Properties

Label 825.4.a.o.1.2
Level $825$
Weight $4$
Character 825.1
Self dual yes
Analytic conductor $48.677$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [825,4,Mod(1,825)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(825, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("825.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 825 = 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 825.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.6765757547\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.3368.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 15x + 11 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(0.723686\) of defining polynomial
Character \(\chi\) \(=\) 825.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.723686 q^{2} +3.00000 q^{3} -7.47628 q^{4} -2.17106 q^{6} +1.13288 q^{7} +11.2000 q^{8} +9.00000 q^{9} +O(q^{10})\) \(q-0.723686 q^{2} +3.00000 q^{3} -7.47628 q^{4} -2.17106 q^{6} +1.13288 q^{7} +11.2000 q^{8} +9.00000 q^{9} +11.0000 q^{11} -22.4288 q^{12} -21.8566 q^{13} -0.819851 q^{14} +51.7050 q^{16} +6.18033 q^{17} -6.51317 q^{18} -92.8393 q^{19} +3.39865 q^{21} -7.96054 q^{22} -36.7317 q^{23} +33.5999 q^{24} +15.8173 q^{26} +27.0000 q^{27} -8.46975 q^{28} +71.1375 q^{29} +186.522 q^{31} -127.018 q^{32} +33.0000 q^{33} -4.47261 q^{34} -67.2865 q^{36} -356.581 q^{37} +67.1865 q^{38} -65.5697 q^{39} +271.940 q^{41} -2.45955 q^{42} +155.780 q^{43} -82.2391 q^{44} +26.5822 q^{46} +234.566 q^{47} +155.115 q^{48} -341.717 q^{49} +18.5410 q^{51} +163.406 q^{52} +195.018 q^{53} -19.5395 q^{54} +12.6882 q^{56} -278.518 q^{57} -51.4812 q^{58} -455.930 q^{59} -441.278 q^{61} -134.983 q^{62} +10.1959 q^{63} -321.719 q^{64} -23.8816 q^{66} +133.005 q^{67} -46.2058 q^{68} -110.195 q^{69} -1041.68 q^{71} +100.800 q^{72} -160.119 q^{73} +258.053 q^{74} +694.093 q^{76} +12.4617 q^{77} +47.4519 q^{78} -761.367 q^{79} +81.0000 q^{81} -196.799 q^{82} +51.7170 q^{83} -25.4092 q^{84} -112.736 q^{86} +213.412 q^{87} +123.200 q^{88} -1075.25 q^{89} -24.7609 q^{91} +274.616 q^{92} +559.565 q^{93} -169.752 q^{94} -381.054 q^{96} -703.238 q^{97} +247.295 q^{98} +99.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{2} + 9 q^{3} + 7 q^{4} - 3 q^{6} - 16 q^{7} + 3 q^{8} + 27 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q - q^{2} + 9 q^{3} + 7 q^{4} - 3 q^{6} - 16 q^{7} + 3 q^{8} + 27 q^{9} + 33 q^{11} + 21 q^{12} - 45 q^{13} - 116 q^{14} - 85 q^{16} + 58 q^{17} - 9 q^{18} - 169 q^{19} - 48 q^{21} - 11 q^{22} - 155 q^{23} + 9 q^{24} + 167 q^{26} + 81 q^{27} - 100 q^{28} - 277 q^{29} - 173 q^{31} - 97 q^{32} + 99 q^{33} - 146 q^{34} + 63 q^{36} - 60 q^{37} - 169 q^{38} - 135 q^{39} + 44 q^{41} - 348 q^{42} + 109 q^{43} + 77 q^{44} + 425 q^{46} - 270 q^{47} - 255 q^{48} - 427 q^{49} + 174 q^{51} - 45 q^{52} + 148 q^{53} - 27 q^{54} + 168 q^{56} - 507 q^{57} + 783 q^{58} - 684 q^{59} - 1038 q^{61} - 953 q^{62} - 144 q^{63} - 1129 q^{64} - 33 q^{66} - 314 q^{67} + 366 q^{68} - 465 q^{69} - 1459 q^{71} + 27 q^{72} + 1170 q^{73} - 1764 q^{74} + 211 q^{76} - 176 q^{77} + 501 q^{78} - 506 q^{79} + 243 q^{81} + 1040 q^{82} + 347 q^{83} - 300 q^{84} - 527 q^{86} - 831 q^{87} + 33 q^{88} - 607 q^{89} - 398 q^{91} - 687 q^{92} - 519 q^{93} - 1822 q^{94} - 291 q^{96} - 1263 q^{97} + 2273 q^{98} + 297 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.723686 −0.255862 −0.127931 0.991783i \(-0.540834\pi\)
−0.127931 + 0.991783i \(0.540834\pi\)
\(3\) 3.00000 0.577350
\(4\) −7.47628 −0.934535
\(5\) 0 0
\(6\) −2.17106 −0.147722
\(7\) 1.13288 0.0611699 0.0305850 0.999532i \(-0.490263\pi\)
0.0305850 + 0.999532i \(0.490263\pi\)
\(8\) 11.2000 0.494973
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) 11.0000 0.301511
\(12\) −22.4288 −0.539554
\(13\) −21.8566 −0.466302 −0.233151 0.972441i \(-0.574904\pi\)
−0.233151 + 0.972441i \(0.574904\pi\)
\(14\) −0.819851 −0.0156510
\(15\) 0 0
\(16\) 51.7050 0.807890
\(17\) 6.18033 0.0881735 0.0440867 0.999028i \(-0.485962\pi\)
0.0440867 + 0.999028i \(0.485962\pi\)
\(18\) −6.51317 −0.0852872
\(19\) −92.8393 −1.12099 −0.560495 0.828158i \(-0.689389\pi\)
−0.560495 + 0.828158i \(0.689389\pi\)
\(20\) 0 0
\(21\) 3.39865 0.0353165
\(22\) −7.96054 −0.0771452
\(23\) −36.7317 −0.333004 −0.166502 0.986041i \(-0.553247\pi\)
−0.166502 + 0.986041i \(0.553247\pi\)
\(24\) 33.5999 0.285773
\(25\) 0 0
\(26\) 15.8173 0.119309
\(27\) 27.0000 0.192450
\(28\) −8.46975 −0.0571654
\(29\) 71.1375 0.455514 0.227757 0.973718i \(-0.426861\pi\)
0.227757 + 0.973718i \(0.426861\pi\)
\(30\) 0 0
\(31\) 186.522 1.08065 0.540327 0.841455i \(-0.318301\pi\)
0.540327 + 0.841455i \(0.318301\pi\)
\(32\) −127.018 −0.701681
\(33\) 33.0000 0.174078
\(34\) −4.47261 −0.0225602
\(35\) 0 0
\(36\) −67.2865 −0.311512
\(37\) −356.581 −1.58437 −0.792184 0.610282i \(-0.791056\pi\)
−0.792184 + 0.610282i \(0.791056\pi\)
\(38\) 67.1865 0.286818
\(39\) −65.5697 −0.269219
\(40\) 0 0
\(41\) 271.940 1.03585 0.517925 0.855426i \(-0.326705\pi\)
