Properties

Label 825.4.a.h.1.1
Level $825$
Weight $4$
Character 825.1
Self dual yes
Analytic conductor $48.677$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [825,4,Mod(1,825)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(825, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("825.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 825 = 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 825.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.6765757547\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 825.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000 q^{2} -3.00000 q^{3} +8.00000 q^{4} -12.0000 q^{6} -21.0000 q^{7} +9.00000 q^{9} +O(q^{10})\) \(q+4.00000 q^{2} -3.00000 q^{3} +8.00000 q^{4} -12.0000 q^{6} -21.0000 q^{7} +9.00000 q^{9} +11.0000 q^{11} -24.0000 q^{12} +68.0000 q^{13} -84.0000 q^{14} -64.0000 q^{16} -21.0000 q^{17} +36.0000 q^{18} +125.000 q^{19} +63.0000 q^{21} +44.0000 q^{22} -137.000 q^{23} +272.000 q^{26} -27.0000 q^{27} -168.000 q^{28} -150.000 q^{29} +292.000 q^{31} -256.000 q^{32} -33.0000 q^{33} -84.0000 q^{34} +72.0000 q^{36} +349.000 q^{37} +500.000 q^{38} -204.000 q^{39} +497.000 q^{41} +252.000 q^{42} +208.000 q^{43} +88.0000 q^{44} -548.000 q^{46} +369.000 q^{47} +192.000 q^{48} +98.0000 q^{49} +63.0000 q^{51} +544.000 q^{52} -542.000 q^{53} -108.000 q^{54} -375.000 q^{57} -600.000 q^{58} +235.000 q^{59} +482.000 q^{61} +1168.00 q^{62} -189.000 q^{63} -512.000 q^{64} -132.000 q^{66} +734.000 q^{67} -168.000 q^{68} +411.000 q^{69} +587.000 q^{71} +518.000 q^{73} +1396.00 q^{74} +1000.00 q^{76} -231.000 q^{77} -816.000 q^{78} -1045.00 q^{79} +81.0000 q^{81} +1988.00 q^{82} +608.000 q^{83} +504.000 q^{84} +832.000 q^{86} +450.000 q^{87} -770.000 q^{89} -1428.00 q^{91} -1096.00 q^{92} -876.000 q^{93} +1476.00 q^{94} +768.000 q^{96} -1541.00 q^{97} +392.000 q^{98} +99.0000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(3\) −3.00000 −0.577350
\(4\) 8.00000 1.00000
\(5\) 0 0
\(6\) −12.0000 −0.816497
\(7\) −21.0000 −1.13389 −0.566947 0.823754i \(-0.691875\pi\)
−0.566947 + 0.823754i \(0.691875\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) 11.0000 0.301511
\(12\) −24.0000 −0.577350
\(13\) 68.0000 1.45075 0.725377 0.688352i \(-0.241665\pi\)
0.725377 + 0.688352i \(0.241665\pi\)
\(14\) −84.0000 −1.60357
\(15\) 0 0
\(16\) −64.0000 −1.00000
\(17\) −21.0000 −0.299603 −0.149801 0.988716i \(-0.547863\pi\)
−0.149801 + 0.988716i \(0.547863\pi\)
\(18\) 36.0000 0.471405
\(19\) 125.000 1.50931 0.754657 0.656119i \(-0.227803\pi\)
0.754657 + 0.656119i \(0.227803\pi\)
\(20\) 0 0
\(21\) 63.0000 0.654654
\(22\) 44.0000 0.426401
\(23\) −137.000 −1.24202 −0.621010 0.783802i \(-0.713278\pi\)
−0.621010 + 0.783802i \(0.713278\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 272.000 2.05168
\(27\) −27.0000 −0.192450
\(28\) −168.000 −1.13389
\(29\) −150.000 −0.960493 −0.480247 0.877134i \(-0.659453\pi\)
−0.480247 + 0.877134i \(0.659453\pi\)
\(30\) 0 0
\(31\) 292.000 1.69177 0.845883 0.533368i \(-0.179074\pi\)
0.845883 + 0.533368i \(0.179074\pi\)
\(32\) −256.000 −1.41421
\(33\) −33.0000 −0.174078
\(34\) −84.0000 −0.423702
\(35\) 0 0
\(36\) 72.0000 0.333333
\(37\) 349.000 1.55068 0.775341 0.631543i \(-0.217578\pi\)
0.775341 + 0.631543i \(0.217578\pi\)
\(38\) 500.000 2.13449
\(39\) −204.000 −0.837593
\(40\) 0 0
\(41\) 497.000 1.89313 0.946565 0.322512i \(-0.104527\pi\)
0.946565 + 0.322512i \(0.104527\pi\)
\(42\) 252.000 0.925820
\(43\) 208.000 0.737668 0.368834 0.929495i \(-0.379757\pi\)
0.368834 + 0.929495i \(0.379757\pi\)
\(44\) 88.0000 0.301511
\(45\) 0 0
\(46\) −548.000 −1.75648
\(47\) 369.000 1.14520 0.572598 0.819837i \(-0.305936\pi\)
0.572598 + 0.819837i \(0.305936\pi\)
\(48\) 192.000 0.577350
\(49\) 98.0000 0.285714
\(50\) 0 0
\(51\) 63.0000 0.172976
\(52\) 544.000 1.45075
\(53\) −542.000 −1.40471 −0.702353 0.711829i \(-0.747867\pi\)
−0.702353 + 0.711829i \(0.747867\pi\)
\(54\) −108.000 −0.272166
\(55\) 0 0
\(56\) 0 0
\(57\) −375.000 −0.871403
\(58\) −600.000 −1.35834
\(59\) 235.000 0.518549 0.259275 0.965804i \(-0.416517\pi\)
0.259275 + 0.965804i \(0.416517\pi\)
\(60\) 0 0
\(61\) 482.000 1.01170 0.505851 0.862621i \(-0.331179\pi\)
0.505851 + 0.862621i \(0.331179\pi\)
\(62\) 1168.00 2.39252
\(63\) −189.000 −0.377964
\(64\) −512.000 −1.00000
\(65\) 0 0
\(66\) −132.000 −0.246183
\(67\) 734.000 1.33839 0.669197 0.743085i \(-0.266638\pi\)
0.669197 + 0.743085i \(0.266638\pi\)
\(68\) −168.000 −0.299603
\(69\) 411.000 0.717081
\(70\) 0 0
\(71\) 587.000 0.981184 0.490592 0.871389i \(-0.336781\pi\)
0.490592 + 0.871389i \(0.336781\pi\)
\(72\) 0 0
