Properties

Label 825.4.c.f.199.2
Level $825$
Weight $4$
Character 825.199
Analytic conductor $48.677$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [825,4,Mod(199,825)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(825, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("825.199");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 825 = 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 825.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(48.6765757547\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 33)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 199.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 825.199
Dual form 825.4.c.f.199.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} -3.00000i q^{3} +7.00000 q^{4} +3.00000 q^{6} +26.0000i q^{7} +15.0000i q^{8} -9.00000 q^{9} +O(q^{10})\) \(q+1.00000i q^{2} -3.00000i q^{3} +7.00000 q^{4} +3.00000 q^{6} +26.0000i q^{7} +15.0000i q^{8} -9.00000 q^{9} +11.0000 q^{11} -21.0000i q^{12} -32.0000i q^{13} -26.0000 q^{14} +41.0000 q^{16} -74.0000i q^{17} -9.00000i q^{18} +60.0000 q^{19} +78.0000 q^{21} +11.0000i q^{22} -182.000i q^{23} +45.0000 q^{24} +32.0000 q^{26} +27.0000i q^{27} +182.000i q^{28} +90.0000 q^{29} -8.00000 q^{31} +161.000i q^{32} -33.0000i q^{33} +74.0000 q^{34} -63.0000 q^{36} +66.0000i q^{37} +60.0000i q^{38} -96.0000 q^{39} +422.000 q^{41} +78.0000i q^{42} +408.000i q^{43} +77.0000 q^{44} +182.000 q^{46} +506.000i q^{47} -123.000i q^{48} -333.000 q^{49} -222.000 q^{51} -224.000i q^{52} +348.000i q^{53} -27.0000 q^{54} -390.000 q^{56} -180.000i q^{57} +90.0000i q^{58} +200.000 q^{59} +132.000 q^{61} -8.00000i q^{62} -234.000i q^{63} +167.000 q^{64} +33.0000 q^{66} +1036.00i q^{67} -518.000i q^{68} -546.000 q^{69} +762.000 q^{71} -135.000i q^{72} -542.000i q^{73} -66.0000 q^{74} +420.000 q^{76} +286.000i q^{77} -96.0000i q^{78} +550.000 q^{79} +81.0000 q^{81} +422.000i q^{82} -132.000i q^{83} +546.000 q^{84} -408.000 q^{86} -270.000i q^{87} +165.000i q^{88} -570.000 q^{89} +832.000 q^{91} -1274.00i q^{92} +24.0000i q^{93} -506.000 q^{94} +483.000 q^{96} -14.0000i q^{97} -333.000i q^{98} -99.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 14 q^{4} + 6 q^{6} - 18 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 14 q^{4} + 6 q^{6} - 18 q^{9} + 22 q^{11} - 52 q^{14} + 82 q^{16} + 120 q^{19} + 156 q^{21} + 90 q^{24} + 64 q^{26} + 180 q^{29} - 16 q^{31} + 148 q^{34} - 126 q^{36} - 192 q^{39} + 844 q^{41} + 154 q^{44} + 364 q^{46} - 666 q^{49} - 444 q^{51} - 54 q^{54} - 780 q^{56} + 400 q^{59} + 264 q^{61} + 334 q^{64} + 66 q^{66} - 1092 q^{69} + 1524 q^{71} - 132 q^{74} + 840 q^{76} + 1100 q^{79} + 162 q^{81} + 1092 q^{84} - 816 q^{86} - 1140 q^{89} + 1664 q^{91} - 1012 q^{94} + 966 q^{96} - 198 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/825\mathbb{Z}\right)^\times\).

\(n\) \(376\) \(551\) \(727\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.353553i 0.984251 + 0.176777i \(0.0565670\pi\)
−0.984251 + 0.176777i \(0.943433\pi\)
\(3\) − 3.00000i − 0.577350i
\(4\) 7.00000 0.875000
\(5\) 0 0
\(6\) 3.00000 0.204124
\(7\) 26.0000i 1.40387i 0.712242 + 0.701934i \(0.247680\pi\)
−0.712242 + 0.701934i \(0.752320\pi\)
\(8\) 15.0000i 0.662913i
\(9\) −9.00000 −0.333333
\(10\) 0 0
\(11\) 11.0000 0.301511
\(12\) − 21.0000i − 0.505181i
\(13\) − 32.0000i − 0.682708i −0.939935 0.341354i \(-0.889115\pi\)
0.939935 0.341354i \(-0.110885\pi\)
\(14\) −26.0000 −0.496342
\(15\) 0 0
\(16\) 41.0000 0.640625
\(17\) − 74.0000i − 1.05574i −0.849324 0.527872i \(-0.822990\pi\)
0.849324 0.527872i \(-0.177010\pi\)
\(18\) − 9.00000i − 0.117851i
\(19\) 60.0000 0.724471 0.362235 0.932087i \(-0.382014\pi\)
0.362235 + 0.932087i \(0.382014\pi\)
\(20\) 0 0
\(21\) 78.0000 0.810524
\(22\) 11.0000i 0.106600i
\(23\) − 182.000i − 1.64998i −0.565145 0.824992i \(-0.691180\pi\)
0.565145 0.824992i \(-0.308820\pi\)
\(24\) 45.0000 0.382733
\(25\) 0 0
\(26\) 32.0000 0.241374
\(27\) 27.0000i 0.192450i
\(28\) 182.000i 1.22838i
\(29\) 90.0000 0.576296 0.288148 0.957586i \(-0.406961\pi\)
0.288148 + 0.957586i \(0.406961\pi\)
\(30\) 0 0
\(31\) −8.00000 −0.0463498 −0.0231749 0.999731i \(-0.507377\pi\)
−0.0231749 + 0.999731i \(0.507377\pi\)
\(32\) 161.000i 0.889408i
\(33\) − 33.0000i − 0.174078i
\(34\) 74.0000 0.373262
\(35\) 0 0
\(36\) −63.0000 −0.291667
\(37\) 66.0000i 0.293252i 0.989192 + 0.146626i \(0.0468414\pi\)
−0.989192 + 0.146626i \(0.953159\pi\)
\(38\) 60.0000i 0.256139i
\(39\) −96.0000 −0.394162
\(40\) 0 0
\(41\) 422.000 1.60745 0.803724 0.595003i \(-0.202849\pi\)
0.803724 + 0.595003i \(0.202849\pi\)
\(42\) 78.0000i 0.286563i
\(43\) 408.000i 1.44696i 0.690344 + 0.723482i \(0.257459\pi\)
−0.690344 + 0.723482i \(0.742541\pi\)
\(44\) 77.0000 0.263822
\(45\) 0 0
\(46\) 182.000 0.583357
\(47\) 506.000i 1.57038i 0.619257 + 0.785188i \(0.287434\pi\)
−0.619257 + 0.785188i \(0.712566\pi\)
\(48\) − 123.000i − 0.369865i
\(49\) −333.000 −0.970845
\(50\) 0 0
\(51\) −222.000 −0.609534
\(52\) − 224.000i − 0.597369i
\(53\) 348.000i 0.901915i 0.892546 + 0.450957i \(0.148917\pi\)