0.517925 + 0.855426i \(0.326705\pi\)
\(42\) −2.45955 −0.00903613
\(43\) 155.780 0.552470 0.276235 0.961090i \(-0.410913\pi\)
0.276235 + 0.961090i \(0.410913\pi\)
\(44\) −82.2391 −0.281773
\(45\) 0 0
\(46\) 26.5822 0.0852028
\(47\) 234.566 0.727978 0.363989 0.931403i \(-0.381415\pi\)
0.363989 + 0.931403i \(0.381415\pi\)
\(48\) 155.115 0.466436
\(49\) −341.717 −0.996258
\(50\) 0 0
\(51\) 18.5410 0.0509070
\(52\) 163.406 0.435775
\(53\) 195.018 0.505429 0.252715 0.967541i \(-0.418677\pi\)
0.252715 + 0.967541i \(0.418677\pi\)
\(54\) −19.5395 −0.0492406
\(55\) 0 0
\(56\) 12.6882 0.0302775
\(57\) −278.518 −0.647204
\(58\) −51.4812 −0.116548
\(59\) −455.930 −1.00605 −0.503025 0.864272i \(-0.667780\pi\)
−0.503025 + 0.864272i \(0.667780\pi\)
\(60\) 0 0
\(61\) −441.278 −0.926227 −0.463114 0.886299i \(-0.653268\pi\)
−0.463114 + 0.886299i \(0.653268\pi\)
\(62\) −134.983 −0.276498
\(63\) 10.1959 0.0203900
\(64\) −321.719 −0.628357
\(65\) 0 0
\(66\) −23.8816 −0.0445398
\(67\) 133.005 0.242524 0.121262 0.992621i \(-0.461306\pi\)
0.121262 + 0.992621i \(0.461306\pi\)
\(68\) −46.2058 −0.0824012
\(69\) −110.195 −0.192260
\(70\) 0 0
\(71\) −1041.68 −1.74119 −0.870596 0.491999i \(-0.836266\pi\)
−0.870596 + 0.491999i \(0.836266\pi\)
\(72\) 100.800 0.164991
\(73\) −160.119 −0.256719 −0.128360 0.991728i \(-0.540971\pi\)
−0.128360 + 0.991728i \(0.540971\pi\)
\(74\) 258.053 0.405379
\(75\) 0 0
\(76\) 694.093 1.04760
\(77\) 12.4617 0.0184434
\(78\) 47.4519 0.0688829
\(79\) −761.367 −1.08431 −0.542155 0.840278i \(-0.682392\pi\)
−0.542155 + 0.840278i \(0.682392\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) −196.799 −0.265034
\(83\) 51.7170 0.0683938 0.0341969 0.999415i \(-0.489113\pi\)
0.0341969 + 0.999415i \(0.489113\pi\)
\(84\) −25.4092 −0.0330045
\(85\) 0 0
\(86\) −112.736 −0.141356
\(87\) 213.412 0.262991
\(88\) 123.200 0.149240
\(89\) −1075.25 −1.28064 −0.640318 0.768110i \(-0.721198\pi\)
−0.640318 + 0.768110i \(0.721198\pi\)
\(90\) 0 0
\(91\) −24.7609 −0.0285236
\(92\) 274.616 0.311203
\(93\) 559.565 0.623916
\(94\) −169.752 −0.186262
\(95\) 0 0
\(96\) −381.054 −0.405116
\(97\) −703.238 −0.736114 −0.368057 0.929803i \(-0.619977\pi\)
−0.368057 + 0.929803i \(0.619977\pi\)
\(98\) 247.295 0.254904
\(99\) 99.0000 0.100504
\(100\) 0 0
\(101\) −856.886 −0.844192 −0.422096 0.906551i \(-0.638705\pi\)
−0.422096 + 0.906551i \(0.638705\pi\)
\(102\) −13.4178 −0.0130251
\(103\) −805.989 −0.771034 −0.385517 0.922701i \(-0.625977\pi\)
−0.385517 + 0.922701i \(0.625977\pi\)
\(104\) −244.793 −0.230807
\(105\) 0 0
\(106\) −141.132 −0.129320
\(107\) −1608.55 −1.45331 −0.726654 0.687004i \(-0.758926\pi\)
−0.726654 + 0.687004i \(0.758926\pi\)
\(108\) −201.860 −0.179851
\(109\) −925.724 −0.813471 −0.406735 0.913546i \(-0.633333\pi\)
−0.406735 + 0.913546i \(0.633333\pi\)
\(110\) 0 0
\(111\) −1069.74 −0.914735
\(112\) 58.5757 0.0494186
\(113\) 1214.81 1.01133 0.505663 0.862731i \(-0.331248\pi\)
0.505663 + 0.862731i \(0.331248\pi\)
\(114\) 201.560 0.165595
\(115\) 0 0
\(116\) −531.844 −0.425693
\(117\) −196.709 −0.155434
\(118\) 329.950 0.257410
\(119\) 7.00159 0.00539357
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 319.347 0.236986
\(123\) 815.819 0.598048
\(124\) −1394.49 −1.00991
\(125\) 0 0
\(126\) −7.37866 −0.00521701
\(127\) 1128.96 0.788810 0.394405 0.918937i \(-0.370951\pi\)
0.394405 + 0.918937i \(0.370951\pi\)
\(128\) 1248.97 0.862454
\(129\) 467.340 0.318969
\(130\) 0 0
\(131\) −1562.32 −1.04199 −0.520993 0.853561i \(-0.674438\pi\)
−0.520993 + 0.853561i \(0.674438\pi\)
\(132\) −246.717 −0.162682
\(133\) −105.176 −0.0685708
\(134\) −96.2535 −0.0620525
\(135\) 0 0
\(136\) 69.2194 0.0436435
\(137\) 44.9323 0.0280206 0.0140103 0.999902i \(-0.495540\pi\)
0.0140103 + 0.999902i \(0.495540\pi\)
\(138\) 79.7466 0.0491919
\(139\) −415.574 −0.253587 −0.126793 0.991929i \(-0.540468\pi\)
−0.126793 + 0.991929i \(0.540468\pi\)
\(140\) 0 0
\(141\) 703.698 0.420298
\(142\) 753.849 0.445504
\(143\) −240.422 −0.140595
\(144\) 465.345 0.269297
\(145\) 0 0
\(146\) 115.876 0.0656846
\(147\) −1025.15 −0.575190
\(148\) 2665.90 1.48065
\(149\) 678.402 0.372999 0.186499 0.982455i \(-0.440286\pi\)
0.186499 + 0.982455i \(0.440286\pi\)
\(150\) 0 0
\(151\) 616.083 0.332027 0.166014 0.986123i \(-0.446910\pi\)
0.166014 + 0.986123i \(0.446910\pi\)
\(152\) −1039.80 −0.554860
\(153\) 55.6229 0.0293912
\(154\) −9.01837 −0.00471896
\(155\) 0 0
\(156\) 490.217 0.251595
\(157\) −616.599 −0.313439 −0.156720 0.987643i \(-0.550092\pi\)
−0.156720 + 0.987643i \(0.550092\pi\)
\(158\) 550.991 0.277433
\(159\) 585.053 0.291810
\(160\) 0 0
\(161\) −41.6127 −0.0203698
\(162\) −58.6186 −0.0284291
\(163\) 2031.15 0.976026 0.488013 0.872836i \(-0.337722\pi\)
0.488013 + 0.872836i \(0.337722\pi\)
\(164\) −2033.10 −0.968038
\(165\) 0 0
\(166\) −37.4269 −0.0174993
\(167\) −2114.90 −0.979973 −0.489987 0.871730i \(-0.662998\pi\)
−0.489987 + 0.871730i \(0.662998\pi\)
\(168\) 38.0647 0.0174807