\(73\) 518.000 0.830511 0.415256 0.909705i \(-0.363692\pi\)
0.415256 + 0.909705i \(0.363692\pi\)
\(74\) 1396.00 2.19300
\(75\) 0 0
\(76\) 1000.00 1.50931
\(77\) −231.000 −0.341882
\(78\) −816.000 −1.18454
\(79\) −1045.00 −1.48825 −0.744125 0.668041i \(-0.767133\pi\)
−0.744125 + 0.668041i \(0.767133\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 1988.00 2.67729
\(83\) 608.000 0.804056 0.402028 0.915627i \(-0.368305\pi\)
0.402028 + 0.915627i \(0.368305\pi\)
\(84\) 504.000 0.654654
\(85\) 0 0
\(86\) 832.000 1.04322
\(87\) 450.000 0.554541
\(88\) 0 0
\(89\) −770.000 −0.917077 −0.458538 0.888675i \(-0.651627\pi\)
−0.458538 + 0.888675i \(0.651627\pi\)
\(90\) 0 0
\(91\) −1428.00 −1.64500
\(92\) −1096.00 −1.24202
\(93\) −876.000 −0.976742
\(94\) 1476.00 1.61955
\(95\) 0 0
\(96\) 768.000 0.816497
\(97\) −1541.00 −1.61304 −0.806520 0.591207i \(-0.798652\pi\)
−0.806520 + 0.591207i \(0.798652\pi\)
\(98\) 392.000 0.404061
\(99\) 99.0000 0.100504
\(100\) 0 0
\(101\) 827.000 0.814748 0.407374 0.913261i \(-0.366445\pi\)
0.407374 + 0.913261i \(0.366445\pi\)
\(102\) 252.000 0.244625
\(103\) 248.000 0.237244 0.118622 0.992939i \(-0.462152\pi\)
0.118622 + 0.992939i \(0.462152\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −2168.00 −1.98655
\(107\) −366.000 −0.330678 −0.165339 0.986237i \(-0.552872\pi\)
−0.165339 + 0.986237i \(0.552872\pi\)
\(108\) −216.000 −0.192450
\(109\) 270.000 0.237260 0.118630 0.992939i \(-0.462150\pi\)
0.118630 + 0.992939i \(0.462150\pi\)
\(110\) 0 0
\(111\) −1047.00 −0.895287
\(112\) 1344.00 1.13389
\(113\) −1002.00 −0.834161 −0.417081 0.908869i \(-0.636947\pi\)
−0.417081 + 0.908869i \(0.636947\pi\)
\(114\) −1500.00 −1.23235
\(115\) 0 0
\(116\) −1200.00 −0.960493
\(117\) 612.000 0.483585
\(118\) 940.000 0.733339
\(119\) 441.000 0.339718
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 1928.00 1.43076
\(123\) −1491.00 −1.09300
\(124\) 2336.00 1.69177
\(125\) 0 0
\(126\) −756.000 −0.534522
\(127\) 469.000 0.327693 0.163847 0.986486i \(-0.447610\pi\)
0.163847 + 0.986486i \(0.447610\pi\)
\(128\) 0 0
\(129\) −624.000 −0.425893
\(130\) 0 0
\(131\) −408.000 −0.272115 −0.136058 0.990701i \(-0.543443\pi\)
−0.136058 + 0.990701i \(0.543443\pi\)
\(132\) −264.000 −0.174078
\(133\) −2625.00 −1.71140
\(134\) 2936.00 1.89277
\(135\) 0 0
\(136\) 0 0
\(137\) −2466.00 −1.53784 −0.768922 0.639343i \(-0.779207\pi\)
−0.768922 + 0.639343i \(0.779207\pi\)
\(138\) 1644.00 1.01411
\(139\) 1020.00 0.622412 0.311206 0.950342i \(-0.399267\pi\)
0.311206 + 0.950342i \(0.399267\pi\)
\(140\) 0 0
\(141\) −1107.00 −0.661179
\(142\) 2348.00 1.38760
\(143\) 748.000 0.437419
\(144\) −576.000 −0.333333
\(145\) 0 0
\(146\) 2072.00 1.17452
\(147\) −294.000 −0.164957
\(148\) 2792.00 1.55068
\(149\) 5.00000 0.00274910 0.00137455 0.999999i \(-0.499562\pi\)
0.00137455 + 0.999999i \(0.499562\pi\)
\(150\) 0 0
\(151\) 452.000 0.243598 0.121799 0.992555i \(-0.461134\pi\)
0.121799 + 0.992555i \(0.461134\pi\)
\(152\) 0 0
\(153\) −189.000 −0.0998676
\(154\) −924.000 −0.483494
\(155\) 0 0
\(156\) −1632.00 −0.837593
\(157\) −1766.00 −0.897721 −0.448860 0.893602i \(-0.648170\pi\)
−0.448860 + 0.893602i \(0.648170\pi\)
\(158\) −4180.00 −2.10470
\(159\) 1626.00 0.811007
\(160\) 0 0
\(161\) 2877.00 1.40832
\(162\) 324.000 0.157135
\(163\) 2068.00 0.993732 0.496866 0.867827i \(-0.334484\pi\)
0.496866 + 0.867827i \(0.334484\pi\)
\(164\) 3976.00 1.89313
\(165\) 0 0
\(166\) 2432.00 1.13711
\(167\) −3386.00 −1.56896 −0.784481 0.620153i \(-0.787070\pi\)
−0.784481 + 0.620153i \(0.787070\pi\)
\(168\) 0 0
\(169\) 2427.00 1.10469
\(170\) 0 0
\(171\) 1125.00 0.503105
\(172\) 1664.00 0.737668
\(173\) −117.000 −0.0514182 −0.0257091 0.999669i \(-0.508184\pi\)
−0.0257091 + 0.999669i \(0.508184\pi\)
\(174\) 1800.00 0.784239
\(175\) 0 0
\(176\) −704.000 −0.301511
\(177\) −705.000 −0.299384
\(178\) −3080.00 −1.29694
\(179\) 2995.00 1.25060 0.625298 0.780386i \(-0.284977\pi\)
0.625298 + 0.780386i \(0.284977\pi\)
\(180\) 0 0
\(181\) 4067.00 1.67015 0.835077 0.550134i \(-0.185423\pi\)
0.835077 + 0.550134i \(0.185423\pi\)
\(182\) −5712.00 −2.32638
\(183\) −1446.00 −0.584106
\(184\) 0 0
\(185\) 0 0
\(186\) −3504.00 −1.38132
\(187\) −231.000 −0.0903337
\(188\) 2952.00 1.14520
\(189\) 567.000 0.218218
\(190\) 0 0
\(191\) 3047.00 1.15431 0.577155 0.816635i \(-0.304163\pi\)
0.577155 + 0.816635i \(0.304163\pi\)
\(192\) 1536.00 0.577350
\(193\) −1232.00 −0.459489 −0.229744 0.973251i \(-0.573789\pi\)
−0.229744 + 0.973251i \(0.573789\pi\)
\(194\) −6164.00 −2.28118
\(195\) 0 0
\(196\) 784.000 0.285714
\(197\) 4979.00 1.80071 0.900353 0.435160i \(-0.143308\pi\)
0.900353 + 0.435160i \(0.143308\pi\)