−0.892546 + 0.450957i \(0.851083\pi\)
\(54\) −27.0000 −0.0680414
\(55\) 0 0
\(56\) −390.000 −0.930642
\(57\) − 180.000i − 0.418273i
\(58\) 90.0000i 0.203751i
\(59\) 200.000 0.441318 0.220659 0.975351i \(-0.429179\pi\)
0.220659 + 0.975351i \(0.429179\pi\)
\(60\) 0 0
\(61\) 132.000 0.277063 0.138532 0.990358i \(-0.455762\pi\)
0.138532 + 0.990358i \(0.455762\pi\)
\(62\) − 8.00000i − 0.0163871i
\(63\) − 234.000i − 0.467956i
\(64\) 167.000 0.326172
\(65\) 0 0
\(66\) 33.0000 0.0615457
\(67\) 1036.00i 1.88907i 0.328414 + 0.944534i \(0.393486\pi\)
−0.328414 + 0.944534i \(0.606514\pi\)
\(68\) − 518.000i − 0.923775i
\(69\) −546.000 −0.952618
\(70\) 0 0
\(71\) 762.000 1.27370 0.636850 0.770987i \(-0.280237\pi\)
0.636850 + 0.770987i \(0.280237\pi\)
\(72\) − 135.000i − 0.220971i
\(73\) − 542.000i − 0.868990i −0.900674 0.434495i \(-0.856927\pi\)
0.900674 0.434495i \(-0.143073\pi\)
\(74\) −66.0000 −0.103680
\(75\) 0 0
\(76\) 420.000 0.633912
\(77\) 286.000i 0.423282i
\(78\) − 96.0000i − 0.139357i
\(79\) 550.000 0.783289 0.391645 0.920117i \(-0.371906\pi\)
0.391645 + 0.920117i \(0.371906\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 422.000i 0.568318i
\(83\) − 132.000i − 0.174565i −0.996184 0.0872824i \(-0.972182\pi\)
0.996184 0.0872824i \(-0.0278183\pi\)
\(84\) 546.000 0.709208
\(85\) 0 0
\(86\) −408.000 −0.511579
\(87\) − 270.000i − 0.332725i
\(88\) 165.000i 0.199876i
\(89\) −570.000 −0.678875 −0.339438 0.940629i \(-0.610237\pi\)
−0.339438 + 0.940629i \(0.610237\pi\)
\(90\) 0 0
\(91\) 832.000 0.958432
\(92\) − 1274.00i − 1.44374i
\(93\) 24.0000i 0.0267600i
\(94\) −506.000 −0.555212
\(95\) 0 0
\(96\) 483.000 0.513500
\(97\) − 14.0000i − 0.0146545i −0.999973 0.00732724i \(-0.997668\pi\)
0.999973 0.00732724i \(-0.00233235\pi\)
\(98\) − 333.000i − 0.343246i
\(99\) −99.0000 −0.100504
\(100\) 0 0
\(101\) 1702.00 1.67679 0.838393 0.545067i \(-0.183496\pi\)
0.838393 + 0.545067i \(0.183496\pi\)
\(102\) − 222.000i − 0.215503i
\(103\) − 1132.00i − 1.08291i −0.840731 0.541453i \(-0.817874\pi\)
0.840731 0.541453i \(-0.182126\pi\)
\(104\) 480.000 0.452576
\(105\) 0 0
\(106\) −348.000 −0.318875
\(107\) − 564.000i − 0.509570i −0.966998 0.254785i \(-0.917995\pi\)
0.966998 0.254785i \(-0.0820046\pi\)
\(108\) 189.000i 0.168394i
\(109\) 320.000 0.281197 0.140598 0.990067i \(-0.455097\pi\)
0.140598 + 0.990067i \(0.455097\pi\)
\(110\) 0 0
\(111\) 198.000 0.169309
\(112\) 1066.00i 0.899353i
\(113\) − 2142.00i − 1.78321i −0.452817 0.891604i \(-0.649581\pi\)
0.452817 0.891604i \(-0.350419\pi\)
\(114\) 180.000 0.147882
\(115\) 0 0
\(116\) 630.000 0.504259
\(117\) 288.000i 0.227569i
\(118\) 200.000i 0.156030i
\(119\) 1924.00 1.48212
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 132.000i 0.0979567i
\(123\) − 1266.00i − 0.928060i
\(124\) −56.0000 −0.0405560
\(125\) 0 0
\(126\) 234.000 0.165447
\(127\) 1606.00i 1.12212i 0.827775 + 0.561061i \(0.189607\pi\)
−0.827775 + 0.561061i \(0.810393\pi\)
\(128\) 1455.00i 1.00473i
\(129\) 1224.00 0.835405
\(130\) 0 0
\(131\) −1908.00 −1.27254 −0.636270 0.771466i \(-0.719524\pi\)
−0.636270 + 0.771466i \(0.719524\pi\)
\(132\) − 231.000i − 0.152318i
\(133\) 1560.00i 1.01706i
\(134\) −1036.00 −0.667886
\(135\) 0 0
\(136\) 1110.00 0.699866
\(137\) 2186.00i 1.36323i 0.731711 + 0.681615i \(0.238722\pi\)
−0.731711 + 0.681615i \(0.761278\pi\)
\(138\) − 546.000i − 0.336801i
\(139\) −2740.00 −1.67197 −0.835985 0.548753i \(-0.815103\pi\)
−0.835985 + 0.548753i \(0.815103\pi\)
\(140\) 0 0
\(141\) 1518.00 0.906657
\(142\) 762.000i 0.450321i
\(143\) − 352.000i − 0.205844i
\(144\) −369.000 −0.213542
\(145\) 0 0
\(146\) 542.000 0.307235
\(147\) 999.000i 0.560518i
\(148\) 462.000i 0.256596i
\(149\) 1310.00 0.720264 0.360132 0.932901i \(-0.382732\pi\)
0.360132 + 0.932901i \(0.382732\pi\)
\(150\) 0 0
\(151\) −1198.00 −0.645641 −0.322821 0.946460i \(-0.604631\pi\)
−0.322821 + 0.946460i \(0.604631\pi\)
\(152\) 900.000i 0.480261i
\(153\) 666.000i 0.351914i
\(154\) −286.000 −0.149653
\(155\) 0 0
\(156\) −672.000 −0.344891
\(157\) − 2114.00i − 1.07462i −0.843384 0.537311i \(-0.819440\pi\)
0.843384 0.537311i \(-0.180560\pi\)
\(158\) 550.000i 0.276934i
\(159\) 1044.00 0.520721
\(160\) 0 0
\(161\) 4732.00 2.31636
\(162\) 81.0000i 0.0392837i
\(163\) 3868.00i 1.85868i 0.369223 + 0.929341i \(0.379624\pi\)
−0.369223 + 0.929341i \(0.620376\pi\)
\(164\) 2954.00 1.40652
\(165\) 0 0
\(166\) 132.000 0.0617180
\(167\) − 2004.00i − 0.928588i −0.885681 0.464294i \(-0.846308\pi\)
0.885681 0.464294i \(-0.153692\pi\)
\(168\) 1170.00i 0.537306i
\(169\) 1173.00 0.533910
\(170\) 0 0
\(171\) −540.000 −0.241490
\(172\) 2856.00i 1.26609i
\(173\) 678.000i 0.297962i 0.988840 + 0.148981i \(0.0475993\pi\)
−0.988840 + 0.148981i \(0.952401\pi\)
\(174\) 270.000 0.117636
\(175\) 0 0
\(176\) 451.000 0.193156
\(177\) − 600.000i − 0.254795i
\(178\) − 570.000i − 0.240019i
\(179\) 1680.00 0.701503 0.350752 0.936469i \(-0.385926\pi\)
0.350752 + 0.936469i \(0.385926\pi\)
\(180\) 0 0
\(181\) −4358.00 −1.78966 −0.894828 0.446412i \(-0.852702\pi\)
−0.894828 + 0.446412i \(0.852702\pi\)
\(182\) 832.000i 0.338857i
