Properties

Label 825.4.a.s
Level $825$
Weight $4$
Character orbit 825.a
Self dual yes
Analytic conductor $48.677$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [825,4,Mod(1,825)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(825, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("825.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 825 = 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 825.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.6765757547\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.23612.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 20x + 26 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 165)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 + 1) q^{2} + 3 q^{3} + (\beta_{2} + \beta_1 + 7) q^{4} + (3 \beta_1 + 3) q^{6} + (2 \beta_{2} - 2 \beta_1 + 2) q^{7} + (4 \beta_{2} + 3 \beta_1 + 15) q^{8} + 9 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + (\beta_1 + 1) q^{2} + 3 q^{3} + (\beta_{2} + \beta_1 + 7) q^{4} + (3 \beta_1 + 3) q^{6} + (2 \beta_{2} - 2 \beta_1 + 2) q^{7} + (4 \beta_{2} + 3 \beta_1 + 15) q^{8} + 9 q^{9} + 11 q^{11} + (3 \beta_{2} + 3 \beta_1 + 21) q^{12} + ( - 2 \beta_{2} - 12 \beta_1 + 4) q^{13} + (4 \beta_{2} + 10 \beta_1 - 22) q^{14} + (7 \beta_{2} + 23 \beta_1 + 9) q^{16} + ( - 6 \beta_{2} - 10 \beta_1 + 76) q^{17} + (9 \beta_1 + 9) q^{18} + (4 \beta_{2} + 2 \beta_1 + 48) q^{19} + (6 \beta_{2} - 6 \beta_1 + 6) q^{21} + (11 \beta_1 + 11) q^{22} + (8 \beta_{2} + 20 \beta_1 + 60) q^{23} + (12 \beta_{2} + 9 \beta_1 + 45) q^{24} + ( - 18 \beta_{2} - 4 \beta_1 - 168) q^{26} + 27 q^{27} + (6 \beta_{2} + 10 \beta_1 + 110) q^{28} + (20 \beta_{2} - 34 \beta_1 + 34) q^{29} + ( - 16 \beta_{2} + 4 \beta_1 - 24) q^{31} + (12 \beta_{2} + 13 \beta_1 + 225) q^{32} + 33 q^{33} + ( - 28 \beta_{2} + 52 \beta_1 - 76) q^{34} + (9 \beta_{2} + 9 \beta_1 + 63) q^{36} + (4 \beta_{2} + 24 \beta_1 + 122) q^{37} + (14 \beta_{2} + 64 \beta_1 + 84) q^{38} + ( - 6 \beta_{2} - 36 \beta_1 + 12) q^{39} + ( - 20 \beta_{2} + 2 \beta_1 - 66) q^{41} + (12 \beta_{2} + 30 \beta_1 - 66) q^{42} + ( - 14 \beta_{2} + 74 \beta_1 + 150) q^{43} + (11 \beta_{2} + 11 \beta_1 + 77) q^{44} + (44 \beta_{2} + 92 \beta_1 + 356) q^{46} + ( - 28 \beta_{2} - 48 \beta_1 + 36) q^{47} + (21 \beta_{2} + 69 \beta_1 + 27) q^{48} + ( - 20 \beta_{2} - 4 \beta_1 - 51) q^{49} + ( - 18 \beta_{2} - 30 \beta_1 + 228) q^{51} + ( - 42 \beta_{2} - 144 \beta_1 - 292) q^{52} + ( - 52 \beta_{2} + 32 \beta_1 + 42) q^{53} + (27 \beta_1 + 27) q^{54} + ( - 4 \beta_{2} + 54 \beta_1 + 438) q^{56} + (12 \beta_{2} + 6 \beta_1 + 144) q^{57} + (26 \beta_{2} + 114 \beta_1 - 402) q^{58} + ( - 4 \beta_{2} - 120 \beta_1 - 308) q^{59} + ( - 44 \beta_{2} - 12 \beta_1 + 218) q^{61} + ( - 