Properties

Label 825.4.a.z.1.5
Level $825$
Weight $4$
Character 825.1
Self dual yes
Analytic conductor $48.677$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [825,4,Mod(1,825)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(825, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("825.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 825 = 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 825.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,4,15,46] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.6765757547\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 41x^{3} + 3x^{2} + 294x - 200 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-4.58039\) of defining polynomial
Character \(\chi\) \(=\) 825.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.58039 q^{2} +3.00000 q^{3} +23.1407 q^{4} +16.7412 q^{6} -34.4181 q^{7} +84.4912 q^{8} +9.00000 q^{9} +11.0000 q^{11} +69.4222 q^{12} +71.2887 q^{13} -192.066 q^{14} +286.368 q^{16} +22.3593 q^{17} +50.2235 q^{18} +88.1755 q^{19} -103.254 q^{21} +61.3843 q^{22} -21.5477 q^{23} +253.474 q^{24} +397.819 q^{26} +27.0000 q^{27} -796.460 q^{28} +118.280 q^{29} -33.5268 q^{31} +922.115 q^{32} +33.0000 q^{33} +124.774 q^{34} +208.267 q^{36} -364.750 q^{37} +492.054 q^{38} +213.866 q^{39} +48.9166 q^{41} -576.199 q^{42} -95.8534 q^{43} +254.548 q^{44} -120.244 q^{46} +132.383 q^{47} +859.104 q^{48} +841.605 q^{49} +67.0780 q^{51} +1649.67 q^{52} -300.685 q^{53} +150.671 q^{54} -2908.03 q^{56} +264.526 q^{57} +660.050 q^{58} -654.281 q^{59} -772.721 q^{61} -187.092 q^{62} -309.763 q^{63} +2854.82 q^{64} +184.153 q^{66} +112.087 q^{67} +517.412 q^{68} -64.6430 q^{69} +548.159 q^{71} +760.421 q^{72} -559.178 q^{73} -2035.45 q^{74} +2040.45 q^{76} -378.599 q^{77} +1193.46 q^{78} +48.5332 q^{79} +81.0000 q^{81} +272.974 q^{82} -447.844 q^{83} -2389.38 q^{84} -534.899 q^{86} +354.841 q^{87} +929.403 q^{88} -552.419 q^{89} -2453.62 q^{91} -498.629 q^{92} -100.580 q^{93} +738.746 q^{94} +2766.34 q^{96} +413.909 q^{97} +4696.48 q^{98} +99.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 4 q^{2} + 15 q^{3} + 46 q^{4} + 12 q^{6} - 38 q^{7} + 72 q^{8} + 45 q^{9} + 55 q^{11} + 138 q^{12} + 43 q^{13} + 55 q^{14} + 634 q^{16} + 150 q^{17} + 36 q^{18} - 337 q^{19} - 114 q^{21} + 44 q^{22}+ \cdots + 495 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 5.58039 1.97297 0.986483 0.163865i \(-0.0523963\pi\)
0.986483 + 0.163865i \(0.0523963\pi\)
\(3\) 3.00000 0.577350
\(4\) 23.1407 2.89259
\(5\) 0 0
\(6\) 16.7412 1.13909
\(7\) −34.4181 −1.85840 −0.929201 0.369575i \(-0.879503\pi\)
−0.929201 + 0.369575i \(0.879503\pi\)
\(8\) 84.4912 3.73402
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) 11.0000 0.301511
\(12\) 69.4222 1.67004
\(13\) 71.2887 1.52092 0.760459 0.649386i \(-0.224974\pi\)
0.760459 + 0.649386i \(0.224974\pi\)
\(14\) −192.066 −3.66656
\(15\) 0 0
\(16\) 286.368 4.47450
\(17\) 22.3593 0.318996 0.159498 0.987198i \(-0.449012\pi\)
0.159498 + 0.987198i \(0.449012\pi\)
\(18\) 50.2235 0.657655
\(19\) 88.1755 1.06468 0.532338 0.846532i \(-0.321314\pi\)
0.532338 + 0.846532i \(0.321314\pi\)
\(20\) 0 0
\(21\) −103.254 −1.07295
\(22\) 61.3843 0.594871
\(23\) −21.5477 −0.195348 −0.0976738 0.995218i \(-0.531140\pi\)
−0.0976738 + 0.995218i \(0.531140\pi\)
\(24\) 253.474 2.15584
\(25\) 0 0
\(26\) 397.819 3.00072
\(27\) 27.0000 0.192450
\(28\) −796.460 −5.37560
\(29\) 118.280 0.757383 0.378691 0.925523i \(-0.376374\pi\)
0.378691 + 0.925523i \(0.376374\pi\)
\(30\) 0 0
\(31\) −33.5268 −0.194245 −0.0971223 0.995272i \(-0.530964\pi\)
−0.0971223 + 0.995272i \(0.530964\pi\)
\(32\) 922.115 5.09401
\(33\) 33.0000 0.174078
\(34\) 124.774 0.629369
\(35\) 0 0
\(36\) 208.267 0.964198
\(37\) −364.750 −1.62066 −0.810332 0.585970i \(-0.800713\pi\)
−0.810332 + 0.585970i \(0.800713\pi\)
\(38\) 492.054 2.10057
\(39\) 213.866 0.878102
\(40\) 0 0
\(41\) 48.9166 0.186329 0.0931645 0.995651i \(-0.470302\pi\)
0.0931645 + 0.995651i \(0.470302\pi\)
\(42\) −576.199 −2.11689
\(43\) −95.8534 −0.339942 −0.169971 0.985449i \(-0.554367\pi\)
−0.169971 + 0.985449i \(0.554367\pi\)
\(44\) 254.548 0.872149
\(45\) 0 0
\(46\) −120.244 −0.385414
\(47\) 132.383 0.410851 0.205425 0.978673i \(-0.434142\pi\)
0.205425 + 0.978673i \(0.434142\pi\)
\(48\) 859.104 2.58335
\(49\) 841.605 2.45366
\(50\) 0 0
\(51\) 67.0780 0.184173
\(52\) 1649.67 4.39939
\(53\) −300.685 −0.779288 −0.389644 0.920966i \(-0.627402\pi\)
−0.389644 + 0.920966i \(0.627402\pi\)
\(54\) 150.671 0.379697
\(55\) 0 0
\(56\) −2908.03 −6.93931
\(57\) 264.526 0.614691
\(58\) 660.050 1.49429
\(59\) −654.281 −1.44373 −0.721865 0.692033i \(-0.756715\pi\)
−0.721865 + 0.692033i \(0.756715\pi\)
\(60\) 0 0
\(61\) −772.721 −1.62191 −0.810957 0.585106i \(-0.801053\pi\)