\(183\) − 396.000i − 0.159963i
\(184\) 2730.00 1.09379
\(185\) 0 0
\(186\) −24.0000 −0.00946110
\(187\) − 814.000i − 0.318319i
\(188\) 3542.00i 1.37408i
\(189\) −702.000 −0.270175
\(190\) 0 0
\(191\) −1778.00 −0.673568 −0.336784 0.941582i \(-0.609339\pi\)
−0.336784 + 0.941582i \(0.609339\pi\)
\(192\) − 501.000i − 0.188315i
\(193\) − 3962.00i − 1.47767i −0.673884 0.738837i \(-0.735375\pi\)
0.673884 0.738837i \(-0.264625\pi\)
\(194\) 14.0000 0.00518114
\(195\) 0 0
\(196\) −2331.00 −0.849490
\(197\) − 374.000i − 0.135261i −0.997710 0.0676304i \(-0.978456\pi\)
0.997710 0.0676304i \(-0.0215439\pi\)
\(198\) − 99.0000i − 0.0355335i
\(199\) −2100.00 −0.748066 −0.374033 0.927415i \(-0.622025\pi\)
−0.374033 + 0.927415i \(0.622025\pi\)
\(200\) 0 0
\(201\) 3108.00 1.09065
\(202\) 1702.00i 0.592833i
\(203\) 2340.00i 0.809043i
\(204\) −1554.00 −0.533342
\(205\) 0 0
\(206\) 1132.00 0.382865
\(207\) 1638.00i 0.549995i
\(208\) − 1312.00i − 0.437360i
\(209\) 660.000 0.218436
\(210\) 0 0
\(211\) 2232.00 0.728233 0.364117 0.931353i \(-0.381371\pi\)
0.364117 + 0.931353i \(0.381371\pi\)
\(212\) 2436.00i 0.789175i
\(213\) − 2286.00i − 0.735372i
\(214\) 564.000 0.180160
\(215\) 0 0
\(216\) −405.000 −0.127578
\(217\) − 208.000i − 0.0650689i
\(218\) 320.000i 0.0994180i
\(219\) −1626.00 −0.501712
\(220\) 0 0
\(221\) −2368.00 −0.720764
\(222\) 198.000i 0.0598599i
\(223\) 2128.00i 0.639020i 0.947583 + 0.319510i \(0.103518\pi\)
−0.947583 + 0.319510i \(0.896482\pi\)
\(224\) −4186.00 −1.24861
\(225\) 0 0
\(226\) 2142.00 0.630459
\(227\) − 2964.00i − 0.866641i −0.901240 0.433321i \(-0.857342\pi\)
0.901240 0.433321i \(-0.142658\pi\)
\(228\) − 1260.00i − 0.365989i
\(229\) 2550.00 0.735846 0.367923 0.929856i \(-0.380069\pi\)
0.367923 + 0.929856i \(0.380069\pi\)
\(230\) 0 0
\(231\) 858.000 0.244382
\(232\) 1350.00i 0.382034i
\(233\) − 3042.00i − 0.855314i −0.903941 0.427657i \(-0.859339\pi\)
0.903941 0.427657i \(-0.140661\pi\)
\(234\) −288.000 −0.0804579
\(235\) 0 0
\(236\) 1400.00 0.386154
\(237\) − 1650.00i − 0.452232i
\(238\) 1924.00i 0.524010i
\(239\) −2700.00 −0.730747 −0.365373 0.930861i \(-0.619059\pi\)
−0.365373 + 0.930861i \(0.619059\pi\)
\(240\) 0 0
\(241\) −578.000 −0.154491 −0.0772453 0.997012i \(-0.524612\pi\)
−0.0772453 + 0.997012i \(0.524612\pi\)
\(242\) 121.000i 0.0321412i
\(243\) − 243.000i − 0.0641500i
\(244\) 924.000 0.242430
\(245\) 0 0
\(246\) 1266.00 0.328119
\(247\) − 1920.00i − 0.494602i
\(248\) − 120.000i − 0.0307258i
\(249\) −396.000 −0.100785
\(250\) 0 0
\(251\) 3752.00 0.943522 0.471761 0.881726i \(-0.343618\pi\)
0.471761 + 0.881726i \(0.343618\pi\)
\(252\) − 1638.00i − 0.409462i
\(253\) − 2002.00i − 0.497489i
\(254\) −1606.00 −0.396730
\(255\) 0 0
\(256\) −119.000 −0.0290527
\(257\) − 674.000i − 0.163591i −0.996649 0.0817957i \(-0.973935\pi\)
0.996649 0.0817957i \(-0.0260655\pi\)
\(258\) 1224.00i 0.295360i
\(259\) −1716.00 −0.411687
\(260\) 0 0
\(261\) −810.000 −0.192099
\(262\) − 1908.00i − 0.449911i
\(263\) − 4352.00i − 1.02036i −0.860066 0.510182i \(-0.829578\pi\)
0.860066 0.510182i \(-0.170422\pi\)
\(264\) 495.000 0.115398
\(265\) 0 0
\(266\) −1560.00 −0.359585
\(267\) 1710.00i 0.391949i
\(268\) 7252.00i 1.65293i
\(269\) −500.000 −0.113329 −0.0566646 0.998393i \(-0.518047\pi\)
−0.0566646 + 0.998393i \(0.518047\pi\)
\(270\) 0 0
\(271\) −6538.00 −1.46552 −0.732759 0.680489i \(-0.761768\pi\)
−0.732759 + 0.680489i \(0.761768\pi\)
\(272\) − 3034.00i − 0.676336i
\(273\) − 2496.00i − 0.553351i
\(274\) −2186.00 −0.481975
\(275\) 0 0
\(276\) −3822.00 −0.833541
\(277\) − 124.000i − 0.0268969i −0.999910 0.0134484i \(-0.995719\pi\)
0.999910 0.0134484i \(-0.00428090\pi\)
\(278\) − 2740.00i − 0.591131i
\(279\) 72.0000 0.0154499
\(280\) 0 0
\(281\) 3642.00 0.773180 0.386590 0.922252i \(-0.373653\pi\)
0.386590 + 0.922252i \(0.373653\pi\)
\(282\) 1518.00i 0.320552i
\(283\) 4648.00i 0.976307i 0.872758 + 0.488154i \(0.162329\pi\)
−0.872758 + 0.488154i \(0.837671\pi\)
\(284\) 5334.00 1.11449
\(285\) 0 0
\(286\) 352.000 0.0727769
\(287\) 10972.0i 2.25664i
\(288\) − 1449.00i − 0.296469i
\(289\) −563.000 −0.114594
\(290\) 0 0
\(291\) −42.0000 −0.00846077
\(292\) − 3794.00i − 0.760367i
\(293\) − 3102.00i − 0.618501i −0.950981 0.309250i \(-0.899922\pi\)
0.950981 0.309250i \(-0.100078\pi\)
\(294\) −999.000 −0.198173
\(295\) 0 0
\(296\) −990.000 −0.194401
\(297\) 297.000i 0.0580259i
\(298\) 1310.00i 0.254652i
\(299\) −5824.00 −1.12646
\(300\) 0 0
\(301\) −10608.0 −2.03135
\(302\) − 1198.00i − 0.228269i
\(303\) − 5106.00i − 0.968093i
\(304\) 2460.00 0.464114
\(305\) 0 0
\(306\) −666.000 −0.124421
\(307\) − 1244.00i − 0.231267i −0.993292 0.115633i \(-0.963110\pi\)
0.993292 0.115633i \(-0.0368897\pi\)
\(308\) 2002.00i 0.370372i
\(309\) −3396.00 −0.625216
\(310\) 0 0
\(311\) 2082.00 0.379612 0.189806 0.981822i \(-0.439214\pi\)
0.189806 + 0.981822i \(0.439214\pi\)
\(312\) − 1440.00i − 0.261295i
\(313\) 2378.00i 0.429433i 0.976676 + 0.214716i \(0.0688827\pi\)
−0.976676 + 0.214716i \(0.931117\pi\)
\(314\) 2114.00 0.379936
\(315\) 0 0
\(316\) 3850.00 0.685378