\(198\) 396.000 0.142134
\(199\) 600.000 0.213733 0.106867 0.994273i \(-0.465918\pi\)
0.106867 + 0.994273i \(0.465918\pi\)
\(200\) 0 0
\(201\) −2202.00 −0.772722
\(202\) 3308.00 1.15223
\(203\) 3150.00 1.08910
\(204\) 504.000 0.172976
\(205\) 0 0
\(206\) 992.000 0.335514
\(207\) −1233.00 −0.414007
\(208\) −4352.00 −1.45075
\(209\) 1375.00 0.455075
\(210\) 0 0
\(211\) −2468.00 −0.805233 −0.402616 0.915369i \(-0.631899\pi\)
−0.402616 + 0.915369i \(0.631899\pi\)
\(212\) −4336.00 −1.40471
\(213\) −1761.00 −0.566487
\(214\) −1464.00 −0.467649
\(215\) 0 0
\(216\) 0 0
\(217\) −6132.00 −1.91828
\(218\) 1080.00 0.335536
\(219\) −1554.00 −0.479496
\(220\) 0 0
\(221\) −1428.00 −0.434650
\(222\) −4188.00 −1.26613
\(223\) −5392.00 −1.61917 −0.809585 0.587002i \(-0.800308\pi\)
−0.809585 + 0.587002i \(0.800308\pi\)
\(224\) 5376.00 1.60357
\(225\) 0 0
\(226\) −4008.00 −1.17968
\(227\) −2366.00 −0.691793 −0.345896 0.938273i \(-0.612425\pi\)
−0.345896 + 0.938273i \(0.612425\pi\)
\(228\) −3000.00 −0.871403
\(229\) −4645.00 −1.34039 −0.670197 0.742183i \(-0.733790\pi\)
−0.670197 + 0.742183i \(0.733790\pi\)
\(230\) 0 0
\(231\) 693.000 0.197386
\(232\) 0 0
\(233\) 513.000 0.144239 0.0721196 0.997396i \(-0.477024\pi\)
0.0721196 + 0.997396i \(0.477024\pi\)
\(234\) 2448.00 0.683892
\(235\) 0 0
\(236\) 1880.00 0.518549
\(237\) 3135.00 0.859241
\(238\) 1764.00 0.480433
\(239\) 2690.00 0.728040 0.364020 0.931391i \(-0.381404\pi\)
0.364020 + 0.931391i \(0.381404\pi\)
\(240\) 0 0
\(241\) −3728.00 −0.996438 −0.498219 0.867051i \(-0.666012\pi\)
−0.498219 + 0.867051i \(0.666012\pi\)
\(242\) 484.000 0.128565
\(243\) −243.000 −0.0641500
\(244\) 3856.00 1.01170
\(245\) 0 0
\(246\) −5964.00 −1.54573
\(247\) 8500.00 2.18964
\(248\) 0 0
\(249\) −1824.00 −0.464222
\(250\) 0 0
\(251\) 2352.00 0.591462 0.295731 0.955271i \(-0.404437\pi\)
0.295731 + 0.955271i \(0.404437\pi\)
\(252\) −1512.00 −0.377964
\(253\) −1507.00 −0.374483
\(254\) 1876.00 0.463428
\(255\) 0 0
\(256\) 4096.00 1.00000
\(257\) −3846.00 −0.933490 −0.466745 0.884392i \(-0.654573\pi\)
−0.466745 + 0.884392i \(0.654573\pi\)
\(258\) −2496.00 −0.602303
\(259\) −7329.00 −1.75831
\(260\) 0 0
\(261\) −1350.00 −0.320164
\(262\) −1632.00 −0.384829
\(263\) −522.000 −0.122387 −0.0611937 0.998126i \(-0.519491\pi\)
−0.0611937 + 0.998126i \(0.519491\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −10500.0 −2.42029
\(267\) 2310.00 0.529475
\(268\) 5872.00 1.33839
\(269\) 4020.00 0.911166 0.455583 0.890193i \(-0.349431\pi\)
0.455583 + 0.890193i \(0.349431\pi\)
\(270\) 0 0
\(271\) 6687.00 1.49892 0.749458 0.662052i \(-0.230314\pi\)
0.749458 + 0.662052i \(0.230314\pi\)
\(272\) 1344.00 0.299603
\(273\) 4284.00 0.949742
\(274\) −9864.00 −2.17484
\(275\) 0 0
\(276\) 3288.00 0.717081
\(277\) −3746.00 −0.812546 −0.406273 0.913752i \(-0.633172\pi\)
−0.406273 + 0.913752i \(0.633172\pi\)
\(278\) 4080.00 0.880224
\(279\) 2628.00 0.563922
\(280\) 0 0
\(281\) −5883.00 −1.24893 −0.624467 0.781051i \(-0.714684\pi\)
−0.624467 + 0.781051i \(0.714684\pi\)
\(282\) −4428.00 −0.935048
\(283\) 3943.00 0.828223 0.414111 0.910226i \(-0.364092\pi\)
0.414111 + 0.910226i \(0.364092\pi\)
\(284\) 4696.00 0.981184
\(285\) 0 0
\(286\) 2992.00 0.618604
\(287\) −10437.0 −2.14661
\(288\) −2304.00 −0.471405
\(289\) −4472.00 −0.910238
\(290\) 0 0
\(291\) 4623.00 0.931289
\(292\) 4144.00 0.830511
\(293\) −1487.00 −0.296490 −0.148245 0.988951i \(-0.547362\pi\)
−0.148245 + 0.988951i \(0.547362\pi\)
\(294\) −1176.00 −0.233285
\(295\) 0 0
\(296\) 0 0
\(297\) −297.000 −0.0580259
\(298\) 20.0000 0.00388782
\(299\) −9316.00 −1.80187
\(300\) 0 0
\(301\) −4368.00 −0.836436
\(302\) 1808.00 0.344499
\(303\) −2481.00 −0.470395
\(304\) −8000.00 −1.50931
\(305\) 0 0
\(306\) −756.000 −0.141234
\(307\) 4844.00 0.900527 0.450263 0.892896i \(-0.351330\pi\)
0.450263 + 0.892896i \(0.351330\pi\)
\(308\) −1848.00 −0.341882
\(309\) −744.000 −0.136973
\(310\) 0 0
\(311\) 4632.00 0.844555 0.422278 0.906467i \(-0.361231\pi\)
0.422278 + 0.906467i \(0.361231\pi\)
\(312\) 0 0
\(313\) −8437.00 −1.52360 −0.761801 0.647811i \(-0.775685\pi\)
−0.761801 + 0.647811i \(0.775685\pi\)
\(314\) −7064.00 −1.26957
\(315\) 0 0
\(316\) −8360.00 −1.48825
\(317\) −3636.00 −0.644221 −0.322111 0.946702i \(-0.604392\pi\)
−0.322111 + 0.946702i \(0.604392\pi\)
\(318\) 6504.00 1.14694
\(319\) −1650.00 −0.289600
\(320\) 0 0
\(321\) 1098.00 0.190917
\(322\) 11508.0 1.99166
\(323\) −2625.00 −0.452195
\(324\) 648.000 0.111111
\(325\) 0 0
\(326\) 8272.00 1.40535
\(327\) −810.000 −0.136982
\(328\) 0 0
\(329\) −7749.00 −1.29853
\(330\) 0 0
\(331\) −758.000 −0.125871 −0.0629357 0.998018i \(-0.520046\pi\)