−0.810957 + 0.585106i \(0.801053\pi\)
\(62\) −187.092 −0.383238
\(63\) −309.763 −0.619467
\(64\) 2854.82 5.57581
\(65\) 0 0
\(66\) 184.153 0.343449
\(67\) 112.087 0.204382 0.102191 0.994765i \(-0.467415\pi\)
0.102191 + 0.994765i \(0.467415\pi\)
\(68\) 517.412 0.922726
\(69\) −64.6430 −0.112784
\(70\) 0 0
\(71\) 548.159 0.916261 0.458130 0.888885i \(-0.348519\pi\)
0.458130 + 0.888885i \(0.348519\pi\)
\(72\) 760.421 1.24467
\(73\) −559.178 −0.896531 −0.448266 0.893900i \(-0.647958\pi\)
−0.448266 + 0.893900i \(0.647958\pi\)
\(74\) −2035.45 −3.19752
\(75\) 0 0
\(76\) 2040.45 3.07967
\(77\) −378.599 −0.560329
\(78\) 1193.46 1.73247
\(79\) 48.5332 0.0691192 0.0345596 0.999403i \(-0.488997\pi\)
0.0345596 + 0.999403i \(0.488997\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 272.974 0.367621
\(83\) −447.844 −0.592256 −0.296128 0.955148i \(-0.595696\pi\)
−0.296128 + 0.955148i \(0.595696\pi\)
\(84\) −2389.38 −3.10360
\(85\) 0 0
\(86\) −534.899 −0.670694
\(87\) 354.841 0.437275
\(88\) 929.403 1.12585
\(89\) −552.419 −0.657936 −0.328968 0.944341i \(-0.606701\pi\)
−0.328968 + 0.944341i \(0.606701\pi\)
\(90\) 0 0
\(91\) −2453.62 −2.82648
\(92\) −498.629 −0.565061
\(93\) −100.580 −0.112147
\(94\) 738.746 0.810594
\(95\) 0 0
\(96\) 2766.34 2.94103
\(97\) 413.909 0.433259 0.216630 0.976254i \(-0.430494\pi\)
0.216630 + 0.976254i \(0.430494\pi\)
\(98\) 4696.48 4.84098
\(99\) 99.0000 0.100504
\(100\) 0 0
\(101\) −439.536 −0.433025 −0.216512 0.976280i \(-0.569468\pi\)
−0.216512 + 0.976280i \(0.569468\pi\)
\(102\) 374.322 0.363366
\(103\) 1112.25 1.06401 0.532005 0.846741i \(-0.321439\pi\)
0.532005 + 0.846741i \(0.321439\pi\)
\(104\) 6023.27 5.67914
\(105\) 0 0
\(106\) −1677.94 −1.53751
\(107\) −863.930 −0.780554 −0.390277 0.920698i \(-0.627621\pi\)
−0.390277 + 0.920698i \(0.627621\pi\)
\(108\) 624.800 0.556680
\(109\) −1040.80 −0.914588 −0.457294 0.889316i \(-0.651181\pi\)
−0.457294 + 0.889316i \(0.651181\pi\)
\(110\) 0 0
\(111\) −1094.25 −0.935691
\(112\) −9856.24 −8.31542
\(113\) −1826.14 −1.52025 −0.760127 0.649774i \(-0.774863\pi\)
−0.760127 + 0.649774i \(0.774863\pi\)
\(114\) 1476.16 1.21276
\(115\) 0 0
\(116\) 2737.09 2.19080
\(117\) 641.598 0.506972
\(118\) −3651.14 −2.84843
\(119\) −769.566 −0.592823
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) −4312.08 −3.19998
\(123\) 146.750 0.107577
\(124\) −775.834 −0.561871
\(125\) 0 0
\(126\) −1728.60 −1.22219
\(127\) 574.281 0.401254 0.200627 0.979668i \(-0.435702\pi\)
0.200627 + 0.979668i \(0.435702\pi\)
\(128\) 8554.06 5.90687
\(129\) −287.560 −0.196266
\(130\) 0 0
\(131\) −2684.56 −1.79047 −0.895234 0.445596i \(-0.852992\pi\)
−0.895234 + 0.445596i \(0.852992\pi\)
\(132\) 763.644 0.503536
\(133\) −3034.83 −1.97860
\(134\) 625.489 0.403239
\(135\) 0 0
\(136\) 1889.17 1.19114
\(137\) −3013.45 −1.87925 −0.939623 0.342212i \(-0.888824\pi\)
−0.939623 + 0.342212i \(0.888824\pi\)
\(138\) −360.733 −0.222519
\(139\) 277.411 0.169278 0.0846391 0.996412i \(-0.473026\pi\)
0.0846391 + 0.996412i \(0.473026\pi\)
\(140\) 0 0
\(141\) 397.148 0.237205
\(142\) 3058.94 1.80775
\(143\) 784.176 0.458574
\(144\) 2577.31 1.49150
\(145\) 0 0
\(146\) −3120.43 −1.76883
\(147\) 2524.81 1.41662
\(148\) −8440.59 −4.68792
\(149\) 1594.62 0.876755 0.438378 0.898791i \(-0.355553\pi\)
0.438378 + 0.898791i \(0.355553\pi\)
\(150\) 0 0
\(151\) 2213.29 1.19281 0.596407 0.802682i \(-0.296594\pi\)
0.596407 + 0.802682i \(0.296594\pi\)
\(152\) 7450.06 3.97552
\(153\) 201.234 0.106332
\(154\) −2112.73 −1.10551
\(155\) 0 0
\(156\) 4949.02 2.53999
\(157\) −1145.63 −0.582367 −0.291183 0.956667i \(-0.594049\pi\)
−0.291183 + 0.956667i \(0.594049\pi\)
\(158\) 270.834 0.136370
\(159\) −902.055 −0.449922
\(160\) 0 0
\(161\) 741.629 0.363034
\(162\) 452.012 0.219218
\(163\) −594.732 −0.285785 −0.142893 0.989738i \(-0.545640\pi\)
−0.142893 + 0.989738i \(0.545640\pi\)
\(164\) 1131.97 0.538974
\(165\) 0 0
\(166\) −2499.14 −1.16850
\(167\) 2927.43 1.35648 0.678239 0.734842i \(-0.262744\pi\)
0.678239 + 0.734842i \(0.262744\pi\)
\(168\) −8724.08 −4.00641
\(169\) 2885.08 1.31319
\(170\) 0 0
\(171\) 793.579 0.354892
\(172\) −2218.12 −0.983314
\(173\) −1274.26 −0.560000 −0.280000 0.960000i \(-0.590334\pi\)
−0.280000 + 0.960000i \(0.590334\pi\)
\(174\) 1980.15 0.862729
\(175\) 0 0
\(176\) 3150.05 1.34911
\(177\) −1962.84 −0.833538
\(178\) −3082.71 −1.29809
\(179\) 1626.12 0.679005 0.339503 0.940605i \(-0.389741\pi\)
0.339503 + 0.940605i \(0.389741\pi\)
\(180\) 0 0
\(181\) 1638.75 0.672970 0.336485 0.941689i \(-0.390762\pi\)
0.336485 + 0.941689i \(0.390762\pi\)
\(182\) −13692.2 −5.57654
\(183\) −2318.16 −0.936412
\(184\) −1820.59 −0.729432
\(185\) 0 0
\(186\) −561.277 −0.221263
\(187\) 245.953 0.0961810
\(188\) 3063.43 1.18842
\(189\) −929.288 −0.357650