\(317\) 496.000i 0.0878806i 0.999034 + 0.0439403i \(0.0139911\pi\)
−0.999034 + 0.0439403i \(0.986009\pi\)
\(318\) 1044.00i 0.184103i
\(319\) 990.000 0.173760
\(320\) 0 0
\(321\) −1692.00 −0.294200
\(322\) 4732.00i 0.818957i
\(323\) − 4440.00i − 0.764855i
\(324\) 567.000 0.0972222
\(325\) 0 0
\(326\) −3868.00 −0.657143
\(327\) − 960.000i − 0.162349i
\(328\) 6330.00i 1.06560i
\(329\) −13156.0 −2.20460
\(330\) 0 0
\(331\) −2708.00 −0.449683 −0.224842 0.974395i \(-0.572186\pi\)
−0.224842 + 0.974395i \(0.572186\pi\)
\(332\) − 924.000i − 0.152744i
\(333\) − 594.000i − 0.0977507i
\(334\) 2004.00 0.328305
\(335\) 0 0
\(336\) 3198.00 0.519242
\(337\) − 4034.00i − 0.652065i −0.945359 0.326033i \(-0.894288\pi\)
0.945359 0.326033i \(-0.105712\pi\)
\(338\) 1173.00i 0.188766i
\(339\) −6426.00 −1.02954
\(340\) 0 0
\(341\) −88.0000 −0.0139750
\(342\) − 540.000i − 0.0853797i
\(343\) 260.000i 0.0409291i
\(344\) −6120.00 −0.959210
\(345\) 0 0
\(346\) −678.000 −0.105345
\(347\) − 11084.0i − 1.71476i −0.514687 0.857378i \(-0.672092\pi\)
0.514687 0.857378i \(-0.327908\pi\)
\(348\) − 1890.00i − 0.291134i
\(349\) 3120.00 0.478538 0.239269 0.970953i \(-0.423092\pi\)
0.239269 + 0.970953i \(0.423092\pi\)
\(350\) 0 0
\(351\) 864.000 0.131387
\(352\) 1771.00i 0.268167i
\(353\) − 5622.00i − 0.847674i −0.905739 0.423837i \(-0.860683\pi\)
0.905739 0.423837i \(-0.139317\pi\)
\(354\) 600.000 0.0900837
\(355\) 0 0
\(356\) −3990.00 −0.594016
\(357\) − 5772.00i − 0.855705i
\(358\) 1680.00i 0.248019i
\(359\) 8500.00 1.24962 0.624809 0.780778i \(-0.285177\pi\)
0.624809 + 0.780778i \(0.285177\pi\)
\(360\) 0 0
\(361\) −3259.00 −0.475142
\(362\) − 4358.00i − 0.632739i
\(363\) − 363.000i − 0.0524864i
\(364\) 5824.00 0.838628
\(365\) 0 0
\(366\) 396.000 0.0565553
\(367\) − 7144.00i − 1.01611i −0.861324 0.508057i \(-0.830364\pi\)
0.861324 0.508057i \(-0.169636\pi\)
\(368\) − 7462.00i − 1.05702i
\(369\) −3798.00 −0.535816
\(370\) 0 0
\(371\) −9048.00 −1.26617
\(372\) 168.000i 0.0234150i
\(373\) − 632.000i − 0.0877312i −0.999037 0.0438656i \(-0.986033\pi\)
0.999037 0.0438656i \(-0.0139673\pi\)
\(374\) 814.000 0.112543
\(375\) 0 0
\(376\) −7590.00 −1.04102
\(377\) − 2880.00i − 0.393442i
\(378\) − 702.000i − 0.0955211i
\(379\) 4220.00 0.571944 0.285972 0.958238i \(-0.407684\pi\)
0.285972 + 0.958238i \(0.407684\pi\)
\(380\) 0 0
\(381\) 4818.00 0.647857
\(382\) − 1778.00i − 0.238142i
\(383\) 8458.00i 1.12842i 0.825632 + 0.564208i \(0.190819\pi\)
−0.825632 + 0.564208i \(0.809181\pi\)
\(384\) 4365.00 0.580079
\(385\) 0 0
\(386\) 3962.00 0.522437
\(387\) − 3672.00i − 0.482321i
\(388\) − 98.0000i − 0.0128227i
\(389\) −1740.00 −0.226790 −0.113395 0.993550i \(-0.536173\pi\)
−0.113395 + 0.993550i \(0.536173\pi\)
\(390\) 0 0
\(391\) −13468.0 −1.74196
\(392\) − 4995.00i − 0.643586i
\(393\) 5724.00i 0.734701i
\(394\) 374.000 0.0478219
\(395\) 0 0
\(396\) −693.000 −0.0879408
\(397\) 5126.00i 0.648027i 0.946053 + 0.324013i \(0.105032\pi\)
−0.946053 + 0.324013i \(0.894968\pi\)
\(398\) − 2100.00i − 0.264481i
\(399\) 4680.00 0.587201
\(400\) 0 0
\(401\) −3098.00 −0.385802 −0.192901 0.981218i \(-0.561790\pi\)
−0.192901 + 0.981218i \(0.561790\pi\)
\(402\) 3108.00i 0.385604i
\(403\) 256.000i 0.0316433i
\(404\) 11914.0 1.46719
\(405\) 0 0
\(406\) −2340.00 −0.286040
\(407\) 726.000i 0.0884189i
\(408\) − 3330.00i − 0.404068i
\(409\) −6390.00 −0.772531 −0.386265 0.922388i \(-0.626235\pi\)
−0.386265 + 0.922388i \(0.626235\pi\)
\(410\) 0 0
\(411\) 6558.00 0.787062
\(412\) − 7924.00i − 0.947542i
\(413\) 5200.00i 0.619553i
\(414\) −1638.00 −0.194452
\(415\) 0 0
\(416\) 5152.00 0.607206
\(417\) 8220.00i 0.965312i
\(418\) 660.000i 0.0772288i
\(419\) −9760.00 −1.13796 −0.568982 0.822350i \(-0.692663\pi\)
−0.568982 + 0.822350i \(0.692663\pi\)
\(420\) 0 0
\(421\) −5138.00 −0.594800 −0.297400 0.954753i \(-0.596119\pi\)
−0.297400 + 0.954753i \(0.596119\pi\)
\(422\) 2232.00i 0.257469i
\(423\) − 4554.00i − 0.523459i
\(424\) −5220.00 −0.597891
\(425\) 0 0
\(426\) 2286.00 0.259993
\(427\) 3432.00i 0.388960i
\(428\) − 3948.00i − 0.445873i
\(429\) −1056.00 −0.118844
\(430\) 0 0
\(431\) −7008.00 −0.783210 −0.391605 0.920133i \(-0.628080\pi\)
−0.391605 + 0.920133i \(0.628080\pi\)
\(432\) 1107.00i 0.123288i
\(433\) 5578.00i 0.619080i 0.950886 + 0.309540i \(0.100175\pi\)
−0.950886 + 0.309540i \(0.899825\pi\)
\(434\) 208.000 0.0230053
\(435\) 0 0
\(436\) 2240.00 0.246047
\(437\) − 10920.0i − 1.19536i
\(438\) − 1626.00i − 0.177382i
\(439\) 10430.0 1.13393 0.566967 0.823741i \(-0.308117\pi\)
0.566967 + 0.823741i \(0.308117\pi\)
\(440\) 0 0
\(441\) 2997.00 0.323615
\(442\) − 2368.00i − 0.254829i
\(443\) − 4432.00i − 0.475329i −0.971347 0.237664i \(-0.923618\pi\)
0.971347 0.237664i \(-0.0763819\pi\)
\(444\) 1386.00 0.148146
\(445\) 0 0
\(446\) −2128.00 −0.225928
\(447\) − 3930.00i − 0.415845i
\(448\) 4342.00i 0.457902i
\(449\) 6290.00 0.661121 0.330561 0.943785i \(-0.392762\pi\)
0.330561 + 0.943785i \(0.392762\pi\)
\(450\) 0 0
\(451\) 4642.00 0.484664
\(452\) − 14994.0i − 1.56031i
\(453\) 3594.00i 0.372761i
\(454\) 2964.00 0.306404
\(455\) 0 0
