 697.348 0.208007
\(225\) 0 0
\(226\) 3592.95 1.05752
\(227\) 3658.84i 1.06980i 0.844914 + 0.534902i \(0.179651\pi\)
−0.844914 + 0.534902i \(0.820349\pi\)
\(228\) − 175.794i − 0.0510624i
\(229\) −1927.07 −0.556090 −0.278045 0.960568i \(-0.589686\pi\)
−0.278045 + 0.960568i \(0.589686\pi\)
\(230\) 0 0
\(231\) 222.571 0.0633942
\(232\) 519.800i 0.147097i
\(233\) − 2784.27i − 0.782847i −0.920211 0.391423i \(-0.871983\pi\)
0.920211 0.391423i \(-0.128017\pi\)
\(234\) −1301.92 −0.363714
\(235\) 0 0
\(236\) −464.967 −0.128249
\(237\) − 292.646i − 0.0802086i
\(238\) 1586.70i 0.432144i
\(239\) −1222.60 −0.330892 −0.165446 0.986219i \(-0.552906\pi\)
−0.165446 + 0.986219i \(0.552906\pi\)
\(240\) 0 0
\(241\) −2013.01 −0.538047 −0.269024 0.963134i \(-0.586701\pi\)
−0.269024 + 0.963134i \(0.586701\pi\)
\(242\) 287.046i 0.0762480i
\(243\) 243.000i 0.0641500i
\(244\) −955.179 −0.250611
\(245\) 0 0
\(246\) 1798.74 0.466194
\(247\) 1506.23i 0.388012i
\(248\) − 7842.35i − 2.00802i
\(249\) −3313.86 −0.843402
\(250\) 0 0
\(251\) 2706.63 0.680641 0.340320 0.940310i \(-0.389464\pi\)
0.340320 + 0.940310i \(0.389464\pi\)
\(252\) 144.000i 0.0359966i
\(253\) 1232.00i 0.306147i
\(254\) 5462.76 1.34946
\(255\) 0 0
\(256\) −3291.74 −0.803647
\(257\) − 225.741i − 0.0547912i −0.999625 0.0273956i \(-0.991279\pi\)
0.999625 0.0273956i \(-0.00872138\pi\)
\(258\) − 1523.12i − 0.367540i
\(259\) 1014.25 0.243330
\(260\) 0 0
\(261\) −190.124 −0.0450897
\(262\) − 4793.40i − 1.13029i
\(263\) 1953.42i 0.457997i 0.973427 + 0.228998i \(0.0735451\pi\)
−0.973427 + 0.228998i \(0.926455\pi\)
\(264\) −811.997 −0.189299
\(265\) 0 0
\(266\) −395.217 −0.0910989
\(267\) − 1389.07i − 0.318387i
\(268\) − 65.0319i − 0.0148226i
\(269\) 350.848 0.0795225 0.0397613 0.999209i \(-0.487340\pi\)
0.0397613 + 0.999209i \(0.487340\pi\)
\(270\) 0 0
\(271\) 254.779 0.0571096 0.0285548 0.999592i \(-0.490909\pi\)
0.0285548 + 0.999592i \(0.490909\pi\)
\(272\) − 3906.64i − 0.870864i
\(273\) − 1233.81i − 0.273531i
\(274\) 3500.07 0.771704
\(275\) 0 0
\(276\) −797.087 −0.173837
\(277\) − 116.478i − 0.0252654i −0.999920 0.0126327i \(-0.995979\pi\)
0.999920 0.0126327i \(-0.00402122\pi\)
\(278\) 3851.90i 0.831013i
\(279\) 2868.46 0.615519
\(280\) 0 0
\(281\) 8226.47 1.74644 0.873221 0.487325i \(-0.162027\pi\)
0.873221 + 0.487325i \(0.162027\pi\)
\(282\) 753.457i 0.159105i
\(283\) 1561.52i 0.327995i 0.986461 + 0.163997i \(0.0524389\pi\)
−0.986461 + 0.163997i \(0.947561\pi\)
\(284\) −712.870 −0.148947
\(285\) 0 0
\(286\) 1591.23 0.328992
\(287\) 1704.65i 0.350601i
\(288\) − 930.546i − 0.190392i
\(289\) −4921.38 −1.00171
\(290\) 0 0
\(291\) −5395.07 −1.08682
\(292\) 1014.90i 0.203399i
\(293\) 9486.19i 1.89143i 0.324997 + 0.945715i \(0.394637\pi\)
−0.324997 + 0.945715i \(0.605363\pi\)
\(294\) −2117.34 −0.420019
\(295\) 0 0
\(296\) −3700.25 −0.726598
\(297\) − 297.000i − 0.0580259i
\(298\) 2619.27i 0.509161i
\(299\) 6829.56 1.32095
\(300\) 0 0
\(301\) 1443.45 0.276408
\(302\) 7069.56i 1.34705i
\(303\) 2225.75i 0.422001i
\(304\) 973.074 0.183584
\(305\) 0 0
\(306\) 2117.30 0.395549
\(307\) 8443.06i 1.56961i 0.619742 + 0.784806i \(0.287237\pi\)
−0.619742 + 0.784806i \(0.712763\pi\)
\(308\) − 176.000i − 0.0325602i
\(309\) −1169.51 −0.215311
\(310\) 0 0
\(311\) 4447.17 0.810856 0.405428 0.914127i \(-0.367123\pi\)
0.405428 + 0.914127i \(0.367123\pi\)
\(312\) 4501.29i 0.816779i
\(313\) 6480.75i 1.17033i 0.810914 + 0.585165i \(0.198970\pi\)
−0.810914 + 0.585165i \(0.801030\pi\)
\(314\) 6748.36 1.21284
\(315\) 0 0
\(316\) −231.413 −0.0411962
\(317\) 1252.75i 0.221960i 0.993823 + 0.110980i \(0.0353990\pi\)
