Properties

Label 825.4.a.l
Level $825$
Weight $4$
Character orbit 825.a
Self dual yes
Analytic conductor $48.677$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [825,4,Mod(1,825)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(825, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("825.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 825 = 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 825.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.6765757547\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{97}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 24 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 33)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{97})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta q^{2} + 3 q^{3} + (\beta + 16) q^{4} - 3 \beta q^{6} + (4 \beta - 14) q^{7} + ( - 9 \beta - 24) q^{8} + 9 q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q - \beta q^{2} + 3 q^{3} + (\beta + 16) q^{4} - 3 \beta q^{6} + (4 \beta - 14) q^{7} + ( - 9 \beta - 24) q^{8} + 9 q^{9} - 11 q^{11} + (3 \beta + 48) q^{12} + ( - 2 \beta - 14) q^{13} + (10 \beta - 96) q^{14} + (25 \beta + 88) q^{16} + (14 \beta - 60) q^{17} - 9 \beta q^{18} + ( - 2 \beta + 26) q^{19} + (12 \beta - 42) q^{21} + 11 \beta q^{22} + (10 \beta - 72) q^{23} + ( - 27 \beta - 72) q^{24} + (16 \beta + 48) q^{26} + 27 q^{27} + (54 \beta - 128) q^{28} + ( - 6 \beta - 96) q^{29} + (8 \beta + 176) q^{31} + ( - 41 \beta - 408) q^{32} - 33 q^{33} + (46 \beta - 336) q^{34} + (9 \beta + 144) q^{36} + ( - 52 \beta + 190) q^{37} + ( - 24 \beta + 48) q^{38} + ( - 6 \beta - 42) q^{39} + ( - 14 \beta - 384) q^{41} + (30 \beta - 288) q^{42} + (26 \beta - 206) q^{43} + ( - 11 \beta - 176) q^{44} + (62 \beta - 240) q^{46} + ( - 74 \beta - 96) q^{47} + (75 \beta + 264) q^{48} + ( - 96 \beta + 237) q^{49} + (42 \beta - 180) q^{51} + ( - 48 \beta - 272) q^{52} + (54 \beta + 234) q^{53} - 27 \beta q^{54} + ( - 6 \beta - 528) q^{56} + ( - 6 \beta + 78) q^{57} + (102 \beta + 144) q^{58} + ( - 100 \beta - 36) q^{59} + (34 \beta - 406) q^{61} + ( - 184 \beta - 192) q^{62} + (36 \beta - 126) q^{63} + (249 \beta + 280) q^{64} + 33 \beta q^{66} + (96 \beta + 340) q^{67} + (178 \beta - 624) q^{68} + (30 \beta - 216) q^{69} + (54 \beta + 288) q^{71} + ( - 81 \beta - 216) q^{72} + (28 \beta - 662) q^{73} + ( - 138 \beta + 1248) q^{74} + ( - 8 \beta + 368) q^{76} + ( - 44 \beta + 154) q^{77} + (48 \beta + 144) q^{78} + (144 \beta + 254) q^{79} + 81 q^{81} + (398 \beta + 336) q^{82} + ( - 156 \beta + 240) q^{83} + (162 \beta - 384) q^{84} + (180 \beta - 624) q^{86} + ( - 18 \beta - 288) q^{87} + (99 \beta + 264) q^{88} + (72 \beta - 414) q^{89} + ( - 36 \beta + 4) q^{91} + (98 \beta - 912) q^{92} + (24 \beta + 528) q^{93} + (170 \beta + 1776) q^{94} + ( - 123 \beta - 1224) q^{96} + ( - 192 \beta + 322) q^{97} + ( - 141 \beta + 2304) q^{98} - 99 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} + 6 q^{3} + 33 q^{4} - 3 q^{6} - 24 q^{7} - 57 q^{8} + 18 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - q^{2} + 6 q^{3} + 33 q^{4} - 3 q^{6} - 24 q^{7} - 57 q^{8} + 18 q^{9} - 22 q^{11} + 99 q^{12} - 30 q^{13} - 182 q^{14} + 201 q^{16} - 106 q^{17} - 9 q^{18} + 50 q^{19} - 72 q^{21} + 11 q^{22} - 134 q^{23} - 171 q^{24} + 112 q^{26} + 54 q^{27} - 202 q^{28} - 198 q^{29} + 360 q^{31} - 857 q^{32} - 66 q^{33} - 