\(456\) 2700.00 0.277279
\(457\) − 3054.00i − 0.312604i −0.987709 0.156302i \(-0.950043\pi\)
0.987709 0.156302i \(-0.0499573\pi\)
\(458\) 2550.00i 0.260161i
\(459\) 1998.00 0.203178
\(460\) 0 0
\(461\) 12882.0 1.30146 0.650732 0.759308i \(-0.274462\pi\)
0.650732 + 0.759308i \(0.274462\pi\)
\(462\) 858.000i 0.0864021i
\(463\) 6148.00i 0.617110i 0.951207 + 0.308555i \(0.0998453\pi\)
−0.951207 + 0.308555i \(0.900155\pi\)
\(464\) 3690.00 0.369190
\(465\) 0 0
\(466\) 3042.00 0.302399
\(467\) − 5124.00i − 0.507731i −0.967240 0.253866i \(-0.918298\pi\)
0.967240 0.253866i \(-0.0817021\pi\)
\(468\) 2016.00i 0.199123i
\(469\) −26936.0 −2.65200
\(470\) 0 0
\(471\) −6342.00 −0.620433
\(472\) 3000.00i 0.292555i
\(473\) 4488.00i 0.436276i
\(474\) 1650.00 0.159888
\(475\) 0 0
\(476\) 13468.0 1.29686
\(477\) − 3132.00i − 0.300638i
\(478\) − 2700.00i − 0.258358i
\(479\) 16520.0 1.57582 0.787910 0.615790i \(-0.211163\pi\)
0.787910 + 0.615790i \(0.211163\pi\)
\(480\) 0 0
\(481\) 2112.00 0.200206
\(482\) − 578.000i − 0.0546207i
\(483\) − 14196.0i − 1.33735i
\(484\) 847.000 0.0795455
\(485\) 0 0
\(486\) 243.000 0.0226805
\(487\) − 524.000i − 0.0487571i −0.999703 0.0243785i \(-0.992239\pi\)
0.999703 0.0243785i \(-0.00776070\pi\)
\(488\) 1980.00i 0.183669i
\(489\) 11604.0 1.07311
\(490\) 0 0
\(491\) −15028.0 −1.38127 −0.690636 0.723203i \(-0.742669\pi\)
−0.690636 + 0.723203i \(0.742669\pi\)
\(492\) − 8862.00i − 0.812052i
\(493\) − 6660.00i − 0.608421i
\(494\) 1920.00 0.174868
\(495\) 0 0
\(496\) −328.000 −0.0296928
\(497\) 19812.0i 1.78811i
\(498\) − 396.000i − 0.0356329i
\(499\) −9020.00 −0.809200 −0.404600 0.914494i \(-0.632589\pi\)
−0.404600 + 0.914494i \(0.632589\pi\)
\(500\) 0 0
\(501\) −6012.00 −0.536120
\(502\) 3752.00i 0.333586i
\(503\) − 14812.0i − 1.31299i −0.754330 0.656495i \(-0.772038\pi\)
0.754330 0.656495i \(-0.227962\pi\)
\(504\) 3510.00 0.310214
\(505\) 0 0
\(506\) 2002.00 0.175889
\(507\) − 3519.00i − 0.308253i
\(508\) 11242.0i 0.981856i
\(509\) −12660.0 −1.10245 −0.551223 0.834358i \(-0.685839\pi\)
−0.551223 + 0.834358i \(0.685839\pi\)
\(510\) 0 0
\(511\) 14092.0 1.21995
\(512\) 11521.0i 0.994455i
\(513\) 1620.00i 0.139424i
\(514\) 674.000 0.0578383
\(515\) 0 0
\(516\) 8568.00 0.730979
\(517\) 5566.00i 0.473486i
\(518\) − 1716.00i − 0.145553i
\(519\) 2034.00 0.172028
\(520\) 0 0
\(521\) −3738.00 −0.314328 −0.157164 0.987573i \(-0.550235\pi\)
−0.157164 + 0.987573i \(0.550235\pi\)
\(522\) − 810.000i − 0.0679171i
\(523\) − 6352.00i − 0.531078i −0.964100 0.265539i \(-0.914450\pi\)
0.964100 0.265539i \(-0.0855498\pi\)
\(524\) −13356.0 −1.11347
\(525\) 0 0
\(526\) 4352.00 0.360753
\(527\) 592.000i 0.0489334i
\(528\) − 1353.00i − 0.111518i
\(529\) −20957.0 −1.72245
\(530\) 0 0
\(531\) −1800.00 −0.147106
\(532\) 10920.0i 0.889929i
\(533\) − 13504.0i − 1.09742i
\(534\) −1710.00 −0.138575
\(535\) 0 0
\(536\) −15540.0 −1.25229
\(537\) − 5040.00i − 0.405013i
\(538\) − 500.000i − 0.0400679i
\(539\) −3663.00 −0.292721
\(540\) 0 0
\(541\) −24728.0 −1.96514 −0.982569 0.185898i \(-0.940481\pi\)
−0.982569 + 0.185898i \(0.940481\pi\)
\(542\) − 6538.00i − 0.518139i
\(543\) 13074.0i 1.03326i
\(544\) 11914.0 0.938986
\(545\) 0 0
\(546\) 2496.00 0.195639
\(547\) 22756.0i 1.77875i 0.457178 + 0.889375i \(0.348860\pi\)
−0.457178 + 0.889375i \(0.651140\pi\)
\(548\) 15302.0i 1.19283i
\(549\) −1188.00 −0.0923545
\(550\) 0 0
\(551\) 5400.00 0.417509
\(552\) − 8190.00i − 0.631503i
\(553\) 14300.0i 1.09963i
\(554\) 124.000 0.00950949
\(555\) 0 0
\(556\) −19180.0 −1.46297
\(557\) 9526.00i 0.724649i 0.932052 + 0.362325i \(0.118017\pi\)
−0.932052 + 0.362325i \(0.881983\pi\)
\(558\) 72.0000i 0.00546237i
\(559\) 13056.0 0.987853
\(560\) 0 0
\(561\) −2442.00 −0.183781
\(562\) 3642.00i 0.273360i
\(563\) 12068.0i 0.903385i 0.892174 + 0.451692i \(0.149180\pi\)
−0.892174 + 0.451692i \(0.850820\pi\)
\(564\) 10626.0 0.793325
\(565\) 0 0
\(566\) −4648.00 −0.345177
\(567\) 2106.00i 0.155985i
\(568\) 11430.0i 0.844352i
\(569\) −15090.0 −1.11179 −0.555893 0.831254i \(-0.687623\pi\)
−0.555893 + 0.831254i \(0.687623\pi\)
\(570\) 0 0
\(571\) 4412.00 0.323356 0.161678 0.986844i \(-0.448309\pi\)
0.161678 + 0.986844i \(0.448309\pi\)
\(572\) − 2464.00i − 0.180114i
\(573\) 5334.00i 0.388885i
\(574\) −10972.0 −0.797844
\(575\) 0 0
\(576\) −1503.00 −0.108724
\(577\) 3906.00i 0.281818i 0.990023 + 0.140909i \(0.0450025\pi\)
−0.990023 + 0.140909i \(0.954998\pi\)
\(578\) − 563.000i − 0.0405151i
\(579\) −11886.0 −0.853135
\(580\) 0 0
\(581\) 3432.00 0.245066
\(582\) − 42.0000i − 0.00299133i
\(583\) 3828.00i 0.271937i
\(584\) 8130.00 0.576065
\(585\) 0 0
\(586\) 3102.00 0.218673
\(587\) 12016.0i 0.844895i 0.906387 + 0.422448i \(0.138829\pi\)
−0.906387 + 0.422448i \(0.861171\pi\)
\(588\) 6993.00i 0.490453i
\(589\) −480.000 −0.0335790
\(590\) 0 0
\(591\) −1122.00 −0.0780929
\(592\) 2706.00i 0.187865i
\(593\) − 11342.0i − 0.785430i −0.919660 0.392715i \(-0.871536\pi\)
0.919660 0.392715i \(-0.128464\pi\)
\(594\) −297.000 −0.0205152
\(595\) 0 0
\(596\) 9170.00 0.630231
\(597\) 6300.00i 0.431896i
\(598\) − 5824.00i − 0.398263i
