Properties

Label 825.4.c.h
Level $825$
Weight $4$
Character orbit 825.c
Analytic conductor $48.677$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [825,4,Mod(199,825)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(825, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("825.199"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 825 = 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 825.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-66,0,-6,0,0,-36,0,-44,0,0,364] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(48.6765757547\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{97})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 49x^{2} + 576 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 33)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} - 3 \beta_{2} q^{3} + (\beta_{3} - 17) q^{4} + (3 \beta_{3} - 3) q^{6} + ( - 14 \beta_{2} - 4 \beta_1) q^{7} + (24 \beta_{2} - 9 \beta_1) q^{8} - 9 q^{9} - 11 q^{11} + (48 \beta_{2} - 3 \beta_1) q^{12}+ \cdots + 99 q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 66 q^{4} - 6 q^{6} - 36 q^{9} - 44 q^{11} + 364 q^{14} + 402 q^{16} - 100 q^{19} - 144 q^{21} + 342 q^{24} + 224 q^{26} + 396 q^{29} + 720 q^{31} + 1252 q^{34} + 594 q^{36} + 180 q^{39} - 1564 q^{41}+ \cdots + 396 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 49x^{2} + 576 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 25\nu ) / 24 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} + 25 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} - 25 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 24\beta_{2} - 25\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/825\mathbb{Z}\right)^\times\).

\(n\) \(376\) \(551\) \(727\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
199.1
5.42443i
4.42443i
4.42443i
5.42443i
5.42443i 3.00000i −21.4244 0 −16.2733 7.69772i 72.8199i −9.00000 0
199.2 4.42443i 3.00000i −11.5756 0 13.2733 31.6977i 15.8199i −9.00000 0
199.3 4.42443i 3.00000i −11.5756 0 13.2733 31.6977i 15.8199i −9.00000 0
199.4 5.42443i 3.00000i −21.4244 0 −16.2733 7.69772i 72.8199i −9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 825.4.c.h 4
5.b even 2 1 inner 825.4.c.h 4
5.c odd 4 1 33.4.a.c 2
5.c odd 4 1 825.4.a.l 2
15.e even 4 1 99.4.a.f 2
15.e even 4 1 2475.4.a.p 2
20.e even 4 1 528.4.a.p 2
35.f even 4 1 1617.4.a.k 2
40.i odd 4 1 2112.4.a.bn 2
40.k even 4 1 2112.4.a.bg 2
55.e even 4 1 363.4.a.i 2
60.l odd 4 1 1584.4.a.bj 2
165.l odd 4 1 1089.4.a.u 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
33.4.a.c 2 5.c odd 4 1
99.4.a.f 2 15.e even 4 1
363.4.a.i 2 55.e even 4 1
528.4.a.p 2 20.e even 4 1
825.4.a.l 2 5.c odd 4 1
825.4.c.h 4 1.a even 1 1 trivial
825.4.c.h 4 5.b even 2 1 inner
1089.4.a.u 2 165.l odd 4 1
1584.4.a.bj 2 60.l odd 4 1
1617.4.a.k 2 35.f even 4 1
2112.4.a.bg 2 40.k even 4 1
2112.4.a.bn 2 40.i odd 4 1
2475.4.a.p 2 15.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(825, [\chi])\):

\( T_{2}^{4} + 49T_{2}^{2} + 576 \) Copy content Toggle raw display
\( T_{7}^{4} + 1064T_{7}^{2} + 59536 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 49T^{2} + 576 \) Copy content Toggle raw display
$3$ \( (T^{2} + 9)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + 1064 T^{2} + 59536 \) Copy content Toggle raw display
$11$ \( (T + 11)^{4} \) Copy content Toggle raw display
$13$ \( T^{4} + 644 T^{2} + 16384 \) Copy content Toggle raw display
$17$ \( T^{4} + 15124 T^{2} + 3779136 \) Copy content Toggle raw display
$19$ \( (T^{2} + 50 T + 528)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + 13828 T^{2} + 4260096 \) Copy content Toggle raw display
$29$ \( (T^{2} - 198 T + 8928)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} - 360 T + 30848)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 1495832976 \) Copy content Toggle raw display
$41$ \( (T^{2} + 782 T + 148128)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + 107284 T^{2} + 434972736 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 13248930816 \) Copy content Toggle raw display
$53$ \( T^{4} + 277668 T^{2} + 6718464 \) Copy content Toggle raw display
$59$ \( (T^{2} - 172 T - 235104)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 778 T + 123288)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 5320827136 \) Copy content Toggle raw display
$71$ \( (T^{2} - 630 T + 28512)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 160714395664 \) Copy content Toggle raw display
$79$ \( (T^{2} + 652 T - 396572)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 317987721216 \) Copy content Toggle raw display
$89$ \( (T^{2} - 756 T + 17172)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 710439951376 \) Copy content Toggle raw display
show more
show less