\(169\) −1719.29 −0.782563
\(170\) 0 0
\(171\) −835.554 −0.373663
\(172\) −1164.65 −0.516302
\(173\) −15.5096 −0.00681602 −0.00340801 0.999994i \(-0.501085\pi\)
−0.00340801 + 0.999994i \(0.501085\pi\)
\(174\) −154.444 −0.0672893
\(175\) 0 0
\(176\) 568.755 0.243588
\(177\) −1367.79 −0.580844
\(178\) 778.146 0.327666
\(179\) 487.991 0.203766 0.101883 0.994796i \(-0.467513\pi\)
0.101883 + 0.994796i \(0.467513\pi\)
\(180\) 0 0
\(181\) 1248.71 0.512795 0.256397 0.966571i \(-0.417464\pi\)
0.256397 + 0.966571i \(0.417464\pi\)
\(182\) 17.9191 0.00729810
\(183\) −1323.83 −0.534758
\(184\) −411.393 −0.164828
\(185\) 0 0
\(186\) −404.949 −0.159636
\(187\) 67.9836 0.0265853
\(188\) −1753.68 −0.680321
\(189\) 30.5878 0.0117722
\(190\) 0 0
\(191\) −2571.60 −0.974213 −0.487107 0.873342i \(-0.661948\pi\)
−0.487107 + 0.873342i \(0.661948\pi\)
\(192\) −965.156 −0.362782
\(193\) 1221.80 0.455686 0.227843 0.973698i \(-0.426833\pi\)
0.227843 + 0.973698i \(0.426833\pi\)
\(194\) 508.924 0.188343
\(195\) 0 0
\(196\) 2554.77 0.931038
\(197\) −1428.32 −0.516568 −0.258284 0.966069i \(-0.583157\pi\)
−0.258284 + 0.966069i \(0.583157\pi\)
\(198\) −71.6449 −0.0257151
\(199\) −816.166 −0.290736 −0.145368 0.989378i \(-0.546437\pi\)
−0.145368 + 0.989378i \(0.546437\pi\)
\(200\) 0 0
\(201\) 399.014 0.140021
\(202\) 620.116 0.215996
\(203\) 80.5904 0.0278637
\(204\) −138.618 −0.0475743
\(205\) 0 0
\(206\) 583.283 0.197278
\(207\) −330.585 −0.111001
\(208\) −1130.09 −0.376721
\(209\) −1021.23 −0.337991
\(210\) 0 0
\(211\) −903.360 −0.294739 −0.147369 0.989082i \(-0.547081\pi\)
−0.147369 + 0.989082i \(0.547081\pi\)
\(212\) −1458.01 −0.472341
\(213\) −3125.04 −1.00528
\(214\) 1164.08 0.371846
\(215\) 0 0
\(216\) 302.399 0.0952576
\(217\) 211.307 0.0661035
\(218\) 669.934 0.208136
\(219\) −480.357 −0.148217
\(220\) 0 0
\(221\) −135.081 −0.0411154
\(222\) 774.159 0.234046
\(223\) 533.966 0.160345 0.0801727 0.996781i \(-0.474453\pi\)
0.0801727 + 0.996781i \(0.474453\pi\)
\(224\) −143.896 −0.0429218
\(225\) 0 0
\(226\) −879.142 −0.258760
\(227\) 696.531 0.203658 0.101829 0.994802i \(-0.467531\pi\)
0.101829 + 0.994802i \(0.467531\pi\)
\(228\) 2082.28 0.604834
\(229\) −796.794 −0.229929 −0.114964 0.993370i \(-0.536675\pi\)
−0.114964 + 0.993370i \(0.536675\pi\)
\(230\) 0 0
\(231\) 37.3851 0.0106483
\(232\) 796.737 0.225467
\(233\) −5657.08 −1.59059 −0.795295 0.606223i \(-0.792684\pi\)
−0.795295 + 0.606223i \(0.792684\pi\)
\(234\) 142.356 0.0397696
\(235\) 0 0
\(236\) 3408.66 0.940190
\(237\) −2284.10 −0.626027
\(238\) −5.06695 −0.00138001
\(239\) −2023.06 −0.547534 −0.273767 0.961796i \(-0.588270\pi\)
−0.273767 + 0.961796i \(0.588270\pi\)
\(240\) 0 0
\(241\) −3513.86 −0.939203 −0.469601 0.882879i \(-0.655602\pi\)
−0.469601 + 0.882879i \(0.655602\pi\)
\(242\) −87.5660 −0.0232601
\(243\) 243.000 0.0641500
\(244\) 3299.12 0.865592
\(245\) 0 0
\(246\) −590.397 −0.153018
\(247\) 2029.15 0.522719
\(248\) 2089.03 0.534895
\(249\) 155.151 0.0394872
\(250\) 0 0
\(251\) 1814.32 0.456250 0.228125 0.973632i \(-0.426740\pi\)
0.228125 + 0.973632i \(0.426740\pi\)
\(252\) −76.2277 −0.0190551
\(253\) −404.048 −0.100404
\(254\) −817.011 −0.201826
\(255\) 0 0
\(256\) 1669.89 0.407688
\(257\) 1445.46 0.350839 0.175419 0.984494i \(-0.443872\pi\)
0.175419 + 0.984494i \(0.443872\pi\)
\(258\) −338.207 −0.0816118
\(259\) −403.965 −0.0969157
\(260\) 0 0
\(261\) 640.237 0.151838
\(262\) 1130.63 0.266604
\(263\) −4411.79 −1.03438 −0.517191 0.855870i \(-0.673022\pi\)
−0.517191 + 0.855870i \(0.673022\pi\)
\(264\) 369.599 0.0861638
\(265\) 0 0
\(266\) 76.1144 0.0175446
\(267\) −3225.76 −0.739376
\(268\) −994.379 −0.226647
\(269\) 3955.14 0.896465 0.448232 0.893917i \(-0.352054\pi\)
0.448232 + 0.893917i \(0.352054\pi\)
\(270\) 0 0
\(271\) 6656.96 1.49218 0.746091 0.665844i \(-0.231928\pi\)
0.746091 + 0.665844i \(0.231928\pi\)
\(272\) 319.554 0.0712345
\(273\) −74.2828 −0.0164681
\(274\) −32.5169 −0.00716941
\(275\) 0 0
\(276\) 823.849 0.179673
\(277\) 8523.79 1.84890 0.924450 0.381304i \(-0.124525\pi\)
0.924450 + 0.381304i \(0.124525\pi\)
\(278\) 300.745 0.0648831
\(279\) 1678.69 0.360218
\(280\) 0 0
\(281\) −4210.99 −0.893973 −0.446986 0.894541i \(-0.647503\pi\)
−0.446986 + 0.894541i \(0.647503\pi\)
\(282\) −509.256 −0.107538
\(283\) 3529.66 0.741400 0.370700 0.928753i \(-0.379118\pi\)
0.370700 + 0.928753i \(0.379118\pi\)
\(284\) 7787.88 1.62720
\(285\) 0 0
\(286\) 173.990 0.0359729
\(287\) 308.076 0.0633629
\(288\) −1143.16 −0.233894
\(289\) −4874.80 −0.992225
\(290\) 0 0
\(291\) −2109.71 −0.424995
\(292\) 1197.09 0.239913
\(293\) −7110.96 −1.41784 −0.708919 0.705290i \(-0.750817\pi\)
−0.708919 + 0.705290i \(0.750817\pi\)
\(294\) 741.886 0.147169
\(295\) 0 0
\(296\) −3993.70 −0.784220
\(297\) 297.000 0.0580259
\(298\) −490.950 −0.0954361
\(299\) 802.828 0.155280
\(300\) 0 0
\(301\) 176.480 0.0337945
\(302\) −445.851 −0.0849531
\(303\) −2570.66 −0.487394
\(304\) −4800.25 −0.905636
\(305\) 0 0