\(190\) 0 0
\(191\) 3460.92 1.31112 0.655559 0.755144i \(-0.272433\pi\)
0.655559 + 0.755144i \(0.272433\pi\)
\(192\) 8564.45 3.21920
\(193\) 1725.78 0.643650 0.321825 0.946799i \(-0.395704\pi\)
0.321825 + 0.946799i \(0.395704\pi\)
\(194\) 2309.78 0.854805
\(195\) 0 0
\(196\) 19475.4 7.09743
\(197\) −405.275 −0.146572 −0.0732859 0.997311i \(-0.523349\pi\)
−0.0732859 + 0.997311i \(0.523349\pi\)
\(198\) 552.459 0.198290
\(199\) 3801.45 1.35416 0.677079 0.735910i \(-0.263245\pi\)
0.677079 + 0.735910i \(0.263245\pi\)
\(200\) 0 0
\(201\) 336.261 0.118000
\(202\) −2452.78 −0.854343
\(203\) −4070.98 −1.40752
\(204\) 1552.24 0.532736
\(205\) 0 0
\(206\) 6206.78 2.09926
\(207\) −193.929 −0.0651159
\(208\) 20414.8 6.80534
\(209\) 969.930 0.321012
\(210\) 0 0
\(211\) −1538.57 −0.501987 −0.250993 0.967989i \(-0.580757\pi\)
−0.250993 + 0.967989i \(0.580757\pi\)
\(212\) −6958.07 −2.25416
\(213\) 1644.48 0.529003
\(214\) −4821.07 −1.54001
\(215\) 0 0
\(216\) 2281.26 0.718612
\(217\) 1153.93 0.360985
\(218\) −5808.04 −1.80445
\(219\) −1677.53 −0.517613
\(220\) 0 0
\(221\) 1593.97 0.485167
\(222\) −6106.35 −1.84609
\(223\) 2558.19 0.768201 0.384101 0.923291i \(-0.374512\pi\)
0.384101 + 0.923291i \(0.374512\pi\)
\(224\) −31737.4 −9.46672
\(225\) 0 0
\(226\) −10190.6 −2.99941
\(227\) 5834.09 1.70582 0.852912 0.522055i \(-0.174834\pi\)
0.852912 + 0.522055i \(0.174834\pi\)
\(228\) 6121.34 1.77805
\(229\) −1308.94 −0.377718 −0.188859 0.982004i \(-0.560479\pi\)
−0.188859 + 0.982004i \(0.560479\pi\)
\(230\) 0 0
\(231\) −1135.80 −0.323506
\(232\) 9993.65 2.82808
\(233\) −2360.58 −0.663719 −0.331859 0.943329i \(-0.607676\pi\)
−0.331859 + 0.943329i \(0.607676\pi\)
\(234\) 3580.37 1.00024
\(235\) 0 0
\(236\) −15140.5 −4.17613
\(237\) 145.600 0.0399060
\(238\) −4294.48 −1.16962
\(239\) 5766.38 1.56065 0.780327 0.625372i \(-0.215053\pi\)
0.780327 + 0.625372i \(0.215053\pi\)
\(240\) 0 0
\(241\) −2644.73 −0.706896 −0.353448 0.935454i \(-0.614991\pi\)
−0.353448 + 0.935454i \(0.614991\pi\)
\(242\) 675.227 0.179360
\(243\) 243.000 0.0641500
\(244\) −17881.3 −4.69154
\(245\) 0 0
\(246\) 818.921 0.212246
\(247\) 6285.92 1.61928
\(248\) −2832.72 −0.725313
\(249\) −1343.53 −0.341939
\(250\) 0 0
\(251\) −2435.59 −0.612483 −0.306241 0.951954i \(-0.599071\pi\)
−0.306241 + 0.951954i \(0.599071\pi\)
\(252\) −7168.14 −1.79187
\(253\) −237.024 −0.0588995
\(254\) 3204.71 0.791660
\(255\) 0 0
\(256\) 24896.5 6.07824
\(257\) −5522.51 −1.34041 −0.670204 0.742177i \(-0.733793\pi\)
−0.670204 + 0.742177i \(0.733793\pi\)
\(258\) −1604.70 −0.387225
\(259\) 12554.0 3.01185
\(260\) 0 0
\(261\) 1064.52 0.252461
\(262\) −14980.9 −3.53253
\(263\) 2699.88 0.633011 0.316505 0.948591i \(-0.397490\pi\)
0.316505 + 0.948591i \(0.397490\pi\)
\(264\) 2788.21 0.650009
\(265\) 0 0
\(266\) −16935.5 −3.90370
\(267\) −1657.26 −0.379860
\(268\) 2593.77 0.591194
\(269\) 1593.94 0.361279 0.180639 0.983549i \(-0.442183\pi\)
0.180639 + 0.983549i \(0.442183\pi\)
\(270\) 0 0
\(271\) 1826.60 0.409440 0.204720 0.978821i \(-0.434372\pi\)
0.204720 + 0.978821i \(0.434372\pi\)
\(272\) 6403.00 1.42735
\(273\) −7360.86 −1.63187
\(274\) −16816.2 −3.70769
\(275\) 0 0
\(276\) −1495.89 −0.326238
\(277\) 2702.41 0.586181 0.293091 0.956085i \(-0.405316\pi\)
0.293091 + 0.956085i \(0.405316\pi\)
\(278\) 1548.06 0.333980
\(279\) −301.741 −0.0647482
\(280\) 0 0
\(281\) −2961.96 −0.628810 −0.314405 0.949289i \(-0.601805\pi\)
−0.314405 + 0.949289i \(0.601805\pi\)
\(282\) 2216.24 0.467997
\(283\) −3504.45 −0.736105 −0.368052 0.929805i \(-0.619975\pi\)
−0.368052 + 0.929805i \(0.619975\pi\)
\(284\) 12684.8 2.65037
\(285\) 0 0
\(286\) 4376.01 0.904750
\(287\) −1683.62 −0.346274
\(288\) 8299.03 1.69800
\(289\) −4413.06 −0.898241
\(290\) 0 0
\(291\) 1241.73 0.250142
\(292\) −12939.8 −2.59330
\(293\) −1004.75 −0.200335 −0.100168 0.994971i \(-0.531938\pi\)
−0.100168 + 0.994971i \(0.531938\pi\)
\(294\) 14089.4 2.79494
\(295\) 0 0
\(296\) −30818.2 −6.05159
\(297\) 297.000 0.0580259
\(298\) 8898.61 1.72981
\(299\) −1536.10 −0.297108
\(300\) 0 0
\(301\) 3299.09 0.631749
\(302\) 12351.0 2.35338
\(303\) −1318.61 −0.250007
\(304\) 25250.6 4.76389
\(305\) 0 0
\(306\) 1122.96 0.209790
\(307\) −6690.01 −1.24371 −0.621856 0.783132i \(-0.713621\pi\)
−0.621856 + 0.783132i \(0.713621\pi\)
\(308\) −8761.06 −1.62080
\(309\) 3336.74 0.614307
\(310\) 0 0
\(311\) −1700.37 −0.310030 −0.155015 0.987912i \(-0.549543\pi\)
−0.155015 + 0.987912i \(0.549543\pi\)
\(312\) 18069.8 3.27885
\(313\) −439.046 −0.0792855 −0.0396428 0.999214i \(-0.512622\pi\)
−0.0396428 + 0.999214i \(0.512622\pi\)
\(314\) −6393.09 −1.14899
\(315\) 0 0
\(316\) 1123.10 0.199934
\(317\) 5152.91 0.912985 0.456492 0.889727i \(-0.349106\pi\)
0.456492 + 0.889727i \(0.349106\pi\)
\(318\) −5033.82 −0.887681