\(599\) −20690.0 −1.41130 −0.705651 0.708559i \(-0.749346\pi\)
−0.705651 + 0.708559i \(0.749346\pi\)
\(600\) 0 0
\(601\) −598.000 −0.0405872 −0.0202936 0.999794i \(-0.506460\pi\)
−0.0202936 + 0.999794i \(0.506460\pi\)
\(602\) − 10608.0i − 0.718189i
\(603\) − 9324.00i − 0.629689i
\(604\) −8386.00 −0.564936
\(605\) 0 0
\(606\) 5106.00 0.342272
\(607\) 166.000i 0.0111001i 0.999985 + 0.00555003i \(0.00176664\pi\)
−0.999985 + 0.00555003i \(0.998233\pi\)
\(608\) 9660.00i 0.644350i
\(609\) 7020.00 0.467101
\(610\) 0 0
\(611\) 16192.0 1.07211
\(612\) 4662.00i 0.307925i
\(613\) 20108.0i 1.32488i 0.749113 + 0.662442i \(0.230480\pi\)
−0.749113 + 0.662442i \(0.769520\pi\)
\(614\) 1244.00 0.0817651
\(615\) 0 0
\(616\) −4290.00 −0.280599
\(617\) 2286.00i 0.149159i 0.997215 + 0.0745793i \(0.0237614\pi\)
−0.997215 + 0.0745793i \(0.976239\pi\)
\(618\) − 3396.00i − 0.221047i
\(619\) 25660.0 1.66618 0.833088 0.553141i \(-0.186571\pi\)
0.833088 + 0.553141i \(0.186571\pi\)
\(620\) 0 0
\(621\) 4914.00 0.317539
\(622\) 2082.00i 0.134213i
\(623\) − 14820.0i − 0.953051i
\(624\) −3936.00 −0.252510
\(625\) 0 0
\(626\) −2378.00 −0.151827
\(627\) − 1980.00i − 0.126114i
\(628\) − 14798.0i − 0.940294i
\(629\) 4884.00 0.309599
\(630\) 0 0
\(631\) −11408.0 −0.719723 −0.359862 0.933006i \(-0.617176\pi\)
−0.359862 + 0.933006i \(0.617176\pi\)
\(632\) 8250.00i 0.519252i
\(633\) − 6696.00i − 0.420446i
\(634\) −496.000 −0.0310705
\(635\) 0 0
\(636\) 7308.00 0.455631
\(637\) 10656.0i 0.662804i
\(638\) 990.000i 0.0614333i
\(639\) −6858.00 −0.424567
\(640\) 0 0
\(641\) −3378.00 −0.208148 −0.104074 0.994570i \(-0.533188\pi\)
−0.104074 + 0.994570i \(0.533188\pi\)
\(642\) − 1692.00i − 0.104015i
\(643\) − 11212.0i − 0.687649i −0.939034 0.343824i \(-0.888278\pi\)
0.939034 0.343824i \(-0.111722\pi\)
\(644\) 33124.0 2.02681
\(645\) 0 0
\(646\) 4440.00 0.270417
\(647\) 86.0000i 0.00522567i 0.999997 + 0.00261284i \(0.000831692\pi\)
−0.999997 + 0.00261284i \(0.999168\pi\)
\(648\) 1215.00i 0.0736570i
\(649\) 2200.00 0.133062
\(650\) 0 0
\(651\) −624.000 −0.0375676
\(652\) 27076.0i 1.62635i
\(653\) − 4432.00i − 0.265601i −0.991143 0.132801i \(-0.957603\pi\)
0.991143 0.132801i \(-0.0423970\pi\)
\(654\) 960.000 0.0573990
\(655\) 0 0
\(656\) 17302.0 1.02977
\(657\) 4878.00i 0.289663i
\(658\) − 13156.0i − 0.779444i
\(659\) −4580.00 −0.270731 −0.135365 0.990796i \(-0.543221\pi\)
−0.135365 + 0.990796i \(0.543221\pi\)
\(660\) 0 0
\(661\) 4282.00 0.251967 0.125984 0.992032i \(-0.459791\pi\)
0.125984 + 0.992032i \(0.459791\pi\)
\(662\) − 2708.00i − 0.158987i
\(663\) 7104.00i 0.416133i
\(664\) 1980.00 0.115721
\(665\) 0 0
\(666\) 594.000 0.0345601
\(667\) − 16380.0i − 0.950879i
\(668\) − 14028.0i − 0.812514i
\(669\) 6384.00 0.368938
\(670\) 0 0
\(671\) 1452.00 0.0835378
\(672\) 12558.0i 0.720886i
\(673\) 8438.00i 0.483300i 0.970363 + 0.241650i \(0.0776886\pi\)
−0.970363 + 0.241650i \(0.922311\pi\)
\(674\) 4034.00 0.230540
\(675\) 0 0
\(676\) 8211.00 0.467171
\(677\) − 34494.0i − 1.95822i −0.203341 0.979108i \(-0.565180\pi\)
0.203341 0.979108i \(-0.434820\pi\)
\(678\) − 6426.00i − 0.363996i
\(679\) 364.000 0.0205730
\(680\) 0 0
\(681\) −8892.00 −0.500356
\(682\) − 88.0000i − 0.00494090i
\(683\) − 13712.0i − 0.768192i −0.923293 0.384096i \(-0.874513\pi\)
0.923293 0.384096i \(-0.125487\pi\)
\(684\) −3780.00 −0.211304
\(685\) 0 0
\(686\) −260.000 −0.0144706
\(687\) − 7650.00i − 0.424841i
\(688\) 16728.0i 0.926961i
\(689\) 11136.0 0.615744
\(690\) 0 0
\(691\) 11372.0 0.626066 0.313033 0.949742i \(-0.398655\pi\)
0.313033 + 0.949742i \(0.398655\pi\)
\(692\) 4746.00i 0.260717i
\(693\) − 2574.00i − 0.141094i
\(694\) 11084.0 0.606258
\(695\) 0 0
\(696\) 4050.00 0.220567
\(697\) − 31228.0i − 1.69705i
\(698\) 3120.00i 0.169189i
\(699\) −9126.00 −0.493815
\(700\) 0 0
\(701\) −6398.00 −0.344721 −0.172360 0.985034i \(-0.555139\pi\)
−0.172360 + 0.985034i \(0.555139\pi\)
\(702\) 864.000i 0.0464524i
\(703\) 3960.00i 0.212453i
\(704\) 1837.00 0.0983445
\(705\) 0 0
\(706\) 5622.00 0.299698
\(707\) 44252.0i 2.35399i
\(708\) − 4200.00i − 0.222946i
\(709\) 5830.00 0.308816 0.154408 0.988007i \(-0.450653\pi\)
0.154408 + 0.988007i \(0.450653\pi\)
\(710\) 0 0
\(711\) −4950.00 −0.261096
\(712\) − 8550.00i − 0.450035i
\(713\) 1456.00i 0.0764763i
\(714\) 5772.00 0.302537
\(715\) 0 0
\(716\) 11760.0 0.613815
\(717\) 8100.00i 0.421897i
\(718\) 8500.00i 0.441807i
\(719\) −34530.0 −1.79103 −0.895516 0.445030i \(-0.853193\pi\)
−0.895516 + 0.445030i \(0.853193\pi\)
\(720\) 0 0
\(721\) 29432.0 1.52026
\(722\) − 3259.00i − 0.167988i
\(723\) 1734.00i 0.0891952i
\(724\) −30506.0 −1.56595
\(725\) 0 0
\(726\) 363.000 0.0185567
\(727\) 17316.0i 0.883377i 0.897169 + 0.441688i \(0.145620\pi\)
−0.897169 + 0.441688i \(0.854380\pi\)
\(728\) 12480.0i 0.635357i
\(729\) −729.000 −0.0370370
\(730\) 0 0
\(731\) 30192.0 1.52762
\(732\) − 2772.00i − 0.139967i
\(733\) − 27072.0i − 1.36416i −0.731279 0.682079i \(-0.761076\pi\)
0.731279 0.682079i \(-0.238924\pi\)
\(734\) 7144.00 0.359250
\(735\) 0 0
\(736\) 29302.0 1.46751
\(737\) 11396.0i 0.569575i