\(306\) −40.2535 −0.00752007
\(307\) 9474.72 1.76140 0.880702 0.473671i \(-0.157071\pi\)
0.880702 + 0.473671i \(0.157071\pi\)
\(308\) −93.1672 −0.0172360
\(309\) −2417.97 −0.445156
\(310\) 0 0
\(311\) −5210.73 −0.950075 −0.475038 0.879965i \(-0.657566\pi\)
−0.475038 + 0.879965i \(0.657566\pi\)
\(312\) −734.378 −0.133256
\(313\) 1944.27 0.351108 0.175554 0.984470i \(-0.443828\pi\)
0.175554 + 0.984470i \(0.443828\pi\)
\(314\) 446.224 0.0801970
\(315\) 0 0
\(316\) 5692.20 1.01333
\(317\) −6852.73 −1.21416 −0.607079 0.794642i \(-0.707659\pi\)
−0.607079 + 0.794642i \(0.707659\pi\)
\(318\) −423.395 −0.0746629
\(319\) 782.512 0.137343
\(320\) 0 0
\(321\) −4825.64 −0.839068
\(322\) 30.1145 0.00521185
\(323\) −573.777 −0.0988415
\(324\) −605.579 −0.103837
\(325\) 0 0
\(326\) −1469.92 −0.249727
\(327\) −2777.17 −0.469658
\(328\) 3045.72 0.512718
\(329\) 265.736 0.0445304
\(330\) 0 0
\(331\) −2019.85 −0.335411 −0.167706 0.985837i \(-0.553636\pi\)
−0.167706 + 0.985837i \(0.553636\pi\)
\(332\) −386.651 −0.0639163
\(333\) −3209.23 −0.528123
\(334\) 1530.52 0.250737
\(335\) 0 0
\(336\) 175.727 0.0285318
\(337\) 11738.7 1.89748 0.948739 0.316060i \(-0.102360\pi\)
0.948739 + 0.316060i \(0.102360\pi\)
\(338\) 1244.23 0.200228
\(339\) 3644.44 0.583890
\(340\) 0 0
\(341\) 2051.74 0.325829
\(342\) 604.679 0.0956061
\(343\) −775.704 −0.122111
\(344\) 1744.73 0.273458
\(345\) 0 0
\(346\) 11.2241 0.00174396
\(347\) 12692.2 1.96355 0.981777 0.190036i \(-0.0608603\pi\)
0.981777 + 0.190036i \(0.0608603\pi\)
\(348\) −1595.53 −0.245774
\(349\) 12026.8 1.84465 0.922324 0.386417i \(-0.126287\pi\)
0.922324 + 0.386417i \(0.126287\pi\)
\(350\) 0 0
\(351\) −590.127 −0.0897398
\(352\) −1397.20 −0.211565
\(353\) −8948.39 −1.34922 −0.674610 0.738174i \(-0.735688\pi\)
−0.674610 + 0.738174i \(0.735688\pi\)
\(354\) 989.850 0.148616
\(355\) 0 0
\(356\) 8038.90 1.19680
\(357\) 21.0048 0.00311398
\(358\) −353.152 −0.0521360
\(359\) 3906.52 0.574313 0.287156 0.957884i \(-0.407290\pi\)
0.287156 + 0.957884i \(0.407290\pi\)
\(360\) 0 0
\(361\) 1760.14 0.256617
\(362\) −903.673 −0.131204
\(363\) 363.000 0.0524864
\(364\) 185.120 0.0266563
\(365\) 0 0
\(366\) 958.040 0.136824
\(367\) 4225.04 0.600941 0.300471 0.953791i \(-0.402856\pi\)
0.300471 + 0.953791i \(0.402856\pi\)
\(368\) −1899.21 −0.269030
\(369\) 2447.46 0.345283
\(370\) 0 0
\(371\) 220.932 0.0309171
\(372\) −4183.46 −0.583071
\(373\) 4223.50 0.586285 0.293143 0.956069i \(-0.405299\pi\)
0.293143 + 0.956069i \(0.405299\pi\)
\(374\) −49.1988 −0.00680216
\(375\) 0 0
\(376\) 2627.13 0.360330
\(377\) −1554.82 −0.212407
\(378\) −22.1360 −0.00301204
\(379\) −748.009 −0.101379 −0.0506895 0.998714i \(-0.516142\pi\)
−0.0506895 + 0.998714i \(0.516142\pi\)
\(380\) 0 0
\(381\) 3386.87 0.455420
\(382\) 1861.03 0.249264
\(383\) 4668.07 0.622786 0.311393 0.950281i \(-0.399204\pi\)
0.311393 + 0.950281i \(0.399204\pi\)
\(384\) 3746.90 0.497938
\(385\) 0 0
\(386\) −884.203 −0.116593
\(387\) 1402.02 0.184157
\(388\) 5257.61 0.687924
\(389\) 6544.12 0.852957 0.426478 0.904498i \(-0.359754\pi\)
0.426478 + 0.904498i \(0.359754\pi\)
\(390\) 0 0
\(391\) −227.014 −0.0293621
\(392\) −3827.21 −0.493121
\(393\) −4686.95 −0.601591
\(394\) 1033.66 0.132170
\(395\) 0 0
\(396\) −740.152 −0.0939243
\(397\) 6439.84 0.814121 0.407061 0.913401i \(-0.366554\pi\)
0.407061 + 0.913401i \(0.366554\pi\)
\(398\) 590.648 0.0743882
\(399\) −315.528 −0.0395894
\(400\) 0 0
\(401\) 7727.03 0.962268 0.481134 0.876647i \(-0.340225\pi\)
0.481134 + 0.876647i \(0.340225\pi\)
\(402\) −288.761 −0.0358260
\(403\) −4076.72 −0.503911
\(404\) 6406.32 0.788927
\(405\) 0 0
\(406\) −58.3222 −0.00712926
\(407\) −3922.40 −0.477705
\(408\) 207.658 0.0251976
\(409\) −2539.97 −0.307074 −0.153537 0.988143i \(-0.549066\pi\)
−0.153537 + 0.988143i \(0.549066\pi\)
\(410\) 0 0
\(411\) 134.797 0.0161777
\(412\) 6025.80 0.720558
\(413\) −516.515 −0.0615401
\(414\) 239.240 0.0284009
\(415\) 0 0
\(416\) 2776.17 0.327195
\(417\) −1246.72 −0.146408
\(418\) 739.052 0.0864789
\(419\) 1170.17 0.136436 0.0682181 0.997670i \(-0.478269\pi\)
0.0682181 + 0.997670i \(0.478269\pi\)
\(420\) 0 0
\(421\) 4009.01 0.464103 0.232052 0.972703i \(-0.425456\pi\)
0.232052 + 0.972703i \(0.425456\pi\)
\(422\) 653.749 0.0754123
\(423\) 2111.09 0.242659
\(424\) 2184.19 0.250174
\(425\) 0 0
\(426\) 2261.55 0.257212
\(427\) −499.916 −0.0566573
\(428\) 12025.9 1.35817
\(429\) −721.267 −0.0811727
\(430\) 0 0
\(431\) −2676.70 −0.299146 −0.149573 0.988751i \(-0.547790\pi\)
−0.149573 + 0.988751i \(0.547790\pi\)
\(432\) 1396.03 0.155479
\(433\) 5655.83 0.627718 0.313859 0.949470i \(-0.398378\pi\)
0.313859 + 0.949470i \(0.398378\pi\)
\(434\) −152.920 −0.0169133
\(435\) 0 0
\(436\) 6920.97 0.760217
\(437\) 3410.14 0.373294
\(438\) 347.628 0.0379230
\(439\) −6305.94 −0.685572 −0.342786 0.939414i \(-0.611371\pi\)
−0.342786 + 0.939414i \(0.611371\pi\)
\(440\) 0 0
\(441\) −3075.45 −0.332086
\(442\) 97.7560 0.0105199