−0.0629357 + 0.998018i \(0.520046\pi\)
\(332\) 4864.00 0.804056
\(333\) 3141.00 0.516894
\(334\) −13544.0 −2.21885
\(335\) 0 0
\(336\) −4032.00 −0.654654
\(337\) 7374.00 1.19195 0.595975 0.803003i \(-0.296766\pi\)
0.595975 + 0.803003i \(0.296766\pi\)
\(338\) 9708.00 1.56227
\(339\) 3006.00 0.481603
\(340\) 0 0
\(341\) 3212.00 0.510087
\(342\) 4500.00 0.711497
\(343\) 5145.00 0.809924
\(344\) 0 0
\(345\) 0 0
\(346\) −468.000 −0.0727163
\(347\) 6524.00 1.00930 0.504649 0.863324i \(-0.331622\pi\)
0.504649 + 0.863324i \(0.331622\pi\)
\(348\) 3600.00 0.554541
\(349\) 3710.00 0.569031 0.284515 0.958671i \(-0.408167\pi\)
0.284515 + 0.958671i \(0.408167\pi\)
\(350\) 0 0
\(351\) −1836.00 −0.279198
\(352\) −2816.00 −0.426401
\(353\) −2832.00 −0.427003 −0.213502 0.976943i \(-0.568487\pi\)
−0.213502 + 0.976943i \(0.568487\pi\)
\(354\) −2820.00 −0.423394
\(355\) 0 0
\(356\) −6160.00 −0.917077
\(357\) −1323.00 −0.196136
\(358\) 11980.0 1.76861
\(359\) −7040.00 −1.03498 −0.517489 0.855690i \(-0.673133\pi\)
−0.517489 + 0.855690i \(0.673133\pi\)
\(360\) 0 0
\(361\) 8766.00 1.27803
\(362\) 16268.0 2.36195
\(363\) −363.000 −0.0524864
\(364\) −11424.0 −1.64500
\(365\) 0 0
\(366\) −5784.00 −0.826051
\(367\) −6206.00 −0.882699 −0.441350 0.897335i \(-0.645500\pi\)
−0.441350 + 0.897335i \(0.645500\pi\)
\(368\) 8768.00 1.24202
\(369\) 4473.00 0.631044
\(370\) 0 0
\(371\) 11382.0 1.59279
\(372\) −7008.00 −0.976742
\(373\) −1962.00 −0.272355 −0.136178 0.990684i \(-0.543482\pi\)
−0.136178 + 0.990684i \(0.543482\pi\)
\(374\) −924.000 −0.127751
\(375\) 0 0
\(376\) 0 0
\(377\) −10200.0 −1.39344
\(378\) 2268.00 0.308607
\(379\) −7960.00 −1.07883 −0.539417 0.842039i \(-0.681355\pi\)
−0.539417 + 0.842039i \(0.681355\pi\)
\(380\) 0 0
\(381\) −1407.00 −0.189194
\(382\) 12188.0 1.63244
\(383\) 7188.00 0.958981 0.479490 0.877547i \(-0.340822\pi\)
0.479490 + 0.877547i \(0.340822\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −4928.00 −0.649815
\(387\) 1872.00 0.245889
\(388\) −12328.0 −1.61304
\(389\) 7920.00 1.03229 0.516144 0.856502i \(-0.327367\pi\)
0.516144 + 0.856502i \(0.327367\pi\)
\(390\) 0 0
\(391\) 2877.00 0.372113
\(392\) 0 0
\(393\) 1224.00 0.157106
\(394\) 19916.0 2.54658
\(395\) 0 0
\(396\) 792.000 0.100504
\(397\) 9654.00 1.22045 0.610227 0.792226i \(-0.291078\pi\)
0.610227 + 0.792226i \(0.291078\pi\)
\(398\) 2400.00 0.302264
\(399\) 7875.00 0.988078
\(400\) 0 0
\(401\) 1952.00 0.243088 0.121544 0.992586i \(-0.461215\pi\)
0.121544 + 0.992586i \(0.461215\pi\)
\(402\) −8808.00 −1.09279
\(403\) 19856.0 2.45434
\(404\) 6616.00 0.814748
\(405\) 0 0
\(406\) 12600.0 1.54022
\(407\) 3839.00 0.467548
\(408\) 0 0
\(409\) 9690.00 1.17149 0.585745 0.810495i \(-0.300802\pi\)
0.585745 + 0.810495i \(0.300802\pi\)
\(410\) 0 0
\(411\) 7398.00 0.887875
\(412\) 1984.00 0.237244
\(413\) −4935.00 −0.587979
\(414\) −4932.00 −0.585494
\(415\) 0 0
\(416\) −17408.0 −2.05168
\(417\) −3060.00 −0.359350
\(418\) 5500.00 0.643574
\(419\) −2935.00 −0.342206 −0.171103 0.985253i \(-0.554733\pi\)
−0.171103 + 0.985253i \(0.554733\pi\)
\(420\) 0 0
\(421\) 12837.0 1.48607 0.743037 0.669250i \(-0.233385\pi\)
0.743037 + 0.669250i \(0.233385\pi\)
\(422\) −9872.00 −1.13877
\(423\) 3321.00 0.381732
\(424\) 0 0
\(425\) 0 0
\(426\) −7044.00 −0.801134
\(427\) −10122.0 −1.14716
\(428\) −2928.00 −0.330678
\(429\) −2244.00 −0.252544
\(430\) 0 0
\(431\) −6108.00 −0.682626 −0.341313 0.939950i \(-0.610872\pi\)
−0.341313 + 0.939950i \(0.610872\pi\)
\(432\) 1728.00 0.192450
\(433\) 9278.00 1.02973 0.514864 0.857272i \(-0.327842\pi\)
0.514864 + 0.857272i \(0.327842\pi\)
\(434\) −24528.0 −2.71286
\(435\) 0 0
\(436\) 2160.00 0.237260
\(437\) −17125.0 −1.87460
\(438\) −6216.00 −0.678110
\(439\) 2455.00 0.266904 0.133452 0.991055i \(-0.457394\pi\)
0.133452 + 0.991055i \(0.457394\pi\)
\(440\) 0 0
\(441\) 882.000 0.0952381
\(442\) −5712.00 −0.614688
\(443\) 3503.00 0.375694 0.187847 0.982198i \(-0.439849\pi\)
0.187847 + 0.982198i \(0.439849\pi\)
\(444\) −8376.00 −0.895287
\(445\) 0 0
\(446\) −21568.0 −2.28985
\(447\) −15.0000 −0.00158719
\(448\) 10752.0 1.13389
\(449\) −7630.00 −0.801964 −0.400982 0.916086i \(-0.631331\pi\)
−0.400982 + 0.916086i \(0.631331\pi\)
\(450\) 0 0
\(451\) 5467.00 0.570800
\(452\) −8016.00 −0.834161
\(453\) −1356.00 −0.140641
\(454\) −9464.00 −0.978343
\(455\) 0 0
\(456\) 0 0
\(457\) 7414.00 0.758889 0.379445 0.925214i \(-0.376115\pi\)
0.379445 + 0.925214i \(0.376115\pi\)
\(458\) −18580.0 −1.89560
\(459\) 567.000 0.0576586
\(460\) 0 0
\(461\) 4982.00 0.503329 0.251665 0.967814i \(-0.419022\pi\)
0.251665 + 0.967814i \(0.419022\pi\)