−0.993823 + 0.110980i \(0.964601\pi\)
\(318\) − 2317.61i − 0.408696i
\(319\) 232.374 0.0407852
\(320\) 0 0
\(321\) 4615.27 0.802490
\(322\) 1792.00i 0.310137i
\(323\) − 2449.57i − 0.421974i
\(324\) 192.155 0.0329484
\(325\) 0 0
\(326\) 3626.06 0.616039
\(327\) − 2339.35i − 0.395615i
\(328\) − 6219.02i − 1.04692i
\(329\) −714.043 −0.119655
\(330\) 0 0
\(331\) 3801.44 0.631258 0.315629 0.948883i \(-0.397785\pi\)
0.315629 + 0.948883i \(0.397785\pi\)
\(332\) 2620.47i 0.433183i
\(333\) − 1353.42i − 0.222724i
\(334\) −910.673 −0.149191
\(335\) 0 0
\(336\) −797.087 −0.129419
\(337\) 5456.53i 0.882007i 0.897506 + 0.441003i \(0.145377\pi\)
−0.897506 + 0.441003i \(0.854623\pi\)
\(338\) − 3609.06i − 0.580790i
\(339\) 4543.66 0.727958
\(340\) 0 0
\(341\) −3505.89 −0.556758
\(342\) 527.381i 0.0833845i
\(343\) − 4319.97i − 0.680047i
\(344\) −5266.08 −0.825371
\(345\) 0 0
\(346\) −6411.93 −0.996264
\(347\) 4240.53i 0.656033i 0.944672 + 0.328017i \(0.106380\pi\)
−0.944672 + 0.328017i \(0.893620\pi\)
\(348\) 150.343i 0.0231587i
\(349\) 8471.53 1.29934 0.649672 0.760215i \(-0.274906\pi\)
0.649672 + 0.760215i \(0.274906\pi\)
\(350\) 0 0
\(351\) −1646.41 −0.250368
\(352\) 1137.33i 0.172216i
\(353\) 981.282i 0.147956i 0.997260 + 0.0739778i \(0.0235694\pi\)
−0.997260 + 0.0739778i \(0.976431\pi\)
\(354\) 1394.90 0.209430
\(355\) 0 0
\(356\) −1098.42 −0.163528
\(357\) 2006.54i 0.297472i
\(358\) 6589.27i 0.972776i
\(359\) 3020.09 0.443995 0.221997 0.975047i \(-0.428742\pi\)
0.221997 + 0.975047i \(0.428742\pi\)
\(360\) 0 0
\(361\) −6248.86 −0.911045
\(362\) − 9473.96i − 1.37553i
\(363\) 363.000i 0.0524864i
\(364\) −975.652 −0.140489
\(365\) 0 0
\(366\) 2865.54 0.409246
\(367\) − 8689.40i − 1.23592i −0.786209 0.617960i \(-0.787959\pi\)
0.786209 0.617960i \(-0.212041\pi\)
\(368\) − 4412.13i − 0.624995i
\(369\) 2274.70 0.320911
\(370\) 0 0
\(371\) 2196.38 0.307360
\(372\) − 2268.26i − 0.316139i
\(373\) 5340.53i 0.741346i 0.928763 + 0.370673i \(0.120873\pi\)
−0.928763 + 0.370673i \(0.879127\pi\)
\(374\) −2587.81 −0.357787
\(375\) 0 0
\(376\) 2605.02 0.357297
\(377\) − 1288.16i − 0.175978i
\(378\) − 432.000i − 0.0587822i
\(379\) 1603.49 0.217324 0.108662 0.994079i \(-0.465343\pi\)
0.108662 + 0.994079i \(0.465343\pi\)
\(380\) 0 0
\(381\) 6908.23 0.928923
\(382\) 2124.58i 0.284563i
\(383\) − 830.236i − 0.110765i −0.998465 0.0553826i \(-0.982362\pi\)
0.998465 0.0553826i \(-0.0176379\pi\)
\(384\) 1507.05 0.200277
\(385\) 0 0
\(386\) −3150.96 −0.415491
\(387\) − 1926.15i − 0.253001i
\(388\) 4266.21i 0.558206i
\(389\) 1746.12 0.227588 0.113794 0.993504i \(-0.463700\pi\)
0.113794 + 0.993504i \(0.463700\pi\)
\(390\) 0 0
\(391\) −11106.9 −1.43657
\(392\) 7320.54i 0.943223i
\(393\) − 6061.76i − 0.778054i
\(394\) 365.602 0.0467482
\(395\) 0 0
\(396\) −234.856 −0.0298029
\(397\) 10016.2i 1.26624i 0.774054 + 0.633119i \(0.218226\pi\)
−0.774054 + 0.633119i \(0.781774\pi\)
\(398\) − 3122.28i − 0.393231i
\(399\) −499.794 −0.0627092
\(400\) 0 0
\(401\) 8228.38 1.02470 0.512351 0.858776i \(-0.328775\pi\)
0.512351 + 0.858776i \(0.328775\pi\)
\(402\) 195.096i 0.0242052i
\(403\) 19434.8i 2.40228i
\(404\) 1760.04 0.216746
\(405\) 0 0
\(406\) 337.999 0.0413168
\(407\) 1654.18i 0.201462i
\(408\) − 7320.41i − 0.888270i
\(409\) 12311.5 1.48843 0.744213 0.667943i \(-0.232825\pi\)
0.744213 + 0.667943i \(0.232825\pi\)
\(410\) 0 0
\(411\) 4426.21 0.531213
\(412\) 924.803i 0.110587i
\(413\) 1321.93i 0.157502i
\(414\) 2391.26 0.283874
\(415\) 0 0
\(416\) 6304.79 0.743071
\(417\) 4871.14i 0.572040i
\(418\) − 644.577i − 0.0754241i
\(419\) −13260.4 −1.54610 −0.773048 0.634347i \(-0.781269\pi\)