\(443\) −6772.22 −0.726315 −0.363158 0.931728i \(-0.618301\pi\)
−0.363158 + 0.931728i \(0.618301\pi\)
\(444\) 7997.71 0.854852
\(445\) 0 0
\(446\) −386.424 −0.0410262
\(447\) 2035.20 0.215351
\(448\) −364.470 −0.0384365
\(449\) −5049.16 −0.530701 −0.265351 0.964152i \(-0.585488\pi\)
−0.265351 + 0.964152i \(0.585488\pi\)
\(450\) 0 0
\(451\) 2991.34 0.312321
\(452\) −9082.27 −0.945120
\(453\) 1848.25 0.191696
\(454\) −504.070 −0.0521083
\(455\) 0 0
\(456\) −3119.39 −0.320348
\(457\) 3866.14 0.395733 0.197867 0.980229i \(-0.436599\pi\)
0.197867 + 0.980229i \(0.436599\pi\)
\(458\) 576.629 0.0588299
\(459\) 166.869 0.0169690
\(460\) 0 0
\(461\) −9108.85 −0.920263 −0.460132 0.887851i \(-0.652198\pi\)
−0.460132 + 0.887851i \(0.652198\pi\)
\(462\) −27.0551 −0.00272450
\(463\) −17421.8 −1.74873 −0.874363 0.485273i \(-0.838720\pi\)
−0.874363 + 0.485273i \(0.838720\pi\)
\(464\) 3678.16 0.368005
\(465\) 0 0
\(466\) 4093.95 0.406971
\(467\) 2602.36 0.257864 0.128932 0.991653i \(-0.458845\pi\)
0.128932 + 0.991653i \(0.458845\pi\)
\(468\) 1470.65 0.145258
\(469\) 150.679 0.0148352
\(470\) 0 0
\(471\) −1849.80 −0.180964
\(472\) −5106.40 −0.497968
\(473\) 1713.58 0.166576
\(474\) 1652.97 0.160176
\(475\) 0 0
\(476\) −52.3458 −0.00504047
\(477\) 1755.16 0.168476
\(478\) 1464.06 0.140093
\(479\) 10751.8 1.02560 0.512801 0.858508i \(-0.328608\pi\)
0.512801 + 0.858508i \(0.328608\pi\)
\(480\) 0 0
\(481\) 7793.65 0.738794
\(482\) 2542.93 0.240306
\(483\) −124.838 −0.0117605
\(484\) −904.630 −0.0849577
\(485\) 0 0
\(486\) −175.856 −0.0164135
\(487\) −2115.37 −0.196831 −0.0984154 0.995145i \(-0.531377\pi\)
−0.0984154 + 0.995145i \(0.531377\pi\)
\(488\) −4942.30 −0.458458
\(489\) 6093.46 0.563509
\(490\) 0 0
\(491\) 4634.30 0.425953 0.212977 0.977057i \(-0.431684\pi\)
0.212977 + 0.977057i \(0.431684\pi\)
\(492\) −6099.29 −0.558897
\(493\) 439.653 0.0401642
\(494\) −1468.47 −0.133744
\(495\) 0 0
\(496\) 9644.09 0.873049
\(497\) −1180.10 −0.106509
\(498\) −112.281 −0.0101032
\(499\) 2495.43 0.223870 0.111935 0.993716i \(-0.464295\pi\)
0.111935 + 0.993716i \(0.464295\pi\)
\(500\) 0 0
\(501\) −6344.69 −0.565788
\(502\) −1313.00 −0.116737
\(503\) 18521.0 1.64177 0.820886 0.571092i \(-0.193480\pi\)
0.820886 + 0.571092i \(0.193480\pi\)
\(504\) 114.194 0.0100925
\(505\) 0 0
\(506\) 292.404 0.0256896
\(507\) −5157.87 −0.451813
\(508\) −8440.41 −0.737170
\(509\) −6102.40 −0.531403 −0.265702 0.964055i \(-0.585604\pi\)
−0.265702 + 0.964055i \(0.585604\pi\)
\(510\) 0 0
\(511\) −181.396 −0.0157035
\(512\) −11200.2 −0.966765
\(513\) −2506.66 −0.215735
\(514\) −1046.06 −0.0897661
\(515\) 0 0
\(516\) −3493.96 −0.298087
\(517\) 2580.23 0.219494
\(518\) 292.344 0.0247970
\(519\) −46.5288 −0.00393523
\(520\) 0 0
\(521\) −2813.12 −0.236555 −0.118277 0.992981i \(-0.537737\pi\)
−0.118277 + 0.992981i \(0.537737\pi\)
\(522\) −463.331 −0.0388495
\(523\) 1563.27 0.130702 0.0653509 0.997862i \(-0.479183\pi\)
0.0653509 + 0.997862i \(0.479183\pi\)
\(524\) 11680.3 0.973772
\(525\) 0 0
\(526\) 3192.75 0.264659
\(527\) 1152.76 0.0952850
\(528\) 1706.26 0.140636
\(529\) −10817.8 −0.889109
\(530\) 0 0
\(531\) −4103.37 −0.335350
\(532\) 786.326 0.0640818
\(533\) −5943.67 −0.483019
\(534\) 2334.44 0.189178
\(535\) 0 0
\(536\) 1489.65 0.120043
\(537\) 1463.97 0.117645
\(538\) −2862.28 −0.229371
\(539\) −3758.88 −0.300383
\(540\) 0 0
\(541\) −5959.61 −0.473611 −0.236806 0.971557i \(-0.576100\pi\)
−0.236806 + 0.971557i \(0.576100\pi\)
\(542\) −4817.55 −0.381792
\(543\) 3746.13 0.296062
\(544\) −785.012 −0.0618697
\(545\) 0 0
\(546\) 53.7574 0.00421356
\(547\) 18084.2 1.41357 0.706787 0.707426i \(-0.250144\pi\)
0.706787 + 0.707426i \(0.250144\pi\)
\(548\) −335.927 −0.0261863
\(549\) −3971.50 −0.308742
\(550\) 0 0
\(551\) −6604.35 −0.510626
\(552\) −1234.18 −0.0951634
\(553\) −862.540 −0.0663272
\(554\) −6168.55 −0.473062
\(555\) 0 0
\(556\) 3106.95 0.236985
\(557\) 18129.5 1.37912 0.689561 0.724227i \(-0.257803\pi\)
0.689561 + 0.724227i \(0.257803\pi\)
\(558\) −1214.85 −0.0921659
\(559\) −3404.81 −0.257618
\(560\) 0 0
\(561\) 203.951 0.0153490
\(562\) 3047.43 0.228733
\(563\) −17910.2 −1.34072 −0.670361 0.742035i \(-0.733861\pi\)
−0.670361 + 0.742035i \(0.733861\pi\)
\(564\) −5261.04 −0.392784
\(565\) 0 0
\(566\) −2554.36 −0.189696
\(567\) 91.7635 0.00679666
\(568\) −11666.8 −0.861843
\(569\) 24176.6 1.78126 0.890629 0.454731i \(-0.150265\pi\)
0.890629 + 0.454731i \(0.150265\pi\)
\(570\) 0 0
\(571\) −13167.8 −0.965073 −0.482537 0.875876i \(-0.660285\pi\)
−0.482537 + 0.875876i \(0.660285\pi\)
\(572\) 1797.46 0.131391
\(573\) −7714.81 −0.562462
\(574\) −222.950 −0.0162121
\(575\) 0 0
\(576\) −2895.47 −0.209452
\(577\) −722.513 −0.0521293 −0.0260646 0.999660i \(-0.508298\pi\)
−0.0260646 + 0.999660i \(0.508298\pi\)
\(578\) 3527.83 0.253872
\(579\) 3665.41 0.263091
\(580\) 0 0
\(581\) 58.5893 0.00418364
\(582\) 1526.77 0.108740
\(583\) 2145.19 0.152393
\(584\) −1793.33 −0.127069
\(585\) 0 0
\(586\) 5146.10 0.362770