\(738\) − 3798.00i − 0.189439i
\(739\) 17320.0 0.862147 0.431073 0.902317i \(-0.358135\pi\)
0.431073 + 0.902317i \(0.358135\pi\)
\(740\) 0 0
\(741\) −5760.00 −0.285559
\(742\) − 9048.00i − 0.447658i
\(743\) 14588.0i 0.720299i 0.932895 + 0.360149i \(0.117274\pi\)
−0.932895 + 0.360149i \(0.882726\pi\)
\(744\) −360.000 −0.0177396
\(745\) 0 0
\(746\) 632.000 0.0310176
\(747\) 1188.00i 0.0581883i
\(748\) − 5698.00i − 0.278529i
\(749\) 14664.0 0.715368
\(750\) 0 0
\(751\) 26152.0 1.27071 0.635353 0.772222i \(-0.280855\pi\)
0.635353 + 0.772222i \(0.280855\pi\)
\(752\) 20746.0i 1.00602i
\(753\) − 11256.0i − 0.544743i
\(754\) 2880.00 0.139103
\(755\) 0 0
\(756\) −4914.00 −0.236403
\(757\) 1066.00i 0.0511815i 0.999673 + 0.0255908i \(0.00814669\pi\)
−0.999673 + 0.0255908i \(0.991853\pi\)
\(758\) 4220.00i 0.202213i
\(759\) −6006.00 −0.287225
\(760\) 0 0
\(761\) −37518.0 −1.78716 −0.893578 0.448907i \(-0.851813\pi\)
−0.893578 + 0.448907i \(0.851813\pi\)
\(762\) 4818.00i 0.229052i
\(763\) 8320.00i 0.394763i
\(764\) −12446.0 −0.589372
\(765\) 0 0
\(766\) −8458.00 −0.398956
\(767\) − 6400.00i − 0.301292i
\(768\) 357.000i 0.0167736i
\(769\) 17290.0 0.810785 0.405392 0.914143i \(-0.367135\pi\)
0.405392 + 0.914143i \(0.367135\pi\)
\(770\) 0 0
\(771\) −2022.00 −0.0944495
\(772\) − 27734.0i − 1.29296i
\(773\) − 17172.0i − 0.799009i −0.916731 0.399504i \(-0.869182\pi\)
0.916731 0.399504i \(-0.130818\pi\)
\(774\) 3672.00 0.170526
\(775\) 0 0
\(776\) 210.000 0.00971464
\(777\) 5148.00i 0.237688i
\(778\) − 1740.00i − 0.0801825i
\(779\) 25320.0 1.16455
\(780\) 0 0
\(781\) 8382.00 0.384035
\(782\) − 13468.0i − 0.615876i
\(783\) 2430.00i 0.110908i
\(784\) −13653.0 −0.621948
\(785\) 0 0
\(786\) −5724.00 −0.259756
\(787\) 9536.00i 0.431921i 0.976402 + 0.215960i \(0.0692882\pi\)
−0.976402 + 0.215960i \(0.930712\pi\)
\(788\) − 2618.00i − 0.118353i
\(789\) −13056.0 −0.589108
\(790\) 0 0
\(791\) 55692.0 2.50339
\(792\) − 1485.00i − 0.0666252i
\(793\) − 4224.00i − 0.189153i
\(794\) −5126.00 −0.229112
\(795\) 0 0
\(796\) −14700.0 −0.654557
\(797\) 20516.0i 0.911812i 0.890028 + 0.455906i \(0.150685\pi\)
−0.890028 + 0.455906i \(0.849315\pi\)
\(798\) 4680.00i 0.207607i
\(799\) 37444.0 1.65791
\(800\) 0 0
\(801\) 5130.00 0.226292
\(802\) − 3098.00i − 0.136402i
\(803\) − 5962.00i − 0.262010i
\(804\) 21756.0 0.954322
\(805\) 0 0
\(806\) −256.000 −0.0111876
\(807\) 1500.00i 0.0654306i
\(808\) 25530.0i 1.11156i
\(809\) −22470.0 −0.976518 −0.488259 0.872699i \(-0.662368\pi\)
−0.488259 + 0.872699i \(0.662368\pi\)
\(810\) 0 0
\(811\) −3368.00 −0.145828 −0.0729140 0.997338i \(-0.523230\pi\)
−0.0729140 + 0.997338i \(0.523230\pi\)
\(812\) 16380.0i 0.707913i
\(813\) 19614.0i 0.846117i
\(814\) −726.000 −0.0312608
\(815\) 0 0
\(816\) −9102.00 −0.390483
\(817\) 24480.0i 1.04828i
\(818\) − 6390.00i − 0.273131i
\(819\) −7488.00 −0.319477
\(820\) 0 0
\(821\) −10738.0 −0.456466 −0.228233 0.973607i \(-0.573295\pi\)
−0.228233 + 0.973607i \(0.573295\pi\)
\(822\) 6558.00i 0.278268i
\(823\) − 15912.0i − 0.673946i −0.941514 0.336973i \(-0.890597\pi\)
0.941514 0.336973i \(-0.109403\pi\)
\(824\) 16980.0 0.717872
\(825\) 0 0
\(826\) −5200.00 −0.219045
\(827\) − 22924.0i − 0.963900i −0.876199 0.481950i \(-0.839929\pi\)
0.876199 0.481950i \(-0.160071\pi\)
\(828\) 11466.0i 0.481245i
\(829\) 41690.0 1.74663 0.873313 0.487159i \(-0.161967\pi\)
0.873313 + 0.487159i \(0.161967\pi\)
\(830\) 0 0
\(831\) −372.000 −0.0155289
\(832\) − 5344.00i − 0.222680i
\(833\) 24642.0i 1.02496i
\(834\) −8220.00 −0.341289
\(835\) 0 0
\(836\) 4620.00 0.191132
\(837\) − 216.000i − 0.00892001i
\(838\) − 9760.00i − 0.402331i
\(839\) 16450.0 0.676898 0.338449 0.940985i \(-0.390098\pi\)
0.338449 + 0.940985i \(0.390098\pi\)
\(840\) 0 0
\(841\) −16289.0 −0.667883
\(842\) − 5138.00i − 0.210294i
\(843\) − 10926.0i − 0.446396i
\(844\) 15624.0 0.637204
\(845\) 0 0
\(846\) 4554.00 0.185071
\(847\) 3146.00i 0.127624i
\(848\) 14268.0i 0.577789i
\(849\) 13944.0 0.563671
\(850\) 0 0
\(851\) 12012.0 0.483861
\(852\) − 16002.0i − 0.643450i
\(853\) − 30892.0i − 1.24000i −0.784601 0.620001i \(-0.787132\pi\)
0.784601 0.620001i \(-0.212868\pi\)
\(854\) −3432.00 −0.137518
\(855\) 0 0
\(856\) 8460.00 0.337800
\(857\) 38906.0i 1.55076i 0.631493 + 0.775381i \(0.282442\pi\)
−0.631493 + 0.775381i \(0.717558\pi\)
\(858\) − 1056.00i − 0.0420178i
\(859\) 1020.00 0.0405145 0.0202572 0.999795i \(-0.493551\pi\)
0.0202572 + 0.999795i \(0.493551\pi\)
\(860\) 0 0
\(861\) 32916.0 1.30287
\(862\) − 7008.00i − 0.276907i
\(863\) 15078.0i 0.594741i 0.954762 + 0.297370i \(0.0961096\pi\)
−0.954762 + 0.297370i \(0.903890\pi\)
\(864\) −4347.00 −0.171167
\(865\) 0 0
\(866\) −5578.00 −0.218878
\(867\) 1689.00i 0.0661608i
\(868\) − 1456.00i − 0.0569353i
\(869\) 6050.00 0.236171
\(870\) 0 0
\(871\) 33152.0 1.28968
\(872\) 4800.00i 0.186409i
\(873\) 126.000i 0.00488483i
\(874\) 10920.0 0.422625
\(875\) 0 0
\(876\) −11382.0 −0.438998
\(877\) − 22704.0i − 0.874184i −0.899417 0.437092i \(-0.856008\pi\)
0.899417 0.437092i \(-0.143992\pi\)
\(878\) 10430.0i 0.400906i
\(879\) −9306.00 −0.357092
\(880\) 0 0