−0.773048 + 0.634347i \(0.781269\pi\)
\(420\) 0 0
\(421\) −6177.74 −0.715165 −0.357583 0.933881i \(-0.616399\pi\)
−0.357583 + 0.933881i \(0.616399\pi\)
\(422\) − 4117.70i − 0.474992i
\(423\) 952.826i 0.109522i
\(424\) −8012.98 −0.917795
\(425\) 0 0
\(426\) 2138.61 0.243230
\(427\) 2715.64i 0.307773i
\(428\) − 3649.57i − 0.412170i
\(429\) 2012.28 0.226466
\(430\) 0 0
\(431\) 1668.05 0.186421 0.0932103 0.995646i \(-0.470287\pi\)
0.0932103 + 0.995646i \(0.470287\pi\)
\(432\) 1063.64i 0.118459i
\(433\) − 731.748i − 0.0812138i −0.999175 0.0406069i \(-0.987071\pi\)
0.999175 0.0406069i \(-0.0129291\pi\)
\(434\) −5099.48 −0.564015
\(435\) 0 0
\(436\) −1849.86 −0.203194
\(437\) − 2766.52i − 0.302839i
\(438\) − 3044.69i − 0.332148i
\(439\) 14248.0 1.54902 0.774508 0.632564i \(-0.217998\pi\)
0.774508 + 0.632564i \(0.217998\pi\)
\(440\) 0 0
\(441\) −2677.60 −0.289126
\(442\) 14345.5i 1.54377i
\(443\) 174.262i 0.0186895i 0.999956 + 0.00934473i \(0.00297456\pi\)
−0.999956 + 0.00934473i \(0.997025\pi\)
\(444\) −1070.23 −0.114394
\(445\) 0 0
\(446\) −3946.78 −0.419026
\(447\) 3312.34i 0.350488i
\(448\) 3779.87i 0.398621i
\(449\) −7469.97 −0.785144 −0.392572 0.919721i \(-0.628415\pi\)
−0.392572 + 0.919721i \(0.628415\pi\)
\(450\) 0 0
\(451\) −2780.19 −0.290275
\(452\) − 3592.95i − 0.373890i
\(453\) 8940.21i 0.927258i
\(454\) −8679.79 −0.897275
\(455\) 0 0
\(456\) 1823.38 0.187254
\(457\) − 8762.68i − 0.896939i −0.893798 0.448469i \(-0.851969\pi\)
0.893798 0.448469i \(-0.148031\pi\)
\(458\) − 4571.56i − 0.466409i
\(459\) 2677.55 0.272282
\(460\) 0 0
\(461\) 4339.67 0.438435 0.219218 0.975676i \(-0.429650\pi\)
0.219218 + 0.975676i \(0.429650\pi\)
\(462\) 528.000i 0.0531705i
\(463\) − 3932.49i − 0.394726i −0.980330 0.197363i \(-0.936762\pi\)
0.980330 0.197363i \(-0.0632378\pi\)
\(464\) −832.197 −0.0832624
\(465\) 0 0
\(466\) 6605.06 0.656596
\(467\) 8383.97i 0.830758i 0.909648 + 0.415379i \(0.136351\pi\)
−0.909648 + 0.415379i \(0.863649\pi\)
\(468\) 1301.92i 0.128592i
\(469\) −184.890 −0.0182035
\(470\) 0 0
\(471\) 8534.02 0.834876
\(472\) − 4822.77i − 0.470309i
\(473\) 2354.18i 0.228848i
\(474\) 694.240 0.0672732
\(475\) 0 0
\(476\) 1586.70 0.152786
\(477\) − 2930.87i − 0.281332i
\(478\) − 2900.35i − 0.277529i
\(479\) −9534.10 −0.909445 −0.454722 0.890633i \(-0.650261\pi\)
−0.454722 + 0.890633i \(0.650261\pi\)
\(480\) 0 0
\(481\) 9169.93 0.869258
\(482\) − 4775.43i − 0.451275i
\(483\) 2266.17i 0.213487i
\(484\) 287.046 0.0269577
\(485\) 0 0
\(486\) −576.464 −0.0538044
\(487\) − 4451.09i − 0.414164i −0.978324 0.207082i \(-0.933603\pi\)
0.978324 0.207082i \(-0.0663967\pi\)
\(488\) − 9907.38i − 0.919029i
\(489\) 4585.53 0.424059
\(490\) 0 0
\(491\) −9757.40 −0.896833 −0.448417 0.893825i \(-0.648012\pi\)
−0.448417 + 0.893825i \(0.648012\pi\)
\(492\) − 1798.74i − 0.164824i
\(493\) 2094.93i 0.191381i
\(494\) −3573.20 −0.325437
\(495\) 0 0
\(496\) 12555.6 1.13662
\(497\) 2026.74i 0.182921i
\(498\) − 7861.40i − 0.707385i
\(499\) 7173.69 0.643564 0.321782 0.946814i \(-0.395718\pi\)
0.321782 + 0.946814i \(0.395718\pi\)
\(500\) 0 0
\(501\) −1151.64 −0.102698
\(502\) 6420.88i 0.570873i
\(503\) − 15617.0i − 1.38435i −0.721728 0.692177i \(-0.756652\pi\)
0.721728 0.692177i \(-0.243348\pi\)
\(504\) −1493.61 −0.132005
\(505\) 0 0
\(506\) −2922.65 −0.256774
\(507\) − 4564.04i − 0.399795i
\(508\) − 5462.76i − 0.477108i
\(509\) 8789.23 0.765375 0.382688 0.923878i \(-0.374999\pi\)
0.382688 + 0.923878i \(0.374999\pi\)
\(510\) 0 0
\(511\) 2885.42 0.249792
\(512\) − 11827.7i − 1.02093i
\(513\) 666.929i 0.0573989i
\(514\) 535.521 0.0459549
\(515\) 0 0
\(516\) −1523.12 −0.129945