\(319\) 1301.08 0.228360
\(320\) 0 0
\(321\) −2591.79 −0.450653
\(322\) 4138.58 0.716255
\(323\) 1971.55 0.339628
\(324\) 1874.40 0.321399
\(325\) 0 0
\(326\) −3318.84 −0.563844
\(327\) −3122.39 −0.528038
\(328\) 4133.02 0.695756
\(329\) −4556.36 −0.763526
\(330\) 0 0
\(331\) −3246.99 −0.539187 −0.269593 0.962974i \(-0.586889\pi\)
−0.269593 + 0.962974i \(0.586889\pi\)
\(332\) −10363.4 −1.71316
\(333\) −3282.75 −0.540222
\(334\) 16336.2 2.67628
\(335\) 0 0
\(336\) −29568.7 −4.80091
\(337\) −1338.15 −0.216301 −0.108151 0.994135i \(-0.534493\pi\)
−0.108151 + 0.994135i \(0.534493\pi\)
\(338\) 16099.9 2.59088
\(339\) −5478.42 −0.877719
\(340\) 0 0
\(341\) −368.794 −0.0585670
\(342\) 4428.48 0.700190
\(343\) −17161.0 −2.70148
\(344\) −8098.77 −1.26935
\(345\) 0 0
\(346\) −7110.85 −1.10486
\(347\) −3421.40 −0.529309 −0.264655 0.964343i \(-0.585258\pi\)
−0.264655 + 0.964343i \(0.585258\pi\)
\(348\) 8211.28 1.26486
\(349\) −7537.81 −1.15613 −0.578066 0.815990i \(-0.696192\pi\)
−0.578066 + 0.815990i \(0.696192\pi\)
\(350\) 0 0
\(351\) 1924.79 0.292701
\(352\) 10143.3 1.53590
\(353\) −5803.16 −0.874988 −0.437494 0.899221i \(-0.644134\pi\)
−0.437494 + 0.899221i \(0.644134\pi\)
\(354\) −10953.4 −1.64454
\(355\) 0 0
\(356\) −12783.4 −1.90314
\(357\) −2308.70 −0.342267
\(358\) 9074.39 1.33965
\(359\) 5558.49 0.817175 0.408587 0.912719i \(-0.366022\pi\)
0.408587 + 0.912719i \(0.366022\pi\)
\(360\) 0 0
\(361\) 915.919 0.133535
\(362\) 9144.88 1.32775
\(363\) 363.000 0.0524864
\(364\) −56778.6 −8.17584
\(365\) 0 0
\(366\) −12936.2 −1.84751
\(367\) −2853.78 −0.405902 −0.202951 0.979189i \(-0.565053\pi\)
−0.202951 + 0.979189i \(0.565053\pi\)
\(368\) −6170.56 −0.874083
\(369\) 440.249 0.0621097
\(370\) 0 0
\(371\) 10349.0 1.44823
\(372\) −2327.50 −0.324396
\(373\) −7500.89 −1.04124 −0.520618 0.853789i \(-0.674299\pi\)
−0.520618 + 0.853789i \(0.674299\pi\)
\(374\) 1372.51 0.189762
\(375\) 0 0
\(376\) 11185.2 1.53412
\(377\) 8432.05 1.15192
\(378\) −5185.79 −0.705630
\(379\) 12965.1 1.75718 0.878591 0.477575i \(-0.158484\pi\)
0.878591 + 0.477575i \(0.158484\pi\)
\(380\) 0 0
\(381\) 1722.84 0.231664
\(382\) 19313.3 2.58679
\(383\) −4928.95 −0.657591 −0.328796 0.944401i \(-0.606643\pi\)
−0.328796 + 0.944401i \(0.606643\pi\)
\(384\) 25662.2 3.41033
\(385\) 0 0
\(386\) 9630.53 1.26990
\(387\) −862.681 −0.113314
\(388\) 9578.17 1.25324
\(389\) 13182.9 1.71825 0.859123 0.511769i \(-0.171010\pi\)
0.859123 + 0.511769i \(0.171010\pi\)
\(390\) 0 0
\(391\) −481.791 −0.0623152
\(392\) 71108.2 9.16201
\(393\) −8053.69 −1.03373
\(394\) −2261.59 −0.289181
\(395\) 0 0
\(396\) 2290.93 0.290716
\(397\) −13815.5 −1.74655 −0.873277 0.487223i \(-0.838010\pi\)
−0.873277 + 0.487223i \(0.838010\pi\)
\(398\) 21213.6 2.67171
\(399\) −9104.50 −1.14234
\(400\) 0 0
\(401\) 4812.84 0.599357 0.299678 0.954040i \(-0.403121\pi\)
0.299678 + 0.954040i \(0.403121\pi\)
\(402\) 1876.47 0.232810
\(403\) −2390.08 −0.295430
\(404\) −10171.2 −1.25256
\(405\) 0 0
\(406\) −22717.7 −2.77699
\(407\) −4012.25 −0.488649
\(408\) 5667.51 0.687704
\(409\) −9776.38 −1.18193 −0.590967 0.806696i \(-0.701254\pi\)
−0.590967 + 0.806696i \(0.701254\pi\)
\(410\) 0 0
\(411\) −9040.36 −1.08498
\(412\) 25738.2 3.07775
\(413\) 22519.1 2.68303
\(414\) −1082.20 −0.128471
\(415\) 0 0
\(416\) 65736.4 7.74757
\(417\) 832.233 0.0977329
\(418\) 5412.59 0.633345
\(419\) 14077.8 1.64139 0.820697 0.571363i \(-0.193585\pi\)
0.820697 + 0.571363i \(0.193585\pi\)
\(420\) 0 0
\(421\) 17100.8 1.97967 0.989837 0.142204i \(-0.0454188\pi\)
0.989837 + 0.142204i \(0.0454188\pi\)
\(422\) −8585.79 −0.990402
\(423\) 1191.44 0.136950
\(424\) −25405.2 −2.90988
\(425\) 0 0
\(426\) 9176.82 1.04371
\(427\) 26595.6 3.01417
\(428\) −19992.0 −2.25782
\(429\) 2352.53 0.264758
\(430\) 0 0
\(431\) −4374.76 −0.488920 −0.244460 0.969659i \(-0.578611\pi\)
−0.244460 + 0.969659i \(0.578611\pi\)
\(432\) 7731.93 0.861118
\(433\) 5388.62 0.598061 0.299031 0.954244i \(-0.403337\pi\)
0.299031 + 0.954244i \(0.403337\pi\)
\(434\) 6439.36 0.712210
\(435\) 0 0
\(436\) −24084.8 −2.64553
\(437\) −1899.98 −0.207982
\(438\) −9361.29 −1.02123
\(439\) 5378.90 0.584786 0.292393 0.956298i \(-0.405549\pi\)
0.292393 + 0.956298i \(0.405549\pi\)
\(440\) 0 0
\(441\) 7574.44 0.817886
\(442\) 8894.96 0.957218
\(443\) 6872.36 0.737055 0.368528 0.929617i \(-0.379862\pi\)
0.368528 + 0.929617i \(0.379862\pi\)
\(444\) −25321.8 −2.70657
\(445\) 0 0
\(446\) 14275.7 1.51563
\(447\) 4783.87 0.506195
\(448\) −98257.3 −10.3621
\(449\) 8196.97 0.861557 0.430778 0.902458i \(-0.358239\pi\)
0.430778 + 0.902458i \(0.358239\pi\)
\(450\) 0 0
\(451\) 538.083 0.0561803
\(452\) −42258.2 −4.39748
\(453\) 6639.87 0.688672
\(454\) 32556.5 3.36553
\(455\) 0 0
\(456\) 22350.2 2.29527