\(462\) 2772.00 0.279145
\(463\) −13422.0 −1.34724 −0.673621 0.739077i \(-0.735262\pi\)
−0.673621 + 0.739077i \(0.735262\pi\)
\(464\) 9600.00 0.960493
\(465\) 0 0
\(466\) 2052.00 0.203985
\(467\) 15804.0 1.56600 0.783000 0.622022i \(-0.213689\pi\)
0.783000 + 0.622022i \(0.213689\pi\)
\(468\) 4896.00 0.483585
\(469\) −15414.0 −1.51760
\(470\) 0 0
\(471\) 5298.00 0.518299
\(472\) 0 0
\(473\) 2288.00 0.222415
\(474\) 12540.0 1.21515
\(475\) 0 0
\(476\) 3528.00 0.339718
\(477\) −4878.00 −0.468235
\(478\) 10760.0 1.02960
\(479\) −9060.00 −0.864221 −0.432111 0.901821i \(-0.642231\pi\)
−0.432111 + 0.901821i \(0.642231\pi\)
\(480\) 0 0
\(481\) 23732.0 2.24966
\(482\) −14912.0 −1.40918
\(483\) −8631.00 −0.813093
\(484\) 968.000 0.0909091
\(485\) 0 0
\(486\) −972.000 −0.0907218
\(487\) 2854.00 0.265559 0.132779 0.991146i \(-0.457610\pi\)
0.132779 + 0.991146i \(0.457610\pi\)
\(488\) 0 0
\(489\) −6204.00 −0.573731
\(490\) 0 0
\(491\) −2278.00 −0.209378 −0.104689 0.994505i \(-0.533385\pi\)
−0.104689 + 0.994505i \(0.533385\pi\)
\(492\) −11928.0 −1.09300
\(493\) 3150.00 0.287766
\(494\) 34000.0 3.09662
\(495\) 0 0
\(496\) −18688.0 −1.69177
\(497\) −12327.0 −1.11256
\(498\) −7296.00 −0.656509
\(499\) 13290.0 1.19227 0.596134 0.802885i \(-0.296703\pi\)
0.596134 + 0.802885i \(0.296703\pi\)
\(500\) 0 0
\(501\) 10158.0 0.905840
\(502\) 9408.00 0.836453
\(503\) −10762.0 −0.953984 −0.476992 0.878908i \(-0.658273\pi\)
−0.476992 + 0.878908i \(0.658273\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −6028.00 −0.529599
\(507\) −7281.00 −0.637792
\(508\) 3752.00 0.327693
\(509\) −1570.00 −0.136717 −0.0683586 0.997661i \(-0.521776\pi\)
−0.0683586 + 0.997661i \(0.521776\pi\)
\(510\) 0 0
\(511\) −10878.0 −0.941711
\(512\) 16384.0 1.41421
\(513\) −3375.00 −0.290468
\(514\) −15384.0 −1.32015
\(515\) 0 0
\(516\) −4992.00 −0.425893
\(517\) 4059.00 0.345289
\(518\) −29316.0 −2.48662
\(519\) 351.000 0.0296863
\(520\) 0 0
\(521\) −22638.0 −1.90363 −0.951813 0.306680i \(-0.900782\pi\)
−0.951813 + 0.306680i \(0.900782\pi\)
\(522\) −5400.00 −0.452781
\(523\) 10273.0 0.858904 0.429452 0.903090i \(-0.358707\pi\)
0.429452 + 0.903090i \(0.358707\pi\)
\(524\) −3264.00 −0.272115
\(525\) 0 0
\(526\) −2088.00 −0.173082
\(527\) −6132.00 −0.506858
\(528\) 2112.00 0.174078
\(529\) 6602.00 0.542615
\(530\) 0 0
\(531\) 2115.00 0.172850
\(532\) −21000.0 −1.71140
\(533\) 33796.0 2.74647
\(534\) 9240.00 0.748790
\(535\) 0 0
\(536\) 0 0
\(537\) −8985.00 −0.722032
\(538\) 16080.0 1.28858
\(539\) 1078.00 0.0861461
\(540\) 0 0
\(541\) −6628.00 −0.526728 −0.263364 0.964697i \(-0.584832\pi\)
−0.263364 + 0.964697i \(0.584832\pi\)
\(542\) 26748.0 2.11979
\(543\) −12201.0 −0.964263
\(544\) 5376.00 0.423702
\(545\) 0 0
\(546\) 17136.0 1.34314
\(547\) −1131.00 −0.0884060 −0.0442030 0.999023i \(-0.514075\pi\)
−0.0442030 + 0.999023i \(0.514075\pi\)
\(548\) −19728.0 −1.53784
\(549\) 4338.00 0.337234
\(550\) 0 0
\(551\) −18750.0 −1.44969
\(552\) 0 0
\(553\) 21945.0 1.68752
\(554\) −14984.0 −1.14911
\(555\) 0 0
\(556\) 8160.00 0.622412
\(557\) 22954.0 1.74613 0.873063 0.487607i \(-0.162130\pi\)
0.873063 + 0.487607i \(0.162130\pi\)
\(558\) 10512.0 0.797506
\(559\) 14144.0 1.07017
\(560\) 0 0
\(561\) 693.000 0.0521542
\(562\) −23532.0 −1.76626
\(563\) −5532.00 −0.414114 −0.207057 0.978329i \(-0.566389\pi\)
−0.207057 + 0.978329i \(0.566389\pi\)
\(564\) −8856.00 −0.661179
\(565\) 0 0
\(566\) 15772.0 1.17128
\(567\) −1701.00 −0.125988
\(568\) 0 0
\(569\) −25225.0 −1.85850 −0.929250 0.369450i \(-0.879546\pi\)
−0.929250 + 0.369450i \(0.879546\pi\)
\(570\) 0 0
\(571\) −2088.00 −0.153030 −0.0765150 0.997068i \(-0.524379\pi\)
−0.0765150 + 0.997068i \(0.524379\pi\)
\(572\) 5984.00 0.437419
\(573\) −9141.00 −0.666441
\(574\) −41748.0 −3.03576
\(575\) 0 0
\(576\) −4608.00 −0.333333
\(577\) −7831.00 −0.565007 −0.282503 0.959266i \(-0.591165\pi\)
−0.282503 + 0.959266i \(0.591165\pi\)
\(578\) −17888.0 −1.28727
\(579\) 3696.00 0.265286
\(580\) 0 0
\(581\) −12768.0 −0.911714
\(582\) 18492.0 1.31704
\(583\) −5962.00 −0.423535
\(584\) 0 0
\(585\) 0 0
\(586\) −5948.00 −0.419300
\(587\) 8199.00 0.576506 0.288253 0.957554i \(-0.406926\pi\)
0.288253 + 0.957554i \(0.406926\pi\)
\(588\) −2352.00 −0.164957
\(589\) 36500.0 2.55341
\(590\) 0 0
\(591\) −14937.0 −1.03964
\(592\) −22336.0 −1.55068
\(593\) −9542.00 −0.660781 −0.330390 0.943844i \(-0.607180\pi\)
−0.330390 + 0.943844i \(0.607180\pi\)
\(594\) −1188.00 −0.0820610
\(595\) 0 0
\(596\) 40.0000 0.00274910
\(597\) −1800.00 −0.123399
\(598\) −37264.0 −2.54822
\(599\) 24705.0 1.68517 0.842587 0.538561i \(-0.181032\pi\)
0.842587 + 0.538561i \(0.181032\pi\)