626 q^{34} + 297 q^{36} + 328 q^{37} + 72 q^{38} - 90 q^{39} - 782 q^{41} - 546 q^{42} - 386 q^{43} - 363 q^{44} - 418 q^{46} - 266 q^{47} + 603 q^{48} + 378 q^{49} - 318 q^{51} - 592 q^{52} + 522 q^{53} - 27 q^{54} - 1062 q^{56} + 150 q^{57} + 390 q^{58} - 172 q^{59} - 778 q^{61} - 568 q^{62} - 216 q^{63} + 809 q^{64} + 33 q^{66} + 776 q^{67} - 1070 q^{68} - 402 q^{69} + 630 q^{71} - 513 q^{72} - 1296 q^{73} + 2358 q^{74} + 728 q^{76} + 264 q^{77} + 336 q^{78} + 652 q^{79} + 162 q^{81} + 1070 q^{82} + 324 q^{83} - 606 q^{84} - 1068 q^{86} - 594 q^{87} + 627 q^{88} - 756 q^{89} - 28 q^{91} - 1726 q^{92} + 1080 q^{93} + 3722 q^{94} - 2571 q^{96} + 452 q^{97} + 4467 q^{98} - 198 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
5.42443
−4.42443
−5.42443 3.00000 21.4244 0 −16.2733 7.69772 −72.8199 9.00000 0
1.2 4.42443 3.00000 11.5756 0 13.2733 −31.6977 15.8199 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( +1 \)
\(11\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 825.4.a.l 2
3.b odd 2 1 2475.4.a.p 2
5.b even 2 1 33.4.a.c 2
5.c odd 4 2 825.4.c.h 4
15.d odd 2 1 99.4.a.f 2
20.d odd 2 1 528.4.a.p 2
35.c odd 2 1 1617.4.a.k 2
40.e odd 2 1 2112.4.a.bg 2
40.f even 2 1 2112.4.a.bn 2
55.d odd 2 1 363.4.a.i 2
60.h even 2 1 1584.4.a.bj 2
165.d even 2 1 1089.4.a.u 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
33.4.a.c 2 5.b even 2 1
99.4.a.f 2 15.d odd 2 1
363.4.a.i 2 55.d odd 2 1
528.4.a.p 2 20.d odd 2 1
825.4.a.l 2 1.a even 1 1 trivial
825.4.c.h 4 5.c odd 4 2
1089.4.a.u 2 165.d even 2 1
1584.4.a.bj 2 60.h even 2 1
1617.4.a.k 2 35.c odd 2 1
2112.4.a.bg 2 40.e odd 2 1
2112.4.a.bn 2 40.f even 2 1
2475.4.a.p 2 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(825))\):

\( T_{2}^{2} + T_{2} - 24 \) Copy content Toggle raw display
\( T_{7}^{2} + 24T_{7} - 244 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + T - 24 \) Copy content Toggle raw display
$3$ \( (T - 3)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 24T - 244 \) Copy content Toggle raw display
$11$ \( (T + 11)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 30T + 128 \) Copy content Toggle raw display
$17$ \( T^{2} + 106T - 1944 \) Copy content Toggle raw display
$19$ \( T^{2} - 50T + 528 \) Copy content Toggle raw display
$23$ \( T^{2} + 134T + 2064 \) Copy content Toggle raw display
$29$ \( T^{2} + 198T + 8928 \) Copy content Toggle raw display
$31$ \( T^{2} - 360T + 30848 \) Copy content Toggle raw display
$37$ \( T^{2} - 328T - 38676 \) Copy content Toggle raw display
$41$ \( T^{2} + 782T + 148128 \) Copy content Toggle raw display
$43$ \( T^{2} + 386T + 20856 \) Copy content Toggle raw display
$47$ \( T^{2} + 266T - 115104 \) Copy content Toggle raw display
$53$ \( T^{2} - 522T - 2592 \) Copy content Toggle raw display
$59$ \( T^{2} + 172T - 235104 \) Copy content Toggle raw display
$61$ \( T^{2} + 778T + 123288 \) Copy content Toggle raw display
$67$ \( T^{2} - 776T - 72944 \) Copy content Toggle raw display
$71$ \( T^{2} - 630T + 28512 \) Copy content Toggle raw display
$73$ \( T^{2} + 1296 T + 400892 \) Copy content Toggle raw display
$79$ \( T^{2} - 652T - 396572 \) Copy content Toggle raw display
$83$ \( T^{2} - 324T - 563904 \) Copy content Toggle raw display
$89$ \( T^{2} + 756T + 17172 \) Copy content Toggle raw display
$97$ \( T^{2} - 452T - 842876 \) Copy content Toggle raw display
show more
show less