\(517\) − 1164.56i − 0.0990667i
\(518\) 2406.09i 0.204088i
\(519\) −8108.56 −0.685792
\(520\) 0 0
\(521\) 13099.3 1.10152 0.550760 0.834664i \(-0.314338\pi\)
0.550760 + 0.834664i \(0.314338\pi\)
\(522\) − 451.029i − 0.0378180i
\(523\) 16824.2i 1.40664i 0.710876 + 0.703318i \(0.248299\pi\)
−0.710876 + 0.703318i \(0.751701\pi\)
\(524\) −4793.40 −0.399620
\(525\) 0 0
\(526\) −4634.07 −0.384135
\(527\) − 31606.7i − 2.61254i
\(528\) − 1300.00i − 0.107150i
\(529\) −377.000 −0.0309855
\(530\) 0 0
\(531\) 1764.00 0.144164
\(532\) 395.217i 0.0322083i
\(533\) 15411.9i 1.25247i
\(534\) 3295.25 0.267040
\(535\) 0 0
\(536\) 674.529 0.0543568
\(537\) 8332.83i 0.669624i
\(538\) 832.310i 0.0666978i
\(539\) 3272.62 0.261525
\(540\) 0 0
\(541\) 18863.1 1.49905 0.749527 0.661974i \(-0.230281\pi\)
0.749527 + 0.661974i \(0.230281\pi\)
\(542\) 604.407i 0.0478995i
\(543\) − 11980.8i − 0.946862i
\(544\) −10253.4 −0.808110
\(545\) 0 0
\(546\) 2926.96 0.229418
\(547\) 12283.0i 0.960119i 0.877236 + 0.480059i \(0.159385\pi\)
−0.877236 + 0.480059i \(0.840615\pi\)
\(548\) − 3500.07i − 0.272839i
\(549\) 3623.77 0.281710
\(550\) 0 0
\(551\) −521.809 −0.0403444
\(552\) − 8267.61i − 0.637487i
\(553\) 657.924i 0.0505927i
\(554\) 276.320 0.0211908
\(555\) 0 0
\(556\) 3851.90 0.293808
\(557\) 9752.05i 0.741845i 0.928664 + 0.370923i \(0.120958\pi\)
−0.928664 + 0.370923i \(0.879042\pi\)
\(558\) 6804.78i 0.516253i
\(559\) 13050.3 0.987424
\(560\) 0 0
\(561\) −3272.56 −0.246288
\(562\) 19515.5i 1.46479i
\(563\) − 3447.50i − 0.258072i −0.991640 0.129036i \(-0.958812\pi\)
0.991640 0.129036i \(-0.0411884\pi\)
\(564\) 753.457 0.0562522
\(565\) 0 0
\(566\) −3704.36 −0.275098
\(567\) − 546.310i − 0.0404636i
\(568\) − 7394.09i − 0.546213i
\(569\) 3371.02 0.248366 0.124183 0.992259i \(-0.460369\pi\)
0.124183 + 0.992259i \(0.460369\pi\)
\(570\) 0 0
\(571\) −15852.5 −1.16183 −0.580916 0.813964i \(-0.697305\pi\)
−0.580916 + 0.813964i \(0.697305\pi\)
\(572\) − 1591.23i − 0.116316i
\(573\) 2686.76i 0.195883i
\(574\) −4043.91 −0.294059
\(575\) 0 0
\(576\) 5043.89 0.364865
\(577\) − 1376.35i − 0.0993036i −0.998767 0.0496518i \(-0.984189\pi\)
0.998767 0.0496518i \(-0.0158112\pi\)
\(578\) − 11674.9i − 0.840159i
\(579\) −3984.72 −0.286009
\(580\) 0 0
\(581\) 7450.17 0.531988
\(582\) − 12798.6i − 0.911547i
\(583\) 3582.17i 0.254474i
\(584\) −10526.8 −0.745894
\(585\) 0 0
\(586\) −22503.9 −1.58640
\(587\) 23021.4i 1.61873i 0.587304 + 0.809366i \(0.300189\pi\)
−0.587304 + 0.809366i \(0.699811\pi\)
\(588\) 2117.34i 0.148499i
\(589\) 7872.66 0.550742
\(590\) 0 0
\(591\) 462.343 0.0321798
\(592\) − 5924.09i − 0.411281i
\(593\) 2818.69i 0.195194i 0.995226 + 0.0975968i \(0.0311156\pi\)
−0.995226 + 0.0975968i \(0.968884\pi\)
\(594\) 704.568 0.0486679
\(595\) 0 0
\(596\) 2619.27 0.180016
\(597\) − 3948.46i − 0.270686i
\(598\) 16201.6i 1.10792i
\(599\) 17691.4 1.20676 0.603380 0.797454i \(-0.293820\pi\)
0.603380 + 0.797454i \(0.293820\pi\)
\(600\) 0 0
\(601\) −24516.1 −1.66394 −0.831972 0.554817i \(-0.812788\pi\)
−0.831972 + 0.554817i \(0.812788\pi\)
\(602\) 3424.26i 0.231831i
\(603\) 246.719i 0.0166620i
\(604\) 7069.56 0.476252
\(605\) 0 0
\(606\) −5280.12 −0.353944
\(607\) − 4288.59i − 0.286768i −0.989667 0.143384i \(-0.954202\pi\)
0.989667 0.143384i \(-0.0457984\pi\)
\(608\) − 2553.94i − 0.170355i
\(609\) 427.435 0.0284410
\(610\) 0 0
\(611\) −6455.74 −0.427449
\(612\) − 2117.30i − 0.139848i
\(613\) − 8124.07i − 0.535283i −0.963519 0.267641i \(-0.913756\pi\)
0.963519 0.267641i \(-0.0862442\pi\)
\(614\) −20029.3 −1.31648
\(615\) 0 0
\(616\) 1825.52 0.119403