\(600\) 0 0
\(601\) 15452.0 1.04875 0.524376 0.851487i \(-0.324299\pi\)
0.524376 + 0.851487i \(0.324299\pi\)
\(602\) −17472.0 −1.18290
\(603\) 6606.00 0.446131
\(604\) 3616.00 0.243598
\(605\) 0 0
\(606\) −9924.00 −0.665239
\(607\) −6176.00 −0.412975 −0.206488 0.978449i \(-0.566203\pi\)
−0.206488 + 0.978449i \(0.566203\pi\)
\(608\) −32000.0 −2.13449
\(609\) −9450.00 −0.628790
\(610\) 0 0
\(611\) 25092.0 1.66140
\(612\) −1512.00 −0.0998676
\(613\) 13198.0 0.869596 0.434798 0.900528i \(-0.356820\pi\)
0.434798 + 0.900528i \(0.356820\pi\)
\(614\) 19376.0 1.27354
\(615\) 0 0
\(616\) 0 0
\(617\) −19216.0 −1.25382 −0.626910 0.779092i \(-0.715681\pi\)
−0.626910 + 0.779092i \(0.715681\pi\)
\(618\) −2976.00 −0.193709
\(619\) 27700.0 1.79864 0.899319 0.437293i \(-0.144063\pi\)
0.899319 + 0.437293i \(0.144063\pi\)
\(620\) 0 0
\(621\) 3699.00 0.239027
\(622\) 18528.0 1.19438
\(623\) 16170.0 1.03987
\(624\) 13056.0 0.837593
\(625\) 0 0
\(626\) −33748.0 −2.15470
\(627\) −4125.00 −0.262738
\(628\) −14128.0 −0.897721
\(629\) −7329.00 −0.464589
\(630\) 0 0
\(631\) −5108.00 −0.322260 −0.161130 0.986933i \(-0.551514\pi\)
−0.161130 + 0.986933i \(0.551514\pi\)
\(632\) 0 0
\(633\) 7404.00 0.464901
\(634\) −14544.0 −0.911066
\(635\) 0 0
\(636\) 13008.0 0.811007
\(637\) 6664.00 0.414501
\(638\) −6600.00 −0.409556
\(639\) 5283.00 0.327061
\(640\) 0 0
\(641\) 322.000 0.0198412 0.00992062 0.999951i \(-0.496842\pi\)
0.00992062 + 0.999951i \(0.496842\pi\)
\(642\) 4392.00 0.269998
\(643\) −7432.00 −0.455816 −0.227908 0.973683i \(-0.573188\pi\)
−0.227908 + 0.973683i \(0.573188\pi\)
\(644\) 23016.0 1.40832
\(645\) 0 0
\(646\) −10500.0 −0.639500
\(647\) 1409.00 0.0856159 0.0428080 0.999083i \(-0.486370\pi\)
0.0428080 + 0.999083i \(0.486370\pi\)
\(648\) 0 0
\(649\) 2585.00 0.156348
\(650\) 0 0
\(651\) 18396.0 1.10752
\(652\) 16544.0 0.993732
\(653\) 21548.0 1.29133 0.645665 0.763621i \(-0.276580\pi\)
0.645665 + 0.763621i \(0.276580\pi\)
\(654\) −3240.00 −0.193722
\(655\) 0 0
\(656\) −31808.0 −1.89313
\(657\) 4662.00 0.276837
\(658\) −30996.0 −1.83640
\(659\) −13380.0 −0.790912 −0.395456 0.918485i \(-0.629413\pi\)
−0.395456 + 0.918485i \(0.629413\pi\)
\(660\) 0 0
\(661\) 10907.0 0.641805 0.320903 0.947112i \(-0.396014\pi\)
0.320903 + 0.947112i \(0.396014\pi\)
\(662\) −3032.00 −0.178009
\(663\) 4284.00 0.250945
\(664\) 0 0
\(665\) 0 0
\(666\) 12564.0 0.730999
\(667\) 20550.0 1.19295
\(668\) −27088.0 −1.56896
\(669\) 16176.0 0.934829
\(670\) 0 0
\(671\) 5302.00 0.305039
\(672\) −16128.0 −0.925820
\(673\) −17522.0 −1.00360 −0.501800 0.864983i \(-0.667329\pi\)
−0.501800 + 0.864983i \(0.667329\pi\)
\(674\) 29496.0 1.68567
\(675\) 0 0
\(676\) 19416.0 1.10469
\(677\) −8306.00 −0.471530 −0.235765 0.971810i \(-0.575759\pi\)
−0.235765 + 0.971810i \(0.575759\pi\)
\(678\) 12024.0 0.681090
\(679\) 32361.0 1.82902
\(680\) 0 0
\(681\) 7098.00 0.399407
\(682\) 12848.0 0.721371
\(683\) −18427.0 −1.03234 −0.516171 0.856486i \(-0.672643\pi\)
−0.516171 + 0.856486i \(0.672643\pi\)
\(684\) 9000.00 0.503105
\(685\) 0 0
\(686\) 20580.0 1.14541
\(687\) 13935.0 0.773877
\(688\) −13312.0 −0.737668
\(689\) −36856.0 −2.03788
\(690\) 0 0
\(691\) −8278.00 −0.455731 −0.227865 0.973693i \(-0.573175\pi\)
−0.227865 + 0.973693i \(0.573175\pi\)
\(692\) −936.000 −0.0514182
\(693\) −2079.00 −0.113961
\(694\) 26096.0 1.42736
\(695\) 0 0
\(696\) 0 0
\(697\) −10437.0 −0.567187
\(698\) 14840.0 0.804731
\(699\) −1539.00 −0.0832766
\(700\) 0 0
\(701\) −21923.0 −1.18120 −0.590599 0.806965i \(-0.701109\pi\)
−0.590599 + 0.806965i \(0.701109\pi\)
\(702\) −7344.00 −0.394845
\(703\) 43625.0 2.34047
\(704\) −5632.00 −0.301511
\(705\) 0 0
\(706\) −11328.0 −0.603874
\(707\) −17367.0 −0.923838
\(708\) −5640.00 −0.299384
\(709\) −11425.0 −0.605183 −0.302592 0.953120i \(-0.597852\pi\)
−0.302592 + 0.953120i \(0.597852\pi\)
\(710\) 0 0
\(711\) −9405.00 −0.496083
\(712\) 0 0
\(713\) −40004.0 −2.10121
\(714\) −5292.00 −0.277378
\(715\) 0 0
\(716\) 23960.0 1.25060
\(717\) −8070.00 −0.420334
\(718\) −28160.0 −1.46368
\(719\) 7380.00 0.382792 0.191396 0.981513i \(-0.438699\pi\)
0.191396 + 0.981513i \(0.438699\pi\)
\(720\) 0 0
\(721\) −5208.00 −0.269010
\(722\) 35064.0 1.80741
\(723\) 11184.0 0.575294
\(724\) 32536.0 1.67015
\(725\) 0 0
\(726\) −1452.00 −0.0742270
\(727\) 10924.0 0.557288 0.278644 0.960394i \(-0.410115\pi\)
0.278644 + 0.960394i \(0.410115\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −4368.00 −0.221007
\(732\) −11568.0 −0.584106
\(733\) 13578.0 0.684195 0.342097 0.939664i \(-0.388863\pi\)
0.342097 + 0.939664i \(0.388863\pi\)
\(734\) −24824.0 −1.24833
\(735\) 0 0