\(587\) −17038.8 −1.19807 −0.599034 0.800723i \(-0.704449\pi\)
−0.599034 + 0.800723i \(0.704449\pi\)
\(588\) 7664.31 0.537535
\(589\) −17316.5 −1.21140
\(590\) 0 0
\(591\) −4284.97 −0.298241
\(592\) −18437.0 −1.28000
\(593\) 6206.74 0.429815 0.214908 0.976634i \(-0.431055\pi\)
0.214908 + 0.976634i \(0.431055\pi\)
\(594\) −214.935 −0.0148466
\(595\) 0 0
\(596\) −5071.92 −0.348580
\(597\) −2448.50 −0.167856
\(598\) −580.996 −0.0397302
\(599\) −23050.7 −1.57233 −0.786164 0.618018i \(-0.787936\pi\)
−0.786164 + 0.618018i \(0.787936\pi\)
\(600\) 0 0
\(601\) −6323.69 −0.429199 −0.214600 0.976702i \(-0.568845\pi\)
−0.214600 + 0.976702i \(0.568845\pi\)
\(602\) −127.716 −0.00864673
\(603\) 1197.04 0.0808412
\(604\) −4606.01 −0.310291
\(605\) 0 0
\(606\) 1860.35 0.124705
\(607\) 4625.14 0.309273 0.154636 0.987971i \(-0.450579\pi\)
0.154636 + 0.987971i \(0.450579\pi\)
\(608\) 11792.3 0.786577
\(609\) 241.771 0.0160871
\(610\) 0 0
\(611\) −5126.81 −0.339457
\(612\) −415.853 −0.0274671
\(613\) −28075.3 −1.84984 −0.924919 0.380164i \(-0.875868\pi\)
−0.924919 + 0.380164i \(0.875868\pi\)
\(614\) −6856.72 −0.450676
\(615\) 0 0
\(616\) 139.571 0.00912900
\(617\) −7264.85 −0.474023 −0.237011 0.971507i \(-0.576168\pi\)
−0.237011 + 0.971507i \(0.576168\pi\)
\(618\) 1749.85 0.113898
\(619\) −30583.2 −1.98585 −0.992927 0.118728i \(-0.962119\pi\)
−0.992927 + 0.118728i \(0.962119\pi\)
\(620\) 0 0
\(621\) −991.755 −0.0640866
\(622\) 3770.93 0.243088
\(623\) −1218.14 −0.0783365
\(624\) −3390.28 −0.217500
\(625\) 0 0
\(626\) −1407.04 −0.0898351
\(627\) −3063.70 −0.195139
\(628\) 4609.86 0.292920
\(629\) −2203.79 −0.139699
\(630\) 0 0
\(631\) −16679.8 −1.05232 −0.526159 0.850386i \(-0.676368\pi\)
−0.526159 + 0.850386i \(0.676368\pi\)
\(632\) −8527.29 −0.536705
\(633\) −2710.08 −0.170167
\(634\) 4959.23 0.310656
\(635\) 0 0
\(636\) −4374.02 −0.272706
\(637\) 7468.75 0.464557
\(638\) −566.293 −0.0351407
\(639\) −9375.11 −0.580397
\(640\) 0 0
\(641\) 4225.31 0.260358 0.130179 0.991490i \(-0.458445\pi\)
0.130179 + 0.991490i \(0.458445\pi\)
\(642\) 3492.25 0.214685
\(643\) 23703.5 1.45377 0.726886 0.686758i \(-0.240967\pi\)
0.726886 + 0.686758i \(0.240967\pi\)
\(644\) 311.108 0.0190363
\(645\) 0 0
\(646\) 415.234 0.0252898
\(647\) −10045.1 −0.610374 −0.305187 0.952292i \(-0.598719\pi\)
−0.305187 + 0.952292i \(0.598719\pi\)
\(648\) 907.197 0.0549970
\(649\) −5015.23 −0.303336
\(650\) 0 0
\(651\) 633.921 0.0381649
\(652\) −15185.5 −0.912130
\(653\) −32314.2 −1.93652 −0.968262 0.249936i \(-0.919590\pi\)
−0.968262 + 0.249936i \(0.919590\pi\)
\(654\) 2009.80 0.120167
\(655\) 0 0
\(656\) 14060.6 0.836853
\(657\) −1441.07 −0.0855731
\(658\) −192.309 −0.0113936
\(659\) −12032.4 −0.711253 −0.355627 0.934628i \(-0.615733\pi\)
−0.355627 + 0.934628i \(0.615733\pi\)
\(660\) 0 0
\(661\) 12864.5 0.756988 0.378494 0.925604i \(-0.376442\pi\)
0.378494 + 0.925604i \(0.376442\pi\)
\(662\) 1461.74 0.0858189
\(663\) −405.242 −0.0237380
\(664\) 579.229 0.0338531
\(665\) 0 0
\(666\) 2322.48 0.135126
\(667\) −2613.00 −0.151688
\(668\) 15811.5 0.915819
\(669\) 1601.90 0.0925754
\(670\) 0 0
\(671\) −4854.06 −0.279268
\(672\) −431.689 −0.0247809
\(673\) 12007.5 0.687751 0.343876 0.939015i \(-0.388260\pi\)
0.343876 + 0.939015i \(0.388260\pi\)
\(674\) −8495.16 −0.485492
\(675\) 0 0
\(676\) 12853.9 0.731332
\(677\) −10732.5 −0.609284 −0.304642 0.952467i \(-0.598537\pi\)
−0.304642 + 0.952467i \(0.598537\pi\)
\(678\) −2637.43 −0.149395
\(679\) −796.687 −0.0450280
\(680\) 0 0
\(681\) 2089.59 0.117582
\(682\) −1484.81 −0.0833672
\(683\) 14126.0 0.791383 0.395692 0.918383i \(-0.370505\pi\)
0.395692 + 0.918383i \(0.370505\pi\)
\(684\) 6246.83 0.349201
\(685\) 0 0
\(686\) 561.366 0.0312435
\(687\) −2390.38 −0.132749
\(688\) 8054.59 0.446335
\(689\) −4262.42 −0.235682
\(690\) 0 0
\(691\) −18467.8 −1.01671 −0.508357 0.861147i \(-0.669747\pi\)
−0.508357 + 0.861147i \(0.669747\pi\)
\(692\) 115.954 0.00636981
\(693\) 112.155 0.00614781
\(694\) −9185.17 −0.502398
\(695\) 0 0
\(696\) 2390.21 0.130173
\(697\) 1680.68 0.0913345
\(698\) −8703.66 −0.471975
\(699\) −16971.2 −0.918327
\(700\) 0 0
\(701\) −24876.0 −1.34030 −0.670152 0.742224i \(-0.733771\pi\)
−0.670152 + 0.742224i \(0.733771\pi\)
\(702\) 427.067 0.0229610
\(703\) 33104.8 1.77606
\(704\) −3538.91 −0.189457
\(705\) 0 0
\(706\) 6475.83 0.345214
\(707\) −970.752 −0.0516391
\(708\) 10226.0 0.542819
\(709\) 21271.1 1.12673 0.563367 0.826207i \(-0.309506\pi\)
0.563367 + 0.826207i \(0.309506\pi\)
\(710\) 0 0
\(711\) −6852.31 −0.361437
\(712\) −12042.8 −0.633881
\(713\) −6851.25 −0.359862
\(714\) −15.2008 −0.000796747 0
\(715\) 0 0
\(716\) −3648.36 −0.190427
\(717\) −6069.17 −0.316119
\(718\) −2827.09 −0.146945
\(719\) 19213.9 0.996603 0.498302 0.867004i \(-0.333957\pi\)
0.498302 + 0.867004i \(0.333957\pi\)
\(720\) 0 0
\(721\) −913.091 −0.0471641
\(722\) −1273.79 −0.0656585
\(723\) −10541.6 −0.542249
\(724\) −9335.70 −0.479224
\(725\) 0 0
\(726\) −262.698 −0.0134293