\(617\) 14923.1i 0.973714i 0.873482 + 0.486857i \(0.161857\pi\)
−0.873482 + 0.486857i \(0.838143\pi\)
\(618\) − 2774.41i − 0.180588i
\(619\) −3627.68 −0.235556 −0.117778 0.993040i \(-0.537577\pi\)
−0.117778 + 0.993040i \(0.537577\pi\)
\(620\) 0 0
\(621\) 3024.00 0.195409
\(622\) 10549.9i 0.680087i
\(623\) 3122.88i 0.200827i
\(624\) −7206.54 −0.462328
\(625\) 0 0
\(626\) −15374.2 −0.981589
\(627\) − 815.135i − 0.0519192i
\(628\) − 6748.36i − 0.428804i
\(629\) −14913.0 −0.945341
\(630\) 0 0
\(631\) 12576.5 0.793445 0.396723 0.917939i \(-0.370147\pi\)
0.396723 + 0.917939i \(0.370147\pi\)
\(632\) − 2400.28i − 0.151073i
\(633\) − 5207.27i − 0.326967i
\(634\) −2971.87 −0.186164
\(635\) 0 0
\(636\) −2317.61 −0.144496
\(637\) − 18141.7i − 1.12841i
\(638\) 551.257i 0.0342077i
\(639\) 2704.50 0.167431
\(640\) 0 0
\(641\) −7292.77 −0.449371 −0.224686 0.974431i \(-0.572136\pi\)
−0.224686 + 0.974431i \(0.572136\pi\)
\(642\) 10948.7i 0.673071i
\(643\) − 12946.3i − 0.794016i −0.917815 0.397008i \(-0.870049\pi\)
0.917815 0.397008i \(-0.129951\pi\)
\(644\) 1792.00 0.109650
\(645\) 0 0
\(646\) 5811.06 0.353921
\(647\) − 21973.3i − 1.33518i −0.744530 0.667589i \(-0.767327\pi\)
0.744530 0.667589i \(-0.232673\pi\)
\(648\) 1993.08i 0.120827i
\(649\) −2156.00 −0.130401
\(650\) 0 0
\(651\) −6448.83 −0.388248
\(652\) − 3626.06i − 0.217803i
\(653\) − 27495.6i − 1.64776i −0.566764 0.823880i \(-0.691805\pi\)
0.566764 0.823880i \(-0.308195\pi\)
\(654\) 5549.59 0.331814
\(655\) 0 0
\(656\) 9956.63 0.592593
\(657\) − 3850.33i − 0.228639i
\(658\) − 1693.91i − 0.100358i
\(659\) −5156.28 −0.304796 −0.152398 0.988319i \(-0.548699\pi\)
−0.152398 + 0.988319i \(0.548699\pi\)
\(660\) 0 0
\(661\) 9328.59 0.548926 0.274463 0.961598i \(-0.411500\pi\)
0.274463 + 0.961598i \(0.411500\pi\)
\(662\) 9018.10i 0.529454i
\(663\) 18141.4i 1.06267i
\(664\) −27180.2 −1.58855
\(665\) 0 0
\(666\) 3210.70 0.186805
\(667\) 2365.99i 0.137349i
\(668\) 910.673i 0.0527470i
\(669\) −4991.12 −0.288442
\(670\) 0 0
\(671\) −4429.06 −0.254816
\(672\) 2092.04i 0.120093i
\(673\) 22182.4i 1.27053i 0.772293 + 0.635267i \(0.219110\pi\)
−0.772293 + 0.635267i \(0.780890\pi\)
\(674\) −12944.4 −0.739764
\(675\) 0 0
\(676\) −3609.06 −0.205340
\(677\) 13507.1i 0.766797i 0.923583 + 0.383399i \(0.125246\pi\)
−0.923583 + 0.383399i \(0.874754\pi\)
\(678\) 10778.8i 0.610559i
\(679\) 12129.1 0.685528
\(680\) 0 0
\(681\) −10976.5 −0.617652
\(682\) − 8316.96i − 0.466969i
\(683\) − 19465.6i − 1.09053i −0.838264 0.545264i \(-0.816429\pi\)
0.838264 0.545264i \(-0.183571\pi\)
\(684\) 527.381 0.0294809
\(685\) 0 0
\(686\) 10248.2 0.570375
\(687\) − 5781.22i − 0.321059i
\(688\) − 8430.96i − 0.467191i
\(689\) 19857.7 1.09799
\(690\) 0 0
\(691\) −19971.8 −1.09951 −0.549757 0.835324i \(-0.685280\pi\)
−0.549757 + 0.835324i \(0.685280\pi\)
\(692\) 6411.93i 0.352233i
\(693\) 667.712i 0.0366007i
\(694\) −10059.7 −0.550234
\(695\) 0 0
\(696\) −1559.40 −0.0849265
\(697\) − 25064.3i − 1.36209i
\(698\) 20096.9i 1.08980i
\(699\) 8352.80 0.451977
\(700\) 0 0
\(701\) −14180.1 −0.764018 −0.382009 0.924159i \(-0.624768\pi\)
−0.382009 + 0.924159i \(0.624768\pi\)
\(702\) − 3905.75i − 0.209990i
\(703\) − 3714.56i − 0.199285i
\(704\) −6164.75 −0.330032
\(705\) 0 0
\(706\) −2327.88 −0.124095
\(707\) − 5003.91i − 0.266183i
\(708\) − 1394.90i − 0.0740446i
\(709\) −15870.6 −0.840667 −0.420334 0.907370i \(-0.638087\pi\)
−0.420334 + 0.907370i \(0.638087\pi\)
\(710\) 0 0
\(711\) 877.939 0.0463084
\(712\) − 11393.1i − 0.599683i
\(713\) − 35696.3i − 1.87495i
\(714\) −4760.09 −0.249498
\(715\) 0 0
\(716\) 6589.27 0.343928
\(717\) − 3667.79i − 0.191041i