\(736\) 35072.0 1.75648
\(737\) 8074.00 0.403541
\(738\) 17892.0 0.892430
\(739\) 2875.00 0.143110 0.0715552 0.997437i \(-0.477204\pi\)
0.0715552 + 0.997437i \(0.477204\pi\)
\(740\) 0 0
\(741\) −25500.0 −1.26419
\(742\) 45528.0 2.25254
\(743\) 9568.00 0.472431 0.236215 0.971701i \(-0.424093\pi\)
0.236215 + 0.971701i \(0.424093\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −7848.00 −0.385168
\(747\) 5472.00 0.268019
\(748\) −1848.00 −0.0903337
\(749\) 7686.00 0.374954
\(750\) 0 0
\(751\) −35048.0 −1.70296 −0.851478 0.524391i \(-0.824293\pi\)
−0.851478 + 0.524391i \(0.824293\pi\)
\(752\) −23616.0 −1.14520
\(753\) −7056.00 −0.341481
\(754\) −40800.0 −1.97062
\(755\) 0 0
\(756\) 4536.00 0.218218
\(757\) −8226.00 −0.394953 −0.197476 0.980308i \(-0.563275\pi\)
−0.197476 + 0.980308i \(0.563275\pi\)
\(758\) −31840.0 −1.52570
\(759\) 4521.00 0.216208
\(760\) 0 0
\(761\) −6818.00 −0.324773 −0.162387 0.986727i \(-0.551919\pi\)
−0.162387 + 0.986727i \(0.551919\pi\)
\(762\) −5628.00 −0.267560
\(763\) −5670.00 −0.269027
\(764\) 24376.0 1.15431
\(765\) 0 0
\(766\) 28752.0 1.35620
\(767\) 15980.0 0.752287
\(768\) −12288.0 −0.577350
\(769\) 29390.0 1.37819 0.689097 0.724670i \(-0.258008\pi\)
0.689097 + 0.724670i \(0.258008\pi\)
\(770\) 0 0
\(771\) 11538.0 0.538951
\(772\) −9856.00 −0.459489
\(773\) 34358.0 1.59867 0.799335 0.600886i \(-0.205185\pi\)
0.799335 + 0.600886i \(0.205185\pi\)
\(774\) 7488.00 0.347740
\(775\) 0 0
\(776\) 0 0
\(777\) 21987.0 1.01516
\(778\) 31680.0 1.45988
\(779\) 62125.0 2.85733
\(780\) 0 0
\(781\) 6457.00 0.295838
\(782\) 11508.0 0.526247
\(783\) 4050.00 0.184847
\(784\) −6272.00 −0.285714
\(785\) 0 0
\(786\) 4896.00 0.222181
\(787\) −14291.0 −0.647292 −0.323646 0.946178i \(-0.604909\pi\)
−0.323646 + 0.946178i \(0.604909\pi\)
\(788\) 39832.0 1.80071
\(789\) 1566.00 0.0706604
\(790\) 0 0
\(791\) 21042.0 0.945850
\(792\) 0 0
\(793\) 32776.0 1.46773
\(794\) 38616.0 1.72598
\(795\) 0 0
\(796\) 4800.00 0.213733
\(797\) −11576.0 −0.514483 −0.257242 0.966347i \(-0.582814\pi\)
−0.257242 + 0.966347i \(0.582814\pi\)
\(798\) 31500.0 1.39735
\(799\) −7749.00 −0.343104
\(800\) 0 0
\(801\) −6930.00 −0.305692
\(802\) 7808.00 0.343778
\(803\) 5698.00 0.250409
\(804\) −17616.0 −0.772722
\(805\) 0 0
\(806\) 79424.0 3.47096
\(807\) −12060.0 −0.526062
\(808\) 0 0
\(809\) −12825.0 −0.557358 −0.278679 0.960384i \(-0.589897\pi\)
−0.278679 + 0.960384i \(0.589897\pi\)
\(810\) 0 0
\(811\) −36843.0 −1.59523 −0.797616 0.603166i \(-0.793906\pi\)
−0.797616 + 0.603166i \(0.793906\pi\)
\(812\) 25200.0 1.08910
\(813\) −20061.0 −0.865400
\(814\) 15356.0 0.661213
\(815\) 0 0
\(816\) −4032.00 −0.172976
\(817\) 26000.0 1.11337
\(818\) 38760.0 1.65674
\(819\) −12852.0 −0.548334
\(820\) 0 0
\(821\) 43962.0 1.86880 0.934400 0.356226i \(-0.115937\pi\)
0.934400 + 0.356226i \(0.115937\pi\)
\(822\) 29592.0 1.25564
\(823\) −33522.0 −1.41981 −0.709905 0.704298i \(-0.751262\pi\)
−0.709905 + 0.704298i \(0.751262\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) −19740.0 −0.831528
\(827\) 1704.00 0.0716492 0.0358246 0.999358i \(-0.488594\pi\)
0.0358246 + 0.999358i \(0.488594\pi\)
\(828\) −9864.00 −0.414007
\(829\) 1750.00 0.0733173 0.0366586 0.999328i \(-0.488329\pi\)
0.0366586 + 0.999328i \(0.488329\pi\)
\(830\) 0 0
\(831\) 11238.0 0.469124
\(832\) −34816.0 −1.45075
\(833\) −2058.00 −0.0856008
\(834\) −12240.0 −0.508197
\(835\) 0 0
\(836\) 11000.0 0.455075
\(837\) −7884.00 −0.325581
\(838\) −11740.0 −0.483952
\(839\) −15260.0 −0.627931 −0.313965 0.949434i \(-0.601658\pi\)
−0.313965 + 0.949434i \(0.601658\pi\)
\(840\) 0 0
\(841\) −1889.00 −0.0774530
\(842\) 51348.0 2.10163
\(843\) 17649.0 0.721072
\(844\) −19744.0 −0.805233
\(845\) 0 0
\(846\) 13284.0 0.539850
\(847\) −2541.00 −0.103081
\(848\) 34688.0 1.40471
\(849\) −11829.0 −0.478175
\(850\) 0 0
\(851\) −47813.0 −1.92598
\(852\) −14088.0 −0.566487
\(853\) 878.000 0.0352428 0.0176214 0.999845i \(-0.494391\pi\)
0.0176214 + 0.999845i \(0.494391\pi\)
\(854\) −40488.0 −1.62233
\(855\) 0 0
\(856\) 0 0
\(857\) 35019.0 1.39583 0.697915 0.716181i \(-0.254111\pi\)
0.697915 + 0.716181i \(0.254111\pi\)
\(858\) −8976.00 −0.357151
\(859\) −1280.00 −0.0508417 −0.0254209 0.999677i \(-0.508093\pi\)
−0.0254209 + 0.999677i \(0.508093\pi\)
\(860\) 0 0
\(861\) 31311.0 1.23934
\(862\) −24432.0 −0.965380
\(863\) 16888.0 0.666135 0.333067 0.942903i \(-0.391916\pi\)
0.333067 + 0.942903i \(0.391916\pi\)
\(864\) 6912.00 0.272166
\(865\) 0 0
\(866\) 37112.0 1.45626
\(867\) 13416.0 0.525526
\(868\) −49056.0 −1.91828
\(869\) −11495.0 −0.448724
\(870\) 0 0
\(871\) 49912.0 1.94168
\(872\) 0 0
\(873\) −13869.0 −0.537680