\(457\) 3727.32 0.381525 0.190762 0.981636i \(-0.438904\pi\)
0.190762 + 0.981636i \(0.438904\pi\)
\(458\) −7304.42 −0.745225
\(459\) 603.702 0.0613909
\(460\) 0 0
\(461\) 5801.06 0.586079 0.293039 0.956100i \(-0.405333\pi\)
0.293039 + 0.956100i \(0.405333\pi\)
\(462\) −6338.19 −0.638267
\(463\) −12402.6 −1.24492 −0.622461 0.782651i \(-0.713867\pi\)
−0.622461 + 0.782651i \(0.713867\pi\)
\(464\) 33871.7 3.38891
\(465\) 0 0
\(466\) −13172.9 −1.30949
\(467\) −11343.7 −1.12404 −0.562018 0.827125i \(-0.689975\pi\)
−0.562018 + 0.827125i \(0.689975\pi\)
\(468\) 14847.1 1.46646
\(469\) −3857.82 −0.379824
\(470\) 0 0
\(471\) −3436.90 −0.336230
\(472\) −55281.0 −5.39092
\(473\) −1054.39 −0.102496
\(474\) 812.503 0.0787331
\(475\) 0 0
\(476\) −17808.3 −1.71480
\(477\) −2706.16 −0.259763
\(478\) 32178.6 3.07912
\(479\) −2383.99 −0.227405 −0.113703 0.993515i \(-0.536271\pi\)
−0.113703 + 0.993515i \(0.536271\pi\)
\(480\) 0 0
\(481\) −26002.6 −2.46490
\(482\) −14758.6 −1.39468
\(483\) 2224.89 0.209598
\(484\) 2800.03 0.262963
\(485\) 0 0
\(486\) 1356.03 0.126566
\(487\) −11186.7 −1.04090 −0.520451 0.853891i \(-0.674236\pi\)
−0.520451 + 0.853891i \(0.674236\pi\)
\(488\) −65288.1 −6.05626
\(489\) −1784.20 −0.164998
\(490\) 0 0
\(491\) −9326.27 −0.857207 −0.428604 0.903493i \(-0.640994\pi\)
−0.428604 + 0.903493i \(0.640994\pi\)
\(492\) 3395.90 0.311177
\(493\) 2644.67 0.241602
\(494\) 35077.9 3.19479
\(495\) 0 0
\(496\) −9600.99 −0.869148
\(497\) −18866.6 −1.70278
\(498\) −7497.43 −0.674635
\(499\) 19118.7 1.71517 0.857587 0.514339i \(-0.171963\pi\)
0.857587 + 0.514339i \(0.171963\pi\)
\(500\) 0 0
\(501\) 8782.30 0.783163
\(502\) −13591.5 −1.20841
\(503\) −8523.10 −0.755519 −0.377760 0.925904i \(-0.623305\pi\)
−0.377760 + 0.925904i \(0.623305\pi\)
\(504\) −26172.2 −2.31310
\(505\) 0 0
\(506\) −1322.69 −0.116207
\(507\) 8655.24 0.758171
\(508\) 13289.3 1.16066
\(509\) −10064.2 −0.876397 −0.438199 0.898878i \(-0.644383\pi\)
−0.438199 + 0.898878i \(0.644383\pi\)
\(510\) 0 0
\(511\) 19245.8 1.66612
\(512\) 70499.5 6.08529
\(513\) 2380.74 0.204897
\(514\) −30817.7 −2.64458
\(515\) 0 0
\(516\) −6654.36 −0.567716
\(517\) 1456.21 0.123876
\(518\) 70056.3 5.94227
\(519\) −3822.77 −0.323316
\(520\) 0 0
\(521\) 20495.7 1.72348 0.861742 0.507347i \(-0.169374\pi\)
0.861742 + 0.507347i \(0.169374\pi\)
\(522\) 5940.45 0.498097
\(523\) −8079.94 −0.675547 −0.337773 0.941227i \(-0.609674\pi\)
−0.337773 + 0.941227i \(0.609674\pi\)
\(524\) −62122.8 −5.17910
\(525\) 0 0
\(526\) 15066.4 1.24891
\(527\) −749.637 −0.0619633
\(528\) 9450.14 0.778910
\(529\) −11702.7 −0.961839
\(530\) 0 0
\(531\) −5888.53 −0.481244
\(532\) −70228.3 −5.72327
\(533\) 3487.20 0.283391
\(534\) −9248.14 −0.749450
\(535\) 0 0
\(536\) 9470.36 0.763167
\(537\) 4878.36 0.392024
\(538\) 8894.78 0.712791
\(539\) 9257.65 0.739806
\(540\) 0 0
\(541\) −17460.5 −1.38759 −0.693793 0.720174i \(-0.744062\pi\)
−0.693793 + 0.720174i \(0.744062\pi\)
\(542\) 10193.2 0.807811
\(543\) 4916.26 0.388539
\(544\) 20617.9 1.62497
\(545\) 0 0
\(546\) −41076.5 −3.21962
\(547\) 6652.51 0.520001 0.260001 0.965608i \(-0.416277\pi\)
0.260001 + 0.965608i \(0.416277\pi\)
\(548\) −69733.5 −5.43589
\(549\) −6954.49 −0.540638
\(550\) 0 0
\(551\) 10429.4 0.806368
\(552\) −5461.76 −0.421138
\(553\) −1670.42 −0.128451
\(554\) 15080.5 1.15652
\(555\) 0 0
\(556\) 6419.49 0.489653
\(557\) −5887.04 −0.447831 −0.223916 0.974609i \(-0.571884\pi\)
−0.223916 + 0.974609i \(0.571884\pi\)
\(558\) −1683.83 −0.127746
\(559\) −6833.26 −0.517024
\(560\) 0 0
\(561\) 737.858 0.0555301
\(562\) −16528.9 −1.24062
\(563\) 3208.71 0.240197 0.120099 0.992762i \(-0.461679\pi\)
0.120099 + 0.992762i \(0.461679\pi\)
\(564\) 9190.29 0.686137
\(565\) 0 0
\(566\) −19556.2 −1.45231
\(567\) −2787.86 −0.206489
\(568\) 46314.6 3.42134
\(569\) 17083.4 1.25865 0.629326 0.777142i \(-0.283331\pi\)
0.629326 + 0.777142i \(0.283331\pi\)
\(570\) 0 0
\(571\) −16469.8 −1.20707 −0.603536 0.797336i \(-0.706242\pi\)
−0.603536 + 0.797336i \(0.706242\pi\)
\(572\) 18146.4 1.32647
\(573\) 10382.8 0.756974
\(574\) −9395.23 −0.683187
\(575\) 0 0
\(576\) 25693.3 1.85860
\(577\) 12436.4 0.897287 0.448643 0.893711i \(-0.351907\pi\)
0.448643 + 0.893711i \(0.351907\pi\)
\(578\) −24626.6 −1.77220
\(579\) 5177.34 0.371611
\(580\) 0 0
\(581\) 15413.9 1.10065
\(582\) 6929.33 0.493522
\(583\) −3307.53 −0.234964
\(584\) −47245.6 −3.34767
\(585\) 0 0
\(586\) −5606.91 −0.395255
\(587\) −15445.5 −1.08604 −0.543019 0.839720i \(-0.682719\pi\)
−0.543019 + 0.839720i \(0.682719\pi\)
\(588\) 58426.1 4.09770
\(589\) −2956.24 −0.206808
\(590\) 0 0
\(591\) −1215.83 −0.0846233
\(592\) −104453. −7.25166
\(593\) −22999.6 −1.59272 −0.796360 0.604824i \(-0.793244\pi\)
−0.796360 + 0.604824i \(0.793244\pi\)
\(594\) 1657.38 0.114483