44 \beta_{2} - 88 \beta_1) q^{62} + (18 \beta_{2} - 18 \beta_1 + 18) q^{63} + ( - 7 \beta_{2} + 89 \beta_1 + 359) q^{64} + (33 \beta_1 + 33) q^{66} + (28 \beta_{2} - 148 \beta_1 + 128) q^{67} + (16 \beta_{2} - 108 \beta_1 - 12) q^{68} + (24 \beta_{2} + 60 \beta_1 + 180) q^{69} + ( - 16 \beta_{2} + 104 \beta_1 - 216) q^{71} + (36 \beta_{2} + 27 \beta_1 + 135) q^{72} + ( - 14 \beta_{2} + 168 \beta_1 - 356) q^{73} + (36 \beta_{2} + 138 \beta_1 + 466) q^{74} + (74 \beta_{2} + 124 \beta_1 + 624) q^{76} + (22 \beta_{2} - 22 \beta_1 + 22) q^{77} + ( - 54 \beta_{2} - 12 \beta_1 - 504) q^{78} + ( - 52 \beta_{2} - 14 \beta_1 - 524) q^{79} + 81 q^{81} + ( - 58 \beta_{2} - 146 \beta_1 - 78) q^{82} + ( - 70 \beta_{2} - 164 \beta_1 + 582) q^{83} + (18 \beta_{2} + 30 \beta_1 + 330) q^{84} + (32 \beta_{2} + 94 \beta_1 + 1158) q^{86} + (60 \beta_{2} - 102 \beta_1 + 102) q^{87} + (44 \beta_{2} + 33 \beta_1 + 165) q^{88} + (68 \beta_1 - 730) q^{89} + (4 \beta_{2} - 176 \beta_1 + 56) q^{91} + (160 \beta_{2} + 372 \beta_1 + 1252) q^{92} + ( - 48 \beta_{2} + 12 \beta_1 - 72) q^{93} + ( - 132 \beta_{2} - 76 \beta_1 - 692) q^{94} + (36 \beta_{2} + 39 \beta_1 + 675) q^{96} + ( - 64 \beta_{2} + 240 \beta_1 - 286) q^{97} + ( - 64 \beta_{2} - 131 \beta_1 - 147) q^{98} + 99 q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 4 q^{2} + 9 q^{3} + 22 q^{4} + 12 q^{6} + 4 q^{7} + 48 q^{8} + 27 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q + 4 q^{2} + 9 q^{3} + 22 q^{4} + 12 q^{6} + 4 q^{7} + 48 q^{8} + 27 q^{9} + 33 q^{11} + 66 q^{12} - 56 q^{14} + 50 q^{16} + 218 q^{17} + 36 q^{18} + 146 q^{19} + 12 q^{21} + 44 q^{22} + 200 q^{23} + 144 q^{24} - 508 q^{26} + 81 q^{27} + 340 q^{28} + 68 q^{29} - 68 q^{31} + 688 q^{32} + 99 q^{33} - 176 q^{34} + 198 q^{36} + 390 q^{37} + 316 q^{38} - 196 q^{41} - 168 q^{42} + 524 q^{43} + 242 q^{44} + 1160 q^{46} + 60 q^{47} + 150 q^{48} - 157 q^{49} + 654 q^{51} - 1020 q^{52} + 158 q^{53} + 108 q^{54} + 1368 q^{56} + 438 q^{57} - 1092 q^{58} - 1044 q^{59} + 642 q^{61} - 88 q^{62} + 36 q^{63} + 1166 q^{64} + 132 q^{66} + 236 q^{67} - 144 q^{68} + 600 q^{69} - 544 q^{71} + 432 q^{72} - 900 q^{73} + 1536 q^{74} + 1996 q^{76} + 44 q^{77} - 1524 q^{78} - 1586 q^{79} + 243 q^{81} - 380 q^{82} + 1582 q^{83} + 1020 q^{84} + 3568 q^{86} + 204 q^{87} + 528 q^{88} - 2122 q^{89} - 8 q^{91} + 4128 q^{92} - 204 q^{93} - 2152 q^{94} + 2064 q^{96} - 618 q^{97} - 572 q^{98} + 297 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 20x + 26 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + \nu - 14 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} - \beta _1 + 14 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−4.59056
1.32906
4.26150
−3.59056 3.00000 4.89212 0 −10.7717 16.1465 11.1590 9.00000 0