\(727\) −27454.7 −1.40060 −0.700302 0.713846i \(-0.746951\pi\)
−0.700302 + 0.713846i \(0.746951\pi\)
\(728\) −277.322 −0.0141184
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 962.770 0.0487132
\(732\) 9897.35 0.499750
\(733\) −1182.16 −0.0595691 −0.0297846 0.999556i \(-0.509482\pi\)
−0.0297846 + 0.999556i \(0.509482\pi\)
\(734\) −3057.61 −0.153758
\(735\) 0 0
\(736\) 4665.58 0.233662
\(737\) 1463.05 0.0731237
\(738\) −1771.19 −0.0883447
\(739\) 25688.2 1.27869 0.639347 0.768918i \(-0.279205\pi\)
0.639347 + 0.768918i \(0.279205\pi\)
\(740\) 0 0
\(741\) 6087.45 0.301792
\(742\) −159.886 −0.00791049
\(743\) 32431.2 1.60132 0.800662 0.599116i \(-0.204481\pi\)
0.800662 + 0.599116i \(0.204481\pi\)
\(744\) 6267.10 0.308822
\(745\) 0 0
\(746\) −3056.49 −0.150008
\(747\) 465.453 0.0227979
\(748\) −508.264 −0.0248449
\(749\) −1822.29 −0.0888988
\(750\) 0 0
\(751\) −32093.5 −1.55940 −0.779700 0.626154i \(-0.784628\pi\)
−0.779700 + 0.626154i \(0.784628\pi\)
\(752\) 12128.2 0.588127
\(753\) 5442.96 0.263416
\(754\) 1125.20 0.0543467
\(755\) 0 0
\(756\) −228.683 −0.0110015
\(757\) −1293.36 −0.0620977 −0.0310488 0.999518i \(-0.509885\pi\)
−0.0310488 + 0.999518i \(0.509885\pi\)
\(758\) 541.323 0.0259390
\(759\) −1212.15 −0.0579685
\(760\) 0 0
\(761\) 29013.1 1.38203 0.691014 0.722841i \(-0.257164\pi\)
0.691014 + 0.722841i \(0.257164\pi\)
\(762\) −2451.03 −0.116524
\(763\) −1048.74 −0.0497599
\(764\) 19226.0 0.910436
\(765\) 0 0
\(766\) −3378.22 −0.159347
\(767\) 9965.06 0.469123
\(768\) 5009.67 0.235379
\(769\) −31304.1 −1.46795 −0.733976 0.679176i \(-0.762337\pi\)
−0.733976 + 0.679176i \(0.762337\pi\)
\(770\) 0 0
\(771\) 4336.39 0.202557
\(772\) −9134.55 −0.425855
\(773\) 41913.5 1.95023 0.975113 0.221710i \(-0.0711637\pi\)
0.975113 + 0.221710i \(0.0711637\pi\)
\(774\) −1014.62 −0.0471186
\(775\) 0 0
\(776\) −7876.24 −0.364357
\(777\) −1211.90 −0.0559543
\(778\) −4735.89 −0.218239
\(779\) −25246.7 −1.16118
\(780\) 0 0
\(781\) −11458.5 −0.524989
\(782\) 164.287 0.00751263
\(783\) 1920.71 0.0876637
\(784\) −17668.4 −0.804867
\(785\) 0 0
\(786\) 3391.88 0.153924
\(787\) −6648.00 −0.301113 −0.150556 0.988601i \(-0.548106\pi\)
−0.150556 + 0.988601i \(0.548106\pi\)
\(788\) 10678.6 0.482751
\(789\) −13235.4 −0.597201
\(790\) 0 0
\(791\) 1376.24 0.0618628
\(792\) 1108.80 0.0497467
\(793\) 9644.82 0.431901
\(794\) −4660.42 −0.208302
\(795\) 0 0
\(796\) 6101.88 0.271703
\(797\) 14798.4 0.657701 0.328850 0.944382i \(-0.393339\pi\)
0.328850 + 0.944382i \(0.393339\pi\)
\(798\) 228.343 0.0101294
\(799\) 1449.69 0.0641884
\(800\) 0 0
\(801\) −9677.28 −0.426879
\(802\) −5591.94 −0.246207
\(803\) −1761.31 −0.0774038
\(804\) −2983.14 −0.130855
\(805\) 0 0
\(806\) 2950.27 0.128931
\(807\) 11865.4 0.517574
\(808\) −9597.09 −0.417852
\(809\) 4500.04 0.195566 0.0977831 0.995208i \(-0.468825\pi\)
0.0977831 + 0.995208i \(0.468825\pi\)
\(810\) 0 0
\(811\) −1909.49 −0.0826773 −0.0413386 0.999145i \(-0.513162\pi\)
−0.0413386 + 0.999145i \(0.513162\pi\)
\(812\) −602.517 −0.0260396
\(813\) 19970.9 0.861512
\(814\) 2838.58 0.122226
\(815\) 0 0
\(816\) 958.661 0.0411273
\(817\) −14462.5 −0.619313
\(818\) 1838.14 0.0785685
\(819\) −222.848 −0.00950788
\(820\) 0 0
\(821\) 10928.6 0.464569 0.232285 0.972648i \(-0.425380\pi\)
0.232285 + 0.972648i \(0.425380\pi\)
\(822\) −97.5507 −0.00413926
\(823\) 29278.4 1.24007 0.620036 0.784573i \(-0.287118\pi\)
0.620036 + 0.784573i \(0.287118\pi\)
\(824\) −9027.05 −0.381641
\(825\) 0 0
\(826\) 373.795 0.0157457
\(827\) −878.905 −0.0369559 −0.0184779 0.999829i \(-0.505882\pi\)
−0.0184779 + 0.999829i \(0.505882\pi\)
\(828\) 2471.55 0.103734
\(829\) 16130.1 0.675779 0.337890 0.941186i \(-0.390287\pi\)
0.337890 + 0.941186i \(0.390287\pi\)
\(830\) 0 0
\(831\) 25571.4 1.06746
\(832\) 7031.67 0.293004
\(833\) −2111.92 −0.0878436
\(834\) 902.235 0.0374603
\(835\) 0 0
\(836\) 7635.02 0.315864
\(837\) 5036.08 0.207972
\(838\) −846.838 −0.0349088
\(839\) −39531.8 −1.62669 −0.813343 0.581784i \(-0.802355\pi\)
−0.813343 + 0.581784i \(0.802355\pi\)
\(840\) 0 0
\(841\) −19328.5 −0.792507
\(842\) −2901.27 −0.118746
\(843\) −12633.0 −0.516135
\(844\) 6753.77 0.275443
\(845\) 0 0
\(846\) −1527.77 −0.0620872
\(847\) 137.079 0.00556090
\(848\) 10083.4 0.408331
\(849\) 10589.0 0.428048
\(850\) 0 0
\(851\) 13097.8 0.527600
\(852\) 23363.7 0.939467
\(853\) −5373.68 −0.215699 −0.107849 0.994167i \(-0.534396\pi\)
−0.107849 + 0.994167i \(0.534396\pi\)
\(854\) 361.782 0.0144964
\(855\) 0 0
\(856\) −18015.7 −0.719349
\(857\) −45378.4 −1.80875 −0.904374 0.426740i \(-0.859662\pi\)
−0.904374 + 0.426740i \(0.859662\pi\)
\(858\) 521.971 0.0207690
\(859\) 35336.8 1.40358 0.701791 0.712383i \(-0.252384\pi\)
0.701791 + 0.712383i \(0.252384\pi\)
\(860\) 0 0
\(861\) 924.228 0.0365826
\(862\) 1937.09 0.0765401
\(863\) −24595.3 −0.970143 −0.485071 0.874475i \(-0.661206\pi\)
−0.485071 + 0.874475i \(0.661206\pi\)
\(864\) −3429.48 −0.135039
\(865\) 0 0
\(866\) −4093.05 −0.160609