\(718\) 7164.50i 0.372391i
\(719\) 6040.05 0.313290 0.156645 0.987655i \(-0.449932\pi\)
0.156645 + 0.987655i \(0.449932\pi\)
\(720\) 0 0
\(721\) 2629.28 0.135811
\(722\) − 14824.0i − 0.764119i
\(723\) − 6039.03i − 0.310642i
\(724\) −9473.96 −0.486322
\(725\) 0 0
\(726\) −861.138 −0.0440218
\(727\) − 37252.3i − 1.90043i −0.311601 0.950213i \(-0.600865\pi\)
0.311601 0.950213i \(-0.399135\pi\)
\(728\) − 10119.7i − 0.515196i
\(729\) −729.000 −0.0370370
\(730\) 0 0
\(731\) −21223.7 −1.07385
\(732\) − 2865.54i − 0.144690i
\(733\) 6125.52i 0.308665i 0.988019 + 0.154332i \(0.0493227\pi\)
−0.988019 + 0.154332i \(0.950677\pi\)
\(734\) 20613.7 1.03660
\(735\) 0 0
\(736\) −11580.1 −0.579958
\(737\) − 301.546i − 0.0150713i
\(738\) 5396.23i 0.269157i
\(739\) 5225.97 0.260136 0.130068 0.991505i \(-0.458480\pi\)
0.130068 + 0.991505i \(0.458480\pi\)
\(740\) 0 0
\(741\) −4518.68 −0.224019
\(742\) 5210.43i 0.257791i
\(743\) 7062.96i 0.348741i 0.984680 + 0.174371i \(0.0557891\pi\)
−0.984680 + 0.174371i \(0.944211\pi\)
\(744\) 23527.0 1.15933
\(745\) 0 0
\(746\) −12669.2 −0.621788
\(747\) − 9941.57i − 0.486939i
\(748\) 2587.81i 0.126497i
\(749\) −10376.0 −0.506182
\(750\) 0 0
\(751\) −20755.4 −1.00849 −0.504244 0.863561i \(-0.668229\pi\)
−0.504244 + 0.863561i \(0.668229\pi\)
\(752\) 4170.63i 0.202243i
\(753\) 8119.89i 0.392968i
\(754\) 3055.88 0.147598
\(755\) 0 0
\(756\) −432.000 −0.0207827
\(757\) − 31182.9i − 1.49717i −0.663037 0.748587i \(-0.730733\pi\)
0.663037 0.748587i \(-0.269267\pi\)
\(758\) 3803.93i 0.182276i
\(759\) −3696.00 −0.176754
\(760\) 0 0
\(761\) 32047.8 1.52659 0.763293 0.646052i \(-0.223581\pi\)
0.763293 + 0.646052i \(0.223581\pi\)
\(762\) 16388.3i 0.779114i
\(763\) 5259.29i 0.249540i
\(764\) 2124.58 0.100608
\(765\) 0 0
\(766\) 1969.55 0.0929019
\(767\) 11951.7i 0.562650i
\(768\) − 9875.22i − 0.463986i
\(769\) −2215.88 −0.103910 −0.0519548 0.998649i \(-0.516545\pi\)
−0.0519548 + 0.998649i \(0.516545\pi\)
\(770\) 0 0
\(771\) 677.223 0.0316337
\(772\) 3150.96i 0.146898i
\(773\) 5300.56i 0.246634i 0.992367 + 0.123317i \(0.0393532\pi\)
−0.992367 + 0.123317i \(0.960647\pi\)
\(774\) 4569.36 0.212199
\(775\) 0 0
\(776\) −44250.3 −2.04703
\(777\) 3042.75i 0.140487i
\(778\) 4142.29i 0.190885i
\(779\) 6243.06 0.287138
\(780\) 0 0
\(781\) −3305.50 −0.151447
\(782\) − 26348.6i − 1.20489i
\(783\) − 570.373i − 0.0260325i
\(784\) −11720.2 −0.533899
\(785\) 0 0
\(786\) 14380.2 0.652576
\(787\) − 34374.1i − 1.55693i −0.627687 0.778466i \(-0.715998\pi\)
0.627687 0.778466i \(-0.284002\pi\)
\(788\) − 365.602i − 0.0165280i
\(789\) −5860.27 −0.264425
\(790\) 0 0
\(791\) −10215.0 −0.459170
\(792\) − 2435.99i − 0.109292i
\(793\) 24552.4i 1.09947i
\(794\) −23761.2 −1.06203
\(795\) 0 0
\(796\) −3122.28 −0.139028
\(797\) − 29867.1i − 1.32741i −0.747993 0.663707i \(-0.768982\pi\)
0.747993 0.663707i \(-0.231018\pi\)
\(798\) − 1185.65i − 0.0525960i
\(799\) 10498.9 0.464862
\(800\) 0 0
\(801\) 4167.20 0.183821
\(802\) 19520.0i 0.859447i
\(803\) 4705.96i 0.206812i
\(804\) 195.096 0.00855783
\(805\) 0 0
\(806\) −46104.9 −2.01486
\(807\) 1052.54i 0.0459124i
\(808\) 18255.6i 0.794839i
\(809\) 15857.2 0.689133 0.344566 0.938762i \(-0.388026\pi\)
0.344566 + 0.938762i \(0.388026\pi\)
\(810\) 0 0
\(811\) 36122.6 1.56404 0.782020 0.623253i \(-0.214189\pi\)
0.782020 + 0.623253i \(0.214189\pi\)
\(812\) − 337.999i − 0.0146077i
\(813\) 764.337i 0.0329723i
\(814\) −3924.19 −0.168971
\(815\) 0 0
\(816\) 11719.9 0.502794
\(817\) − 5286.43i − 0.226375i
\(818\) 29206.4i 1.24838i
\(819\) 3701.44 0.157923
\(820\) 0 0
\(821\) 25779.6 1.09588 0.547938 0.836519i \(-0.315413\pi\)