\(595\) 0 0
\(596\) 36900.7 2.53610
\(597\) 11404.3 0.781824
\(598\) −8572.06 −0.586183
\(599\) 5960.87 0.406602 0.203301 0.979116i \(-0.434833\pi\)
0.203301 + 0.979116i \(0.434833\pi\)
\(600\) 0 0
\(601\) −4282.39 −0.290653 −0.145326 0.989384i \(-0.546423\pi\)
−0.145326 + 0.989384i \(0.546423\pi\)
\(602\) 18410.2 1.24642
\(603\) 1008.78 0.0681273
\(604\) 51217.2 3.45033
\(605\) 0 0
\(606\) −7358.35 −0.493255
\(607\) −8197.97 −0.548180 −0.274090 0.961704i \(-0.588377\pi\)
−0.274090 + 0.961704i \(0.588377\pi\)
\(608\) 81307.9 5.42347
\(609\) −12212.9 −0.812633
\(610\) 0 0
\(611\) 9437.38 0.624870
\(612\) 4656.71 0.307575
\(613\) 4185.87 0.275801 0.137900 0.990446i \(-0.455965\pi\)
0.137900 + 0.990446i \(0.455965\pi\)
\(614\) −37332.9 −2.45380
\(615\) 0 0
\(616\) −31988.3 −2.09228
\(617\) 21993.7 1.43506 0.717530 0.696528i \(-0.245273\pi\)
0.717530 + 0.696528i \(0.245273\pi\)
\(618\) 18620.3 1.21201
\(619\) −25378.3 −1.64788 −0.823941 0.566676i \(-0.808229\pi\)
−0.823941 + 0.566676i \(0.808229\pi\)
\(620\) 0 0
\(621\) −581.787 −0.0375947
\(622\) −9488.75 −0.611679
\(623\) 19013.2 1.22271
\(624\) 61244.4 3.92907
\(625\) 0 0
\(626\) −2450.05 −0.156428
\(627\) 2909.79 0.185336
\(628\) −26510.8 −1.68455
\(629\) −8155.58 −0.516986
\(630\) 0 0
\(631\) 17172.2 1.08338 0.541691 0.840578i \(-0.317784\pi\)
0.541691 + 0.840578i \(0.317784\pi\)
\(632\) 4100.63 0.258092
\(633\) −4615.70 −0.289822
\(634\) 28755.2 1.80129
\(635\) 0 0
\(636\) −20874.2 −1.30144
\(637\) 59996.9 3.73181
\(638\) 7260.55 0.450545
\(639\) 4933.43 0.305420
\(640\) 0 0
\(641\) 31171.2 1.92073 0.960364 0.278749i \(-0.0899198\pi\)
0.960364 + 0.278749i \(0.0899198\pi\)
\(642\) −14463.2 −0.889123
\(643\) 20847.3 1.27860 0.639298 0.768959i \(-0.279225\pi\)
0.639298 + 0.768959i \(0.279225\pi\)
\(644\) 17161.8 1.05011
\(645\) 0 0
\(646\) 11002.0 0.670074
\(647\) −5380.69 −0.326950 −0.163475 0.986547i \(-0.552270\pi\)
−0.163475 + 0.986547i \(0.552270\pi\)
\(648\) 6843.79 0.414891
\(649\) −7197.09 −0.435301
\(650\) 0 0
\(651\) 3461.78 0.208415
\(652\) −13762.5 −0.826660
\(653\) 26506.6 1.58849 0.794245 0.607597i \(-0.207867\pi\)
0.794245 + 0.607597i \(0.207867\pi\)
\(654\) −17424.1 −1.04180
\(655\) 0 0
\(656\) 14008.1 0.833729
\(657\) −5032.60 −0.298844
\(658\) −25426.2 −1.50641
\(659\) −25165.6 −1.48758 −0.743789 0.668414i \(-0.766973\pi\)
−0.743789 + 0.668414i \(0.766973\pi\)
\(660\) 0 0
\(661\) 2365.09 0.139170 0.0695849 0.997576i \(-0.477833\pi\)
0.0695849 + 0.997576i \(0.477833\pi\)
\(662\) −18119.5 −1.06380
\(663\) 4781.91 0.280111
\(664\) −37838.9 −2.21150
\(665\) 0 0
\(666\) −18319.0 −1.06584
\(667\) −2548.66 −0.147953
\(668\) 67743.0 3.92374
\(669\) 7674.56 0.443521
\(670\) 0 0
\(671\) −8499.93 −0.489025
\(672\) −95212.3 −5.46561
\(673\) 9349.93 0.535532 0.267766 0.963484i \(-0.413715\pi\)
0.267766 + 0.963484i \(0.413715\pi\)
\(674\) −7467.38 −0.426755
\(675\) 0 0
\(676\) 66762.9 3.79852
\(677\) 767.511 0.0435714 0.0217857 0.999763i \(-0.493065\pi\)
0.0217857 + 0.999763i \(0.493065\pi\)
\(678\) −30571.7 −1.73171
\(679\) −14246.0 −0.805170
\(680\) 0 0
\(681\) 17502.3 0.984858
\(682\) −2058.02 −0.115551
\(683\) 6514.91 0.364987 0.182494 0.983207i \(-0.441583\pi\)
0.182494 + 0.983207i \(0.441583\pi\)
\(684\) 18364.0 1.02656
\(685\) 0 0
\(686\) −95765.1 −5.32993
\(687\) −3926.83 −0.218076
\(688\) −27449.3 −1.52107
\(689\) −21435.4 −1.18523
\(690\) 0 0
\(691\) 30296.0 1.66789 0.833946 0.551846i \(-0.186076\pi\)
0.833946 + 0.551846i \(0.186076\pi\)
\(692\) −29487.2 −1.61985
\(693\) −3407.39 −0.186776
\(694\) −19092.7 −1.04431
\(695\) 0 0
\(696\) 29980.9 1.63279
\(697\) 1093.74 0.0594383
\(698\) −42063.9 −2.28101
\(699\) −7081.73 −0.383198
\(700\) 0 0
\(701\) 24513.3 1.32076 0.660381 0.750931i \(-0.270395\pi\)
0.660381 + 0.750931i \(0.270395\pi\)
\(702\) 10741.1 0.577488
\(703\) −32162.1 −1.72548
\(704\) 31403.0 1.68117
\(705\) 0 0
\(706\) −32383.9 −1.72632
\(707\) 15128.0 0.804734
\(708\) −45421.6 −2.41109
\(709\) −36554.1 −1.93628 −0.968138 0.250419i \(-0.919432\pi\)
−0.968138 + 0.250419i \(0.919432\pi\)
\(710\) 0 0
\(711\) 436.799 0.0230397
\(712\) −46674.6 −2.45675
\(713\) 722.423 0.0379452
\(714\) −12883.4 −0.675280
\(715\) 0 0
\(716\) 37629.6 1.96409
\(717\) 17299.1 0.901044
\(718\) 31018.5 1.61226
\(719\) −24860.8 −1.28950 −0.644752 0.764392i \(-0.723039\pi\)
−0.644752 + 0.764392i \(0.723039\pi\)
\(720\) 0 0
\(721\) −38281.5 −1.97736
\(722\) 5111.18 0.263461
\(723\) −7934.18 −0.408126
\(724\) 37922.0 1.94663
\(725\) 0 0
\(726\) 2025.68 0.103554
\(727\) 11414.7 0.582324 0.291162 0.956674i \(-0.405958\pi\)
0.291162 + 0.956674i \(0.405958\pi\)
\(728\) −207309. −10.5541
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −2143.22 −0.108440
\(732\) −53644.0 −2.70866