\(867\) −14624.4 −0.572862
\(868\) −1579.79 −0.0617760
\(869\) −8375.04 −0.326932
\(870\) 0 0
\(871\) −2907.02 −0.113089
\(872\) −10368.1 −0.402646
\(873\) −6329.14 −0.245371
\(874\) −2467.87 −0.0955115
\(875\) 0 0
\(876\) 3591.28 0.138514
\(877\) −8251.06 −0.317695 −0.158848 0.987303i \(-0.550778\pi\)
−0.158848 + 0.987303i \(0.550778\pi\)
\(878\) 4563.52 0.175412
\(879\) −21332.9 −0.818589
\(880\) 0 0
\(881\) −3528.36 −0.134930 −0.0674651 0.997722i \(-0.521491\pi\)
−0.0674651 + 0.997722i \(0.521491\pi\)
\(882\) 2225.66 0.0849681
\(883\) 35459.1 1.35141 0.675703 0.737174i \(-0.263840\pi\)
0.675703 + 0.737174i \(0.263840\pi\)
\(884\) 1009.90 0.0384238
\(885\) 0 0
\(886\) 4900.96 0.185836
\(887\) 32544.8 1.23196 0.615979 0.787763i \(-0.288761\pi\)
0.615979 + 0.787763i \(0.288761\pi\)
\(888\) −11981.1 −0.452770
\(889\) 1278.98 0.0482514
\(890\) 0 0
\(891\) 891.000 0.0335013
\(892\) −3992.08 −0.149848
\(893\) −21777.0 −0.816056
\(894\) −1472.85 −0.0551000
\(895\) 0 0
\(896\) 1414.93 0.0527562
\(897\) 2408.49 0.0896510
\(898\) 3654.01 0.135786
\(899\) 13268.7 0.492253
\(900\) 0 0
\(901\) 1205.27 0.0445654
\(902\) −2164.79 −0.0799108
\(903\) 529.441 0.0195113
\(904\) 13605.9 0.500579
\(905\) 0 0
\(906\) −1337.55 −0.0490477
\(907\) 20383.4 0.746219 0.373110 0.927787i \(-0.378291\pi\)
0.373110 + 0.927787i \(0.378291\pi\)
\(908\) −5207.46 −0.190326
\(909\) −7711.98 −0.281397
\(910\) 0 0
\(911\) 7783.29 0.283065 0.141532 0.989934i \(-0.454797\pi\)
0.141532 + 0.989934i \(0.454797\pi\)
\(912\) −14400.8 −0.522869
\(913\) 568.887 0.0206215
\(914\) −2797.87 −0.101253
\(915\) 0 0
\(916\) 5957.05 0.214876
\(917\) −1769.92 −0.0637382
\(918\) −120.761 −0.00434171
\(919\) 27294.9 0.979734 0.489867 0.871797i \(-0.337045\pi\)
0.489867 + 0.871797i \(0.337045\pi\)
\(920\) 0 0
\(921\) 28424.2 1.01695
\(922\) 6591.95 0.235460
\(923\) 22767.5 0.811920
\(924\) −279.502 −0.00995122
\(925\) 0 0
\(926\) 12607.9 0.447432
\(927\) −7253.90 −0.257011
\(928\) −9035.73 −0.319625
\(929\) −46468.7 −1.64111 −0.820554 0.571568i \(-0.806335\pi\)
−0.820554 + 0.571568i \(0.806335\pi\)
\(930\) 0 0
\(931\) 31724.7 1.11679
\(932\) 42293.9 1.48646
\(933\) −15632.2 −0.548526
\(934\) −1883.29 −0.0659776
\(935\) 0 0
\(936\) −2203.14 −0.0769356
\(937\) 6922.45 0.241352 0.120676 0.992692i \(-0.461494\pi\)
0.120676 + 0.992692i \(0.461494\pi\)
\(938\) −109.044 −0.00379575
\(939\) 5832.82 0.202712
\(940\) 0 0
\(941\) −23772.1 −0.823536 −0.411768 0.911289i \(-0.635089\pi\)
−0.411768 + 0.911289i \(0.635089\pi\)
\(942\) 1338.67 0.0463018
\(943\) −9988.80 −0.344942
\(944\) −23573.8 −0.812779
\(945\) 0 0
\(946\) −1240.09 −0.0426204
\(947\) 7177.76 0.246300 0.123150 0.992388i \(-0.460700\pi\)
0.123150 + 0.992388i \(0.460700\pi\)
\(948\) 17076.6 0.585044
\(949\) 3499.65 0.119709
\(950\) 0 0
\(951\) −20558.2 −0.700994
\(952\) 78.4175 0.00266967
\(953\) −27530.2 −0.935772 −0.467886 0.883789i \(-0.654984\pi\)
−0.467886 + 0.883789i \(0.654984\pi\)
\(954\) −1270.18 −0.0431066
\(955\) 0 0
\(956\) 15124.9 0.511690
\(957\) 2347.54 0.0792948
\(958\) −7780.94 −0.262412
\(959\) 50.9031 0.00171402
\(960\) 0 0
\(961\) 4999.29 0.167812
\(962\) −5640.15 −0.189029
\(963\) −14476.9 −0.484436
\(964\) 26270.6 0.877718
\(965\) 0 0
\(966\) 90.3435 0.00300906
\(967\) −55407.1 −1.84258 −0.921288 0.388881i \(-0.872862\pi\)
−0.921288 + 0.388881i \(0.872862\pi\)
\(968\) 1355.20 0.0449976
\(969\) −1721.33 −0.0570662
\(970\) 0 0
\(971\) −55100.7 −1.82108 −0.910539 0.413423i \(-0.864333\pi\)
−0.910539 + 0.413423i \(0.864333\pi\)
\(972\) −1816.74 −0.0599504
\(973\) −470.797 −0.0155119
\(974\) 1530.86 0.0503615
\(975\) 0 0
\(976\) −22816.3 −0.748290
\(977\) 44473.9 1.45634 0.728170 0.685396i \(-0.240371\pi\)
0.728170 + 0.685396i \(0.240371\pi\)
\(978\) −4409.75 −0.144180
\(979\) −11827.8 −0.386127
\(980\) 0 0
\(981\) −8331.52 −0.271157
\(982\) −3353.78 −0.108985
\(983\) −28003.0 −0.908605 −0.454302 0.890848i \(-0.650111\pi\)
−0.454302 + 0.890848i \(0.650111\pi\)
\(984\) 9137.15 0.296018
\(985\) 0 0
\(986\) −318.170 −0.0102765
\(987\) 797.208 0.0257096
\(988\) −15170.5 −0.488499
\(989\) −5722.06 −0.183974
\(990\) 0 0
\(991\) −40719.5 −1.30524 −0.652622 0.757684i \(-0.726331\pi\)
−0.652622 + 0.757684i \(0.726331\pi\)
\(992\) −23691.6 −0.758274
\(993\) −6059.56 −0.193650
\(994\) 854.022 0.0272514
\(995\) 0 0
\(996\) −1159.95 −0.0369021
\(997\) 18161.1 0.576898 0.288449 0.957495i \(-0.406860\pi\)
0.288449 + 0.957495i \(0.406860\pi\)
\(998\) −1805.91 −0.0572796
\(999\) −9627.70 −0.304912
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 825.4.a.o.1.2 3
3.2 odd 2 2475.4.a.y.1.2 3
5.2 odd 4 825.4.c.n.199.3 6
5.3 odd 4 825.4.c.n.199.4 6
5.4 even 2 825.4.a.q.1.2 yes 3
15.14 odd 2 2475.4.a.v.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
825.4.a.o.1.2 3 1.1 even 1 trivial
825.4.a.q.1.2 yes 3 5.4 even 2
825.4.c.n.199.3 6 5.2 odd 4
825.4.c.n.199.4 6 5.3 odd 4
2475.4.a.v.1.2 3 15.14 odd 2
2475.4.a.y.1.2 3 3.2 odd 2