0.547938 + 0.836519i \(0.315413\pi\)
\(822\) 10500.2i 0.445544i
\(823\) − 22130.2i − 0.937315i −0.883380 0.468658i \(-0.844738\pi\)
0.883380 0.468658i \(-0.155262\pi\)
\(824\) −9592.32 −0.405539
\(825\) 0 0
\(826\) −3136.00 −0.132101
\(827\) − 18288.6i − 0.768994i −0.923126 0.384497i \(-0.874375\pi\)
0.923126 0.384497i \(-0.125625\pi\)
\(828\) − 2391.26i − 0.100365i
\(829\) 34956.6 1.46453 0.732263 0.681022i \(-0.238464\pi\)
0.732263 + 0.681022i \(0.238464\pi\)
\(830\) 0 0
\(831\) 349.435 0.0145870
\(832\) 34174.2i 1.42401i
\(833\) 29503.7i 1.22718i
\(834\) −11555.7 −0.479786
\(835\) 0 0
\(836\) −644.577 −0.0266664
\(837\) 8605.37i 0.355370i
\(838\) − 31457.5i − 1.29675i
\(839\) 14507.5 0.596965 0.298482 0.954415i \(-0.403520\pi\)
0.298482 + 0.954415i \(0.403520\pi\)
\(840\) 0 0
\(841\) −23942.7 −0.981702
\(842\) − 14655.3i − 0.599829i
\(843\) 24679.4i 1.00831i
\(844\) −4117.70 −0.167935
\(845\) 0 0
\(846\) −2260.37 −0.0918595
\(847\) − 816.092i − 0.0331066i
\(848\) − 12828.7i − 0.519506i
\(849\) −4684.55 −0.189368
\(850\) 0 0
\(851\) −16842.6 −0.678445
\(852\) − 2138.61i − 0.0859948i
\(853\) − 44146.9i − 1.77205i −0.463634 0.886027i \(-0.653455\pi\)
0.463634 0.886027i \(-0.346545\pi\)
\(854\) −6442.26 −0.258138
\(855\) 0 0
\(856\) 37854.4 1.51149
\(857\) 47679.3i 1.90046i 0.311549 + 0.950230i \(0.399152\pi\)
−0.311549 + 0.950230i \(0.600848\pi\)
\(858\) 4773.70i 0.189943i
\(859\) −7525.09 −0.298897 −0.149449 0.988769i \(-0.547750\pi\)
−0.149449 + 0.988769i \(0.547750\pi\)
\(860\) 0 0
\(861\) −5113.95 −0.202419
\(862\) 3957.09i 0.156356i
\(863\) 45816.1i 1.80718i 0.428396 + 0.903591i \(0.359079\pi\)
−0.428396 + 0.903591i \(0.640921\pi\)
\(864\) 2791.64 0.109923
\(865\) 0 0
\(866\) 1735.91 0.0681163
\(867\) − 14764.1i − 0.578335i
\(868\) 5099.48i 0.199410i
\(869\) −1073.04 −0.0418876
\(870\) 0 0
\(871\) −1671.61 −0.0650292
\(872\) − 19187.3i − 0.745142i
\(873\) − 16185.2i − 0.627476i
\(874\) 6562.96 0.253999
\(875\) 0 0
\(876\) −3044.69 −0.117432
\(877\) 34168.3i 1.31560i 0.753192 + 0.657801i \(0.228513\pi\)
−0.753192 + 0.657801i \(0.771487\pi\)
\(878\) 33800.2i 1.29920i
\(879\) −28458.6 −1.09202
\(880\) 0 0
\(881\) −100.796 −0.00385460 −0.00192730 0.999998i \(-0.500613\pi\)
−0.00192730 + 0.999998i \(0.500613\pi\)
\(882\) − 6352.02i − 0.242498i
\(883\) − 12346.1i − 0.470531i −0.971931 0.235266i \(-0.924404\pi\)
0.971931 0.235266i \(-0.0755960\pi\)
\(884\) 14345.5 0.545803
\(885\) 0 0
\(886\) −413.398 −0.0156754
\(887\) 37345.1i 1.41367i 0.707379 + 0.706834i \(0.249877\pi\)
−0.707379 + 0.706834i \(0.750123\pi\)
\(888\) − 11100.8i − 0.419501i
\(889\) −15531.0 −0.585932
\(890\) 0 0
\(891\) 891.000 0.0335013
\(892\) 3946.78i 0.148148i
\(893\) 2615.09i 0.0979962i
\(894\) −7857.80 −0.293964
\(895\) 0 0
\(896\) −3388.13 −0.126328
\(897\) 20488.7i 0.762651i
\(898\) − 17720.9i − 0.658523i
\(899\) −6732.88 −0.249782
\(900\) 0 0
\(901\) −32294.4 −1.19410
\(902\) − 6595.39i − 0.243462i
\(903\) 4330.34i 0.159584i
\(904\) 37267.1 1.37111
\(905\) 0 0
\(906\) −21208.7 −0.777717
\(907\) − 10308.6i − 0.377390i −0.982036 0.188695i \(-0.939574\pi\)
0.982036 0.188695i \(-0.0604258\pi\)
\(908\) 8679.79i 0.317235i
\(909\) −6677.26 −0.243642
\(910\) 0 0
\(911\) −22590.8 −0.821589 −0.410795 0.911728i \(-0.634749\pi\)
−0.410795 + 0.911728i \(0.634749\pi\)
\(912\) 2919.22i 0.105992i
\(913\) 12150.8i 0.440453i
\(914\) 20787.5 0.752288
\(915\) 0 0
\(916\) −4571.56 −0.164900
\(917\) 13628.0i 0.490769i
\(918\) 6351.90i 0.228370i
\(919\) −47712.1 −1.71260 −0.856299 0.516481i \(-0.827242\pi\)
−0.856299 + 0.516481i \(0.827242\pi\)
\(920\) 0 0
\(921\) −25329.2 −0.906216