\(874\) −68500.0 −2.65108
\(875\) 0 0
\(876\) −12432.0 −0.479496
\(877\) −29836.0 −1.14879 −0.574396 0.818578i \(-0.694763\pi\)
−0.574396 + 0.818578i \(0.694763\pi\)
\(878\) 9820.00 0.377459
\(879\) 4461.00 0.171178
\(880\) 0 0
\(881\) 29292.0 1.12017 0.560087 0.828434i \(-0.310768\pi\)
0.560087 + 0.828434i \(0.310768\pi\)
\(882\) 3528.00 0.134687
\(883\) −6532.00 −0.248946 −0.124473 0.992223i \(-0.539724\pi\)
−0.124473 + 0.992223i \(0.539724\pi\)
\(884\) −11424.0 −0.434650
\(885\) 0 0
\(886\) 14012.0 0.531312
\(887\) −20476.0 −0.775103 −0.387552 0.921848i \(-0.626679\pi\)
−0.387552 + 0.921848i \(0.626679\pi\)
\(888\) 0 0
\(889\) −9849.00 −0.371569
\(890\) 0 0
\(891\) 891.000 0.0335013
\(892\) −43136.0 −1.61917
\(893\) 46125.0 1.72846
\(894\) −60.0000 −0.00224463
\(895\) 0 0
\(896\) 0 0
\(897\) 27948.0 1.04031
\(898\) −30520.0 −1.13415
\(899\) −43800.0 −1.62493
\(900\) 0 0
\(901\) 11382.0 0.420854
\(902\) 21868.0 0.807234
\(903\) 13104.0 0.482917
\(904\) 0 0
\(905\) 0 0
\(906\) −5424.00 −0.198897
\(907\) 51914.0 1.90052 0.950262 0.311450i \(-0.100815\pi\)
0.950262 + 0.311450i \(0.100815\pi\)
\(908\) −18928.0 −0.691793
\(909\) 7443.00 0.271583
\(910\) 0 0
\(911\) −41893.0 −1.52358 −0.761788 0.647827i \(-0.775678\pi\)
−0.761788 + 0.647827i \(0.775678\pi\)
\(912\) 24000.0 0.871403
\(913\) 6688.00 0.242432
\(914\) 29656.0 1.07323
\(915\) 0 0
\(916\) −37160.0 −1.34039
\(917\) 8568.00 0.308550
\(918\) 2268.00 0.0815416
\(919\) 495.000 0.0177677 0.00888386 0.999961i \(-0.497172\pi\)
0.00888386 + 0.999961i \(0.497172\pi\)
\(920\) 0 0
\(921\) −14532.0 −0.519919
\(922\) 19928.0 0.711815
\(923\) 39916.0 1.42346
\(924\) 5544.00 0.197386
\(925\) 0 0
\(926\) −53688.0 −1.90529
\(927\) 2232.00 0.0790814
\(928\) 38400.0 1.35834
\(929\) −16310.0 −0.576010 −0.288005 0.957629i \(-0.592992\pi\)
−0.288005 + 0.957629i \(0.592992\pi\)
\(930\) 0 0
\(931\) 12250.0 0.431233
\(932\) 4104.00 0.144239
\(933\) −13896.0 −0.487604
\(934\) 63216.0 2.21466
\(935\) 0 0
\(936\) 0 0
\(937\) 18744.0 0.653511 0.326755 0.945109i \(-0.394045\pi\)
0.326755 + 0.945109i \(0.394045\pi\)
\(938\) −61656.0 −2.14620
\(939\) 25311.0 0.879652
\(940\) 0 0
\(941\) −25553.0 −0.885233 −0.442616 0.896711i \(-0.645950\pi\)
−0.442616 + 0.896711i \(0.645950\pi\)
\(942\) 21192.0 0.732986
\(943\) −68089.0 −2.35131
\(944\) −15040.0 −0.518549
\(945\) 0 0
\(946\) 9152.00 0.314542
\(947\) 6879.00 0.236048 0.118024 0.993011i \(-0.462344\pi\)
0.118024 + 0.993011i \(0.462344\pi\)
\(948\) 25080.0 0.859241
\(949\) 35224.0 1.20487
\(950\) 0 0
\(951\) 10908.0 0.371941
\(952\) 0 0
\(953\) −13677.0 −0.464891 −0.232446 0.972609i \(-0.574673\pi\)
−0.232446 + 0.972609i \(0.574673\pi\)
\(954\) −19512.0 −0.662185
\(955\) 0 0
\(956\) 21520.0 0.728040
\(957\) 4950.00 0.167200
\(958\) −36240.0 −1.22219
\(959\) 51786.0 1.74375
\(960\) 0 0
\(961\) 55473.0 1.86207
\(962\) 94928.0 3.18150
\(963\) −3294.00 −0.110226
\(964\) −29824.0 −0.996438
\(965\) 0 0
\(966\) −34524.0 −1.14989
\(967\) 26984.0 0.897360 0.448680 0.893693i \(-0.351894\pi\)
0.448680 + 0.893693i \(0.351894\pi\)
\(968\) 0 0
\(969\) 7875.00 0.261075
\(970\) 0 0
\(971\) 41937.0 1.38602 0.693008 0.720929i \(-0.256285\pi\)
0.693008 + 0.720929i \(0.256285\pi\)
\(972\) −1944.00 −0.0641500
\(973\) −21420.0 −0.705749
\(974\) 11416.0 0.375557
\(975\) 0 0
\(976\) −30848.0 −1.01170
\(977\) 13504.0 0.442202 0.221101 0.975251i \(-0.429035\pi\)
0.221101 + 0.975251i \(0.429035\pi\)
\(978\) −24816.0 −0.811379
\(979\) −8470.00 −0.276509
\(980\) 0 0
\(981\) 2430.00 0.0790866
\(982\) −9112.00 −0.296106
\(983\) 33353.0 1.08219 0.541096 0.840961i \(-0.318009\pi\)
0.541096 + 0.840961i \(0.318009\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 12600.0 0.406963
\(987\) 23247.0 0.749706
\(988\) 68000.0 2.18964
\(989\) −28496.0 −0.916198
\(990\) 0 0
\(991\) −16978.0 −0.544222 −0.272111 0.962266i \(-0.587722\pi\)
−0.272111 + 0.962266i \(0.587722\pi\)
\(992\) −74752.0 −2.39252
\(993\) 2274.00 0.0726719
\(994\) −49308.0 −1.57340
\(995\) 0 0
\(996\) −14592.0 −0.464222
\(997\) 2714.00 0.0862119 0.0431059 0.999071i \(-0.486275\pi\)
0.0431059 + 0.999071i \(0.486275\pi\)
\(998\) 53160.0 1.68612
\(999\) −9423.00 −0.298429
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 825.4.a.h.1.1 yes 1
3.2 odd 2 2475.4.a.c.1.1 1
5.2 odd 4 825.4.c.c.199.2 2
5.3 odd 4 825.4.c.c.199.1 2
5.4 even 2 825.4.a.b.1.1 1
15.14 odd 2 2475.4.a.j.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
825.4.a.b.1.1 1 5.4 even 2
825.4.a.h.1.1 yes 1 1.1 even 1 trivial
825.4.c.c.199.1 2 5.3 odd 4
825.4.c.c.199.2 2 5.2 odd 4
2475.4.a.c.1.1 1 3.2 odd 2
2475.4.a.j.1.1 1 15.14 odd 2