1.2 2.32906 3.00000 −2.57547 0 6.98719 −22.4672 −24.6309 9.00000 0
1.3 5.26150 3.00000 19.6833 0 15.7845 10.3207 61.4719 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( +1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 825.4.a.s 3
3.b odd 2 1 2475.4.a.s 3
5.b even 2 1 165.4.a.d 3
5.c odd 4 2 825.4.c.l 6
15.d odd 2 1 495.4.a.l 3
55.d odd 2 1 1815.4.a.s 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
165.4.a.d 3 5.b even 2 1
495.4.a.l 3 15.d odd 2 1
825.4.a.s 3 1.a even 1 1 trivial
825.4.c.l 6 5.c odd 4 2
1815.4.a.s 3 55.d odd 2 1
2475.4.a.s 3 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(825))\):

\( T_{2}^{3} - 4T_{2}^{2} - 15T_{2} + 44 \) Copy content Toggle raw display
\( T_{7}^{3} - 4T_{7}^{2} - 428T_{7} + 3744 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} - 4 T^{2} + \cdots + 44 \) Copy content Toggle raw display
$3$ \( (T - 3)^{3} \) Copy content Toggle raw display
$5$ \( T^{3} \) Copy content Toggle raw display
$7$ \( T^{3} - 4 T^{2} + \cdots + 3744 \) Copy content Toggle raw display
$11$ \( (T - 11)^{3} \) Copy content Toggle raw display
$13$ \( T^{3} - 3560T + 34144 \) Copy content Toggle raw display
$17$ \( T^{3} - 218 T^{2} + \cdots + 235104 \) Copy content Toggle raw display
$19$ \( T^{3} - 146 T^{2} + \cdots - 30960 \) Copy content Toggle raw display
$23$ \( T^{3} - 200 T^{2} + \cdots - 1664 \) Copy content Toggle raw display
$29$ \( T^{3} - 68 T^{2} + \cdots + 3163056 \) Copy content Toggle raw display
$31$ \( T^{3} + 68 T^{2} + \cdots - 1812096 \) Copy content Toggle raw display
$37$ \( T^{3} - 390 T^{2} + \cdots - 618952 \) Copy content Toggle raw display
$41$ \( T^{3} + 196 T^{2} + \cdots - 4364208 \) Copy content Toggle raw display
$43$ \( T^{3} - 524 T^{2} + \cdots + 31273920 \) Copy content Toggle raw display
$47$ \( T^{3} - 60 T^{2} + \cdots + 20966976 \) Copy content Toggle raw display
$53$ \( T^{3} - 158 T^{2} + \cdots - 39574952 \) Copy content Toggle raw display
$59$ \( T^{3} + 1044 T^{2} + \cdots - 84227264 \) Copy content Toggle raw display
$61$ \( T^{3} - 642 T^{2} + \cdots + 22757384 \) Copy content Toggle raw display
$67$ \( T^{3} - 236 T^{2} + \cdots - 87537664 \) Copy content Toggle raw display
$71$ \( T^{3} + 544 T^{2} + \cdots + 6553600 \) Copy content Toggle raw display
$73$ \( T^{3} + 900 T^{2} + \cdots + 5609344 \) Copy content Toggle raw display
$79$ \( T^{3} + 1586 T^{2} + \cdots - 14694992 \) Copy content Toggle raw display
$83$ \( T^{3} - 1582 T^{2} + \cdots + 924645384 \) Copy content Toggle raw display
$89$ \( T^{3} + 2122 T^{2} + \cdots + 293444632 \) Copy content Toggle raw display
$97$ \( T^{3} + 618 T^{2} + \cdots + 223543736 \) Copy content Toggle raw display
show more
show less