\(922\) 10294.9i 0.367728i
\(923\) 18323.9i 0.653456i
\(924\) 528.000 0.0187986
\(925\) 0 0
\(926\) 9328.96 0.331068
\(927\) − 3508.53i − 0.124310i
\(928\) 2184.19i 0.0772625i
\(929\) −10714.3 −0.378391 −0.189196 0.981939i \(-0.560588\pi\)
−0.189196 + 0.981939i \(0.560588\pi\)
\(930\) 0 0
\(931\) −7348.84 −0.258699
\(932\) − 6605.06i − 0.232142i
\(933\) 13341.5i 0.468148i
\(934\) −19889.1 −0.696780
\(935\) 0 0
\(936\) −13503.9 −0.471568
\(937\) 14719.5i 0.513197i 0.966518 + 0.256599i \(0.0826018\pi\)
−0.966518 + 0.256599i \(0.917398\pi\)
\(938\) − 438.612i − 0.0152678i
\(939\) −19442.2 −0.675691
\(940\) 0 0
\(941\) 3694.44 0.127987 0.0639933 0.997950i \(-0.479616\pi\)
0.0639933 + 0.997950i \(0.479616\pi\)
\(942\) 20245.1i 0.700234i
\(943\) − 28307.4i − 0.977535i
\(944\) 7721.23 0.266213
\(945\) 0 0
\(946\) −5584.77 −0.191941
\(947\) − 36416.7i − 1.24961i −0.780780 0.624806i \(-0.785178\pi\)
0.780780 0.624806i \(-0.214822\pi\)
\(948\) − 694.240i − 0.0237847i
\(949\) 26087.4 0.892342
\(950\) 0 0
\(951\) −3758.25 −0.128149
\(952\) 16457.6i 0.560289i
\(953\) 20779.4i 0.706306i 0.935566 + 0.353153i \(0.114890\pi\)
−0.935566 + 0.353153i \(0.885110\pi\)
\(954\) 6952.84 0.235961
\(955\) 0 0
\(956\) −2900.35 −0.0981212
\(957\) 697.123i 0.0235473i
\(958\) − 22617.6i − 0.762777i
\(959\) −9950.94 −0.335071
\(960\) 0 0
\(961\) 71789.7 2.40978
\(962\) 21753.7i 0.729071i
\(963\) 13845.8i 0.463318i
\(964\) −4775.43 −0.159550
\(965\) 0 0
\(966\) −5376.00 −0.179058
\(967\) − 56812.8i − 1.88932i −0.328044 0.944662i \(-0.606389\pi\)
0.328044 0.944662i \(-0.393611\pi\)
\(968\) 2977.32i 0.0988582i
\(969\) 7348.70 0.243627
\(970\) 0 0
\(971\) −26459.7 −0.874493 −0.437247 0.899342i \(-0.644046\pi\)
−0.437247 + 0.899342i \(0.644046\pi\)
\(972\) 576.464i 0.0190227i
\(973\) − 10951.2i − 0.360822i
\(974\) 10559.2 0.347371
\(975\) 0 0
\(976\) 15861.7 0.520204
\(977\) 21009.2i 0.687967i 0.938976 + 0.343984i \(0.111776\pi\)
−0.938976 + 0.343984i \(0.888224\pi\)
\(978\) 10878.2i 0.355670i
\(979\) −5093.24 −0.166272
\(980\) 0 0
\(981\) 7018.04 0.228409
\(982\) − 23147.3i − 0.752199i
\(983\) − 9076.80i − 0.294512i −0.989098 0.147256i \(-0.952956\pi\)
0.989098 0.147256i \(-0.0470441\pi\)
\(984\) 18657.1 0.604437
\(985\) 0 0
\(986\) −4969.76 −0.160517
\(987\) − 2142.13i − 0.0690828i
\(988\) 3573.20i 0.115059i
\(989\) −23969.8 −0.770673
\(990\) 0 0
\(991\) 2629.24 0.0842791 0.0421395 0.999112i \(-0.486583\pi\)
0.0421395 + 0.999112i \(0.486583\pi\)
\(992\) − 32953.5i − 1.05471i
\(993\) 11404.3i 0.364457i
\(994\) −4808.00 −0.153421
\(995\) 0 0
\(996\) −7861.40 −0.250098
\(997\) 50423.9i 1.60175i 0.598833 + 0.800874i \(0.295631\pi\)
−0.598833 + 0.800874i \(0.704369\pi\)
\(998\) 17018.0i 0.539775i
\(999\) 4060.27 0.128590
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 825.4.c.i.199.3 4
5.2 odd 4 33.4.a.d.1.1 2
5.3 odd 4 825.4.a.k.1.2 2
5.4 even 2 inner 825.4.c.i.199.2 4
15.2 even 4 99.4.a.e.1.2 2
15.8 even 4 2475.4.a.o.1.1 2
20.7 even 4 528.4.a.o.1.2 2
35.27 even 4 1617.4.a.j.1.1 2
40.27 even 4 2112.4.a.bh.1.1 2
40.37 odd 4 2112.4.a.ba.1.1 2
55.32 even 4 363.4.a.j.1.2 2
60.47 odd 4 1584.4.a.x.1.1 2
165.32 odd 4 1089.4.a.t.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.4.a.d.1.1 2 5.2 odd 4
99.4.a.e.1.2 2 15.2 even 4
363.4.a.j.1.2 2 55.32 even 4
528.4.a.o.1.2 2 20.7 even 4
825.4.a.k.1.2 2 5.3 odd 4
825.4.c.i.199.2 4 5.4 even 2 inner
825.4.c.i.199.3 4 1.1 even 1 trivial
1089.4.a.t.1.1 2 165.32 odd 4
1584.4.a.x.1.1 2 60.47 odd 4
1617.4.a.j.1.1 2 35.27 even 4
2112.4.a.ba.1.1 2 40.37 odd 4
2112.4.a.bh.1.1 2 40.27 even 4
2475.4.a.o.1.1 2 15.8 even 4