\(733\) −11746.4 −0.591902 −0.295951 0.955203i \(-0.595636\pi\)
−0.295951 + 0.955203i \(0.595636\pi\)
\(734\) −15925.2 −0.800831
\(735\) 0 0
\(736\) −19869.4 −0.995103
\(737\) 1232.96 0.0616235
\(738\) 2456.76 0.122540
\(739\) −5642.98 −0.280894 −0.140447 0.990088i \(-0.544854\pi\)
−0.140447 + 0.990088i \(0.544854\pi\)
\(740\) 0 0
\(741\) 18857.7 0.934894
\(742\) 57751.5 2.85731
\(743\) 3718.47 0.183604 0.0918018 0.995777i \(-0.470737\pi\)
0.0918018 + 0.995777i \(0.470737\pi\)
\(744\) −8498.15 −0.418760
\(745\) 0 0
\(746\) −41857.9 −2.05432
\(747\) −4030.60 −0.197419
\(748\) 5691.53 0.278212
\(749\) 29734.8 1.45058
\(750\) 0 0
\(751\) −11732.6 −0.570080 −0.285040 0.958516i \(-0.592007\pi\)
−0.285040 + 0.958516i \(0.592007\pi\)
\(752\) 37910.1 1.83835
\(753\) −7306.77 −0.353617
\(754\) 47054.1 2.27269
\(755\) 0 0
\(756\) −21504.4 −1.03453
\(757\) −11048.3 −0.530457 −0.265229 0.964186i \(-0.585447\pi\)
−0.265229 + 0.964186i \(0.585447\pi\)
\(758\) 72350.2 3.46686
\(759\) −711.073 −0.0340057
\(760\) 0 0
\(761\) 16924.6 0.806198 0.403099 0.915156i \(-0.367933\pi\)
0.403099 + 0.915156i \(0.367933\pi\)
\(762\) 9614.14 0.457065
\(763\) 35822.2 1.69967
\(764\) 80088.3 3.79253
\(765\) 0 0
\(766\) −27505.4 −1.29740
\(767\) −46642.8 −2.19580
\(768\) 74689.4 3.50927
\(769\) 26448.0 1.24023 0.620116 0.784510i \(-0.287086\pi\)
0.620116 + 0.784510i \(0.287086\pi\)
\(770\) 0 0
\(771\) −16567.5 −0.773884
\(772\) 39935.8 1.86182
\(773\) 33612.4 1.56398 0.781988 0.623294i \(-0.214206\pi\)
0.781988 + 0.623294i \(0.214206\pi\)
\(774\) −4814.09 −0.223565
\(775\) 0 0
\(776\) 34971.7 1.61780
\(777\) 37662.0 1.73889
\(778\) 73565.5 3.39004
\(779\) 4313.25 0.198380
\(780\) 0 0
\(781\) 6029.75 0.276263
\(782\) −2688.58 −0.122946
\(783\) 3193.57 0.145758
\(784\) 241009. 10.9789
\(785\) 0 0
\(786\) −44942.7 −2.03951
\(787\) 19267.2 0.872684 0.436342 0.899781i \(-0.356274\pi\)
0.436342 + 0.899781i \(0.356274\pi\)
\(788\) −9378.37 −0.423973
\(789\) 8099.64 0.365469
\(790\) 0 0
\(791\) 62852.2 2.82524
\(792\) 8364.63 0.375283
\(793\) −55086.3 −2.46680
\(794\) −77096.1 −3.44589
\(795\) 0 0
\(796\) 87968.3 3.91703
\(797\) 31120.9 1.38314 0.691568 0.722312i \(-0.256920\pi\)
0.691568 + 0.722312i \(0.256920\pi\)
\(798\) −50806.6 −2.25380
\(799\) 2959.99 0.131060
\(800\) 0 0
\(801\) −4971.77 −0.219312
\(802\) 26857.5 1.18251
\(803\) −6150.95 −0.270314
\(804\) 7781.32 0.341326
\(805\) 0 0
\(806\) −13337.6 −0.582873
\(807\) 4781.81 0.208584
\(808\) −37136.9 −1.61692
\(809\) 18201.5 0.791015 0.395508 0.918463i \(-0.370569\pi\)
0.395508 + 0.918463i \(0.370569\pi\)
\(810\) 0 0
\(811\) −3221.28 −0.139475 −0.0697376 0.997565i \(-0.522216\pi\)
−0.0697376 + 0.997565i \(0.522216\pi\)
\(812\) −94205.5 −4.07139
\(813\) 5479.81 0.236390
\(814\) −22389.9 −0.964087
\(815\) 0 0
\(816\) 19209.0 0.824080
\(817\) −8451.92 −0.361928
\(818\) −54556.0 −2.33191
\(819\) −22082.6 −0.942159
\(820\) 0 0
\(821\) 6884.62 0.292661 0.146331 0.989236i \(-0.453254\pi\)
0.146331 + 0.989236i \(0.453254\pi\)
\(822\) −50448.7 −2.14063
\(823\) 19720.3 0.835246 0.417623 0.908620i \(-0.362863\pi\)
0.417623 + 0.908620i \(0.362863\pi\)
\(824\) 93975.2 3.97304
\(825\) 0 0
\(826\) 125665. 5.29353
\(827\) −17844.0 −0.750297 −0.375148 0.926965i \(-0.622408\pi\)
−0.375148 + 0.926965i \(0.622408\pi\)
\(828\) −4487.66 −0.188354
\(829\) −31143.1 −1.30476 −0.652379 0.757893i \(-0.726229\pi\)
−0.652379 + 0.757893i \(0.726229\pi\)
\(830\) 0 0
\(831\) 8107.24 0.338432
\(832\) 203516. 8.48035
\(833\) 18817.7 0.782708
\(834\) 4644.18 0.192824
\(835\) 0 0
\(836\) 22444.9 0.928557
\(837\) −905.223 −0.0373824
\(838\) 78559.5 3.23842
\(839\) 33261.2 1.36866 0.684329 0.729174i \(-0.260095\pi\)
0.684329 + 0.729174i \(0.260095\pi\)
\(840\) 0 0
\(841\) −10398.8 −0.426371
\(842\) 95429.2 3.90583
\(843\) −8885.87 −0.363043
\(844\) −35603.5 −1.45204
\(845\) 0 0
\(846\) 6648.72 0.270198
\(847\) −4164.59 −0.168946
\(848\) −86106.5 −3.48692
\(849\) −10513.3 −0.424990
\(850\) 0 0
\(851\) 7859.52 0.316593
\(852\) 38054.4 1.53019
\(853\) 419.167 0.0168253 0.00841266 0.999965i \(-0.497322\pi\)
0.00841266 + 0.999965i \(0.497322\pi\)
\(854\) 148414. 5.94685
\(855\) 0 0
\(856\) −72994.5 −2.91460
\(857\) −8915.18 −0.355352 −0.177676 0.984089i \(-0.556858\pi\)
−0.177676 + 0.984089i \(0.556858\pi\)
\(858\) 13128.0 0.522358
\(859\) 4449.47 0.176733 0.0883667 0.996088i \(-0.471835\pi\)
0.0883667 + 0.996088i \(0.471835\pi\)
\(860\) 0 0
\(861\) −5050.85 −0.199922
\(862\) −24412.8 −0.964623
\(863\) 25151.7 0.992089 0.496044 0.868297i \(-0.334785\pi\)
0.496044 + 0.868297i \(0.334785\pi\)
\(864\) 24897.1 0.980343
\(865\) 0 0
\(866\) 30070.6 1.17995
\(867\) −13239.2 −0.518600
\(868\) 26702.7 1.04418
\(869\) 533.866 0.0208402
\(870\) 0 0
\(871\) 7990.53 0.310848
\(872\) −87938.0 −3.41509