\(881\) −19358.0 −0.740281 −0.370141 0.928976i \(-0.620690\pi\)
−0.370141 + 0.928976i \(0.620690\pi\)
\(882\) 2997.00i 0.114415i
\(883\) − 11252.0i − 0.428833i −0.976742 0.214417i \(-0.931215\pi\)
0.976742 0.214417i \(-0.0687851\pi\)
\(884\) −16576.0 −0.630669
\(885\) 0 0
\(886\) 4432.00 0.168054
\(887\) − 43684.0i − 1.65362i −0.562478 0.826812i \(-0.690152\pi\)
0.562478 0.826812i \(-0.309848\pi\)
\(888\) 2970.00i 0.112237i
\(889\) −41756.0 −1.57531
\(890\) 0 0
\(891\) 891.000 0.0335013
\(892\) 14896.0i 0.559142i
\(893\) 30360.0i 1.13769i
\(894\) 3930.00 0.147023
\(895\) 0 0
\(896\) −37830.0 −1.41050
\(897\) 17472.0i 0.650360i
\(898\) 6290.00i 0.233742i
\(899\) −720.000 −0.0267112
\(900\) 0 0
\(901\) 25752.0 0.952190
\(902\) 4642.00i 0.171354i
\(903\) 31824.0i 1.17280i
\(904\) 32130.0 1.18211
\(905\) 0 0
\(906\) −3594.00 −0.131791
\(907\) − 45804.0i − 1.67684i −0.545022 0.838422i \(-0.683479\pi\)
0.545022 0.838422i \(-0.316521\pi\)
\(908\) − 20748.0i − 0.758311i
\(909\) −15318.0 −0.558928
\(910\) 0 0
\(911\) −15318.0 −0.557089 −0.278544 0.960423i \(-0.589852\pi\)
−0.278544 + 0.960423i \(0.589852\pi\)
\(912\) − 7380.00i − 0.267956i
\(913\) − 1452.00i − 0.0526333i
\(914\) 3054.00 0.110522
\(915\) 0 0
\(916\) 17850.0 0.643865
\(917\) − 49608.0i − 1.78648i
\(918\) 1998.00i 0.0718342i
\(919\) −11350.0 −0.407401 −0.203701 0.979033i \(-0.565297\pi\)
−0.203701 + 0.979033i \(0.565297\pi\)
\(920\) 0 0
\(921\) −3732.00 −0.133522
\(922\) 12882.0i 0.460137i
\(923\) − 24384.0i − 0.869566i
\(924\) 6006.00 0.213834
\(925\) 0 0
\(926\) −6148.00 −0.218181
\(927\) 10188.0i 0.360969i
\(928\) 14490.0i 0.512562i
\(929\) −33030.0 −1.16650 −0.583250 0.812292i \(-0.698219\pi\)
−0.583250 + 0.812292i \(0.698219\pi\)
\(930\) 0 0
\(931\) −19980.0 −0.703349
\(932\) − 21294.0i − 0.748399i
\(933\) − 6246.00i − 0.219169i
\(934\) 5124.00 0.179510
\(935\) 0 0
\(936\) −4320.00 −0.150859
\(937\) 10006.0i 0.348860i 0.984670 + 0.174430i \(0.0558083\pi\)
−0.984670 + 0.174430i \(0.944192\pi\)
\(938\) − 26936.0i − 0.937624i
\(939\) 7134.00 0.247933
\(940\) 0 0
\(941\) 2622.00 0.0908340 0.0454170 0.998968i \(-0.485538\pi\)
0.0454170 + 0.998968i \(0.485538\pi\)
\(942\) − 6342.00i − 0.219356i
\(943\) − 76804.0i − 2.65226i
\(944\) 8200.00 0.282720
\(945\) 0 0
\(946\) −4488.00 −0.154247
\(947\) 39876.0i 1.36832i 0.729334 + 0.684158i \(0.239830\pi\)
−0.729334 + 0.684158i \(0.760170\pi\)
\(948\) − 11550.0i − 0.395703i
\(949\) −17344.0 −0.593267
\(950\) 0 0
\(951\) 1488.00 0.0507379
\(952\) 28860.0i 0.982519i
\(953\) 38918.0i 1.32285i 0.750011 + 0.661426i \(0.230048\pi\)
−0.750011 + 0.661426i \(0.769952\pi\)
\(954\) 3132.00 0.106292
\(955\) 0 0
\(956\) −18900.0 −0.639403
\(957\) − 2970.00i − 0.100320i
\(958\) 16520.0i 0.557137i
\(959\) −56836.0 −1.91380
\(960\) 0 0
\(961\) −29727.0 −0.997852
\(962\) 2112.00i 0.0707834i
\(963\) 5076.00i 0.169857i
\(964\) −4046.00 −0.135179
\(965\) 0 0
\(966\) 14196.0 0.472825
\(967\) − 1114.00i − 0.0370464i −0.999828 0.0185232i \(-0.994104\pi\)
0.999828 0.0185232i \(-0.00589645\pi\)
\(968\) 1815.00i 0.0602648i
\(969\) −13320.0 −0.441589
\(970\) 0 0
\(971\) −1688.00 −0.0557884 −0.0278942 0.999611i \(-0.508880\pi\)
−0.0278942 + 0.999611i \(0.508880\pi\)
\(972\) − 1701.00i − 0.0561313i
\(973\) − 71240.0i − 2.34722i
\(974\) 524.000 0.0172382
\(975\) 0 0
\(976\) 5412.00 0.177494
\(977\) 41826.0i 1.36963i 0.728715 + 0.684817i \(0.240118\pi\)
−0.728715 + 0.684817i \(0.759882\pi\)
\(978\) 11604.0i 0.379402i
\(979\) −6270.00 −0.204689
\(980\) 0 0
\(981\) −2880.00 −0.0937322
\(982\) − 15028.0i − 0.488353i
\(983\) 978.000i 0.0317328i 0.999874 + 0.0158664i \(0.00505065\pi\)
−0.999874 + 0.0158664i \(0.994949\pi\)
\(984\) 18990.0 0.615223
\(985\) 0 0
\(986\) 6660.00 0.215109
\(987\) 39468.0i 1.27283i
\(988\) − 13440.0i − 0.432777i
\(989\) 74256.0 2.38747
\(990\) 0 0
\(991\) 47272.0 1.51528 0.757641 0.652671i \(-0.226352\pi\)
0.757641 + 0.652671i \(0.226352\pi\)
\(992\) − 1288.00i − 0.0412238i
\(993\) 8124.00i 0.259625i
\(994\) −19812.0 −0.632192
\(995\) 0 0
\(996\) −2772.00 −0.0881869
\(997\) − 51104.0i − 1.62335i −0.584109 0.811675i \(-0.698556\pi\)
0.584109 0.811675i \(-0.301444\pi\)
\(998\) − 9020.00i − 0.286095i
\(999\) −1782.00 −0.0564364
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 825.4.c.f.199.2 2
5.2 odd 4 33.4.a.b.1.1 1
5.3 odd 4 825.4.a.f.1.1 1
5.4 even 2 inner 825.4.c.f.199.1 2
15.2 even 4 99.4.a.a.1.1 1
15.8 even 4 2475.4.a.e.1.1 1
20.7 even 4 528.4.a.h.1.1 1
35.27 even 4 1617.4.a.d.1.1 1
40.27 even 4 2112.4.a.h.1.1 1
40.37 odd 4 2112.4.a.u.1.1 1
55.32 even 4 363.4.a.d.1.1 1
60.47 odd 4 1584.4.a.l.1.1 1
165.32 odd 4 1089.4.a.e.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.4.a.b.1.1 1 5.2 odd 4
99.4.a.a.1.1 1 15.2 even 4
363.4.a.d.1.1 1 55.32 even 4
528.4.a.h.1.1 1 20.7 even 4
825.4.a.f.1.1 1 5.3 odd 4
825.4.c.f.199.1 2 5.4 even 2 inner
825.4.c.f.199.2 2 1.1 even 1 trivial
1089.4.a.e.1.1 1 165.32 odd 4
1584.4.a.l.1.1 1 60.47 odd 4
1617.4.a.d.1.1 1 35.27 even 4
2112.4.a.h.1.1 1 40.27 even 4
2112.4.a.u.1.1 1 40.37 odd 4
2475.4.a.e.1.1 1 15.8 even 4