\(873\) 3725.18 0.144420
\(874\) −10602.6 −0.410341
\(875\) 0 0
\(876\) −38819.4 −1.49724
\(877\) 16936.9 0.652129 0.326065 0.945348i \(-0.394277\pi\)
0.326065 + 0.945348i \(0.394277\pi\)
\(878\) 30016.4 1.15376
\(879\) −3014.26 −0.115664
\(880\) 0 0
\(881\) −32920.0 −1.25891 −0.629456 0.777036i \(-0.716722\pi\)
−0.629456 + 0.777036i \(0.716722\pi\)
\(882\) 42268.3 1.61366
\(883\) −23658.9 −0.901683 −0.450842 0.892604i \(-0.648876\pi\)
−0.450842 + 0.892604i \(0.648876\pi\)
\(884\) 36885.6 1.40339
\(885\) 0 0
\(886\) 38350.4 1.45418
\(887\) −19319.2 −0.731312 −0.365656 0.930750i \(-0.619155\pi\)
−0.365656 + 0.930750i \(0.619155\pi\)
\(888\) −92454.6 −3.49389
\(889\) −19765.7 −0.745691
\(890\) 0 0
\(891\) 891.000 0.0335013
\(892\) 59198.3 2.22209
\(893\) 11672.9 0.437423
\(894\) 26695.8 0.998705
\(895\) 0 0
\(896\) −294414. −10.9773
\(897\) −4608.31 −0.171535
\(898\) 45742.3 1.69982
\(899\) −3965.56 −0.147118
\(900\) 0 0
\(901\) −6723.12 −0.248590
\(902\) 3002.71 0.110842
\(903\) 9897.27 0.364740
\(904\) −154293. −5.67666
\(905\) 0 0
\(906\) 37053.1 1.35873
\(907\) 13020.2 0.476657 0.238329 0.971185i \(-0.423400\pi\)
0.238329 + 0.971185i \(0.423400\pi\)
\(908\) 135005. 4.93425
\(909\) −3955.83 −0.144342
\(910\) 0 0
\(911\) 260.135 0.00946065 0.00473032 0.999989i \(-0.498494\pi\)
0.00473032 + 0.999989i \(0.498494\pi\)
\(912\) 75751.9 2.75043
\(913\) −4926.29 −0.178572
\(914\) 20799.9 0.752735
\(915\) 0 0
\(916\) −30289.9 −1.09258
\(917\) 92397.5 3.32741
\(918\) 3368.89 0.121122
\(919\) 23631.7 0.848247 0.424123 0.905604i \(-0.360582\pi\)
0.424123 + 0.905604i \(0.360582\pi\)
\(920\) 0 0
\(921\) −20070.0 −0.718057
\(922\) 32372.2 1.15631
\(923\) 39077.5 1.39356
\(924\) −26283.2 −0.935772
\(925\) 0 0
\(926\) −69211.4 −2.45619
\(927\) 10010.2 0.354670
\(928\) 109068. 3.85812
\(929\) 19536.7 0.689966 0.344983 0.938609i \(-0.387885\pi\)
0.344983 + 0.938609i \(0.387885\pi\)
\(930\) 0 0
\(931\) 74208.9 2.61235
\(932\) −54625.5 −1.91987
\(933\) −5101.12 −0.178996
\(934\) −63302.4 −2.21769
\(935\) 0 0
\(936\) 54209.4 1.89305
\(937\) −17072.3 −0.595227 −0.297614 0.954686i \(-0.596191\pi\)
−0.297614 + 0.954686i \(0.596191\pi\)
\(938\) −21528.1 −0.749380
\(939\) −1317.14 −0.0457755
\(940\) 0 0
\(941\) −24908.1 −0.862890 −0.431445 0.902139i \(-0.641996\pi\)
−0.431445 + 0.902139i \(0.641996\pi\)
\(942\) −19179.3 −0.663370
\(943\) −1054.04 −0.0363989
\(944\) −187365. −6.45997
\(945\) 0 0
\(946\) −5883.89 −0.202222
\(947\) 42208.2 1.44835 0.724173 0.689619i \(-0.242222\pi\)
0.724173 + 0.689619i \(0.242222\pi\)
\(948\) 3369.29 0.115432
\(949\) −39863.0 −1.36355
\(950\) 0 0
\(951\) 15458.7 0.527112
\(952\) −65021.6 −2.21361
\(953\) 38261.2 1.30053 0.650263 0.759709i \(-0.274659\pi\)
0.650263 + 0.759709i \(0.274659\pi\)
\(954\) −15101.5 −0.512503
\(955\) 0 0
\(956\) 133438. 4.51433
\(957\) 3903.25 0.131843
\(958\) −13303.6 −0.448663
\(959\) 103717. 3.49239
\(960\) 0 0
\(961\) −28667.0 −0.962269
\(962\) −145105. −4.86316
\(963\) −7775.37 −0.260185
\(964\) −61200.9 −2.04476
\(965\) 0 0
\(966\) 12415.7 0.413530
\(967\) −2841.88 −0.0945074 −0.0472537 0.998883i \(-0.515047\pi\)
−0.0472537 + 0.998883i \(0.515047\pi\)
\(968\) 10223.4 0.339456
\(969\) 5914.64 0.196084
\(970\) 0 0
\(971\) −9655.22 −0.319105 −0.159552 0.987189i \(-0.551005\pi\)
−0.159552 + 0.987189i \(0.551005\pi\)
\(972\) 5623.20 0.185560
\(973\) −9547.95 −0.314587
\(974\) −62426.3 −2.05366
\(975\) 0 0
\(976\) −221282. −7.25725
\(977\) −20818.5 −0.681722 −0.340861 0.940114i \(-0.610719\pi\)
−0.340861 + 0.940114i \(0.610719\pi\)
\(978\) −9956.51 −0.325536
\(979\) −6076.61 −0.198375
\(980\) 0 0
\(981\) −9367.16 −0.304863
\(982\) −52044.2 −1.69124
\(983\) 5762.06 0.186959 0.0934797 0.995621i \(-0.470201\pi\)
0.0934797 + 0.995621i \(0.470201\pi\)
\(984\) 12399.1 0.401695
\(985\) 0 0
\(986\) 14758.3 0.476673
\(987\) −13669.1 −0.440822
\(988\) 145461. 4.68393
\(989\) 2065.42 0.0664069
\(990\) 0 0
\(991\) 48292.2 1.54798 0.773992 0.633195i \(-0.218257\pi\)
0.773992 + 0.633195i \(0.218257\pi\)
\(992\) −30915.5 −0.989485
\(993\) −9740.98 −0.311300
\(994\) −105283. −3.35953
\(995\) 0 0
\(996\) −31090.3 −0.989091
\(997\) −42833.0 −1.36062 −0.680308 0.732926i \(-0.738154\pi\)
−0.680308 + 0.732926i \(0.738154\pi\)
\(998\) 106690. 3.38398
\(999\) −9848.26 −0.311897
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 825.4.a.z.1.5 yes 5
3.2 odd 2 2475.4.a.bf.1.1 5
5.2 odd 4 825.4.c.r.199.10 10
5.3 odd 4 825.4.c.r.199.1 10
5.4 even 2 825.4.a.w.1.1 5
15.14 odd 2 2475.4.a.bm.1.5 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
825.4.a.w.1.1 5 5.4 even 2
825.4.a.z.1.5 yes 5 1.1 even 1 trivial
825.4.c.r.199.1 10 5.3 odd 4
825.4.c.r.199.10 10 5.2 odd 4
2475.4.a.bf.1.1 5 3.2 odd 2
2475.4.a.bm.1.5 5 15.14 odd 2