Properties

Label 825.4.a.e.1.1
Level $825$
Weight $4$
Character 825.1
Self dual yes
Analytic conductor $48.677$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [825,4,Mod(1,825)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(825, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("825.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 825 = 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 825.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.6765757547\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 165)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 825.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.00000 q^{3} -8.00000 q^{4} -2.00000 q^{7} +9.00000 q^{9} +O(q^{10})\) \(q+3.00000 q^{3} -8.00000 q^{4} -2.00000 q^{7} +9.00000 q^{9} -11.0000 q^{11} -24.0000 q^{12} +22.0000 q^{13} +64.0000 q^{16} -72.0000 q^{17} +122.000 q^{19} -6.00000 q^{21} -72.0000 q^{23} +27.0000 q^{27} +16.0000 q^{28} +96.0000 q^{29} -112.000 q^{31} -33.0000 q^{33} -72.0000 q^{36} -266.000 q^{37} +66.0000 q^{39} -96.0000 q^{41} +382.000 q^{43} +88.0000 q^{44} -360.000 q^{47} +192.000 q^{48} -339.000 q^{49} -216.000 q^{51} -176.000 q^{52} -318.000 q^{53} +366.000 q^{57} +660.000 q^{59} -430.000 q^{61} -18.0000 q^{63} -512.000 q^{64} -380.000 q^{67} +576.000 q^{68} -216.000 q^{69} +168.000 q^{71} -218.000 q^{73} -976.000 q^{76} +22.0000 q^{77} -706.000 q^{79} +81.0000 q^{81} -1068.00 q^{83} +48.0000 q^{84} +288.000 q^{87} -6.00000 q^{89} -44.0000 q^{91} +576.000 q^{92} -336.000 q^{93} -686.000 q^{97} -99.0000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(3\) 3.00000 0.577350
\(4\) −8.00000 −1.00000
\(5\) 0 0
\(6\) 0 0
\(7\) −2.00000 −0.107990 −0.0539949 0.998541i \(-0.517195\pi\)
−0.0539949 + 0.998541i \(0.517195\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −11.0000 −0.301511
\(12\) −24.0000 −0.577350
\(13\) 22.0000 0.469362 0.234681 0.972072i \(-0.424595\pi\)
0.234681 + 0.972072i \(0.424595\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 64.0000 1.00000
\(17\) −72.0000 −1.02721 −0.513605 0.858027i \(-0.671690\pi\)
−0.513605 + 0.858027i \(0.671690\pi\)
\(18\) 0 0
\(19\) 122.000 1.47309 0.736545 0.676388i \(-0.236456\pi\)
0.736545 + 0.676388i \(0.236456\pi\)
\(20\) 0 0
\(21\) −6.00000 −0.0623480
\(22\) 0 0
\(23\) −72.0000 −0.652741 −0.326370 0.945242i \(-0.605826\pi\)
−0.326370 + 0.945242i \(0.605826\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 27.0000 0.192450
\(28\) 16.0000 0.107990
\(29\) 96.0000 0.614716 0.307358 0.951594i \(-0.400555\pi\)
0.307358 + 0.951594i \(0.400555\pi\)
\(30\) 0 0
\(31\) −112.000 −0.648897 −0.324448 0.945903i \(-0.605179\pi\)
−0.324448 + 0.945903i \(0.605179\pi\)
\(32\) 0 0
\(33\) −33.0000 −0.174078
\(34\) 0 0
\(35\) 0 0
\(36\) −72.0000 −0.333333
\(37\) −266.000 −1.18190 −0.590948 0.806710i \(-0.701246\pi\)
−0.590948 + 0.806710i \(0.701246\pi\)
\(38\) 0 0
\(39\) 66.0000 0.270986
\(40\) 0 0
\(41\) −96.0000 −0.365675 −0.182838 0.983143i \(-0.558528\pi\)
−0.182838 + 0.983143i \(0.558528\pi\)
\(42\) 0 0
\(43\) 382.000 1.35475 0.677377 0.735636i \(-0.263116\pi\)
0.677377 + 0.735636i \(0.263116\pi\)
\(44\) 88.0000 0.301511
\(45\) 0 0
\(46\) 0 0
\(47\) −360.000 −1.11726 −0.558632 0.829416i \(-0.688674\pi\)
−0.558632 + 0.829416i \(0.688674\pi\)
\(48\) 192.000 0.577350
\(49\) −339.000 −0.988338
\(50\) 0 0
\(51\) −216.000 −0.593060
\(52\) −176.000 −0.469362
\(53\) −318.000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 366.000 0.850489
\(58\) 0 0
\(59\) 660.000 1.45635 0.728175 0.685391i \(-0.240369\pi\)
0.728175 + 0.685391i \(0.240369\pi\)
\(60\) 0 0
\(61\) −430.000 −0.902555 −0.451278 0.892384i \(-0.649032\pi\)
−0.451278 + 0.892384i \(0.649032\pi\)
\(62\) 0 0
\(63\) −18.0000 −0.0359966
\(64\) −512.000 −1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) −380.000 −0.692901 −0.346451 0.938068i \(-0.612613\pi\)
−0.346451 + 0.938068i \(0.612613\pi\)
\(68\) 576.000 1.02721
\(69\) −216.000 −0.376860
\(70\) 0 0
\(71\) 168.000 0.280816 0.140408 0.990094i \(-0.455159\pi\)
0.140408 + 0.990094i \(0.455159\pi\)
\(72\) 0 0
\(73\) −218.000 −0.349520 −0.174760 0.984611i \(-0.555915\pi\)
−0.174760 + 0.984611i \(0.555915\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) −976.000 −1.47309
\(77\) 22.0000 0.0325602
\(78\) 0 0
\(79\) −706.000 −1.00546 −0.502729 0.864444i \(-0.667671\pi\)
−0.502729 + 0.864444i \(0.667671\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) −1068.00 −1.41239 −0.706194 0.708018i \(-0.749589\pi\)
−0.706194 + 0.708018i \(0.749589\pi\)
\(84\) 48.0000 0.0623480
\(85\) 0 0
\(86\) 0 0
\(87\) 288.000 0.354906
\(88\) 0 0
\(89\) −6.00000 −0.00714605 −0.00357303 0.999994i \(-0.501137\pi\)
−0.00357303 + 0.999994i \(0.501137\pi\)
\(90\) 0 0
\(91\) −44.0000 −0.0506863
\(92\) 576.000 0.652741
\(93\) −336.000 −0.374641
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −686.000 −0.718070 −0.359035 0.933324i \(-0.616894\pi\)
−0.359035 + 0.933324i \(0.616894\pi\)
\(98\) 0 0
\(99\) −99.0000 −0.100504
\(100\) 0 0
\(101\) −960.000 −0.945778 −0.472889 0.881122i \(-0.656789\pi\)
−0.472889 + 0.881122i \(0.656789\pi\)
\(102\) 0 0
\(103\) 844.000 0.807396 0.403698 0.914892i \(-0.367725\pi\)
0.403698 + 0.914892i \(0.367725\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −2172.00 −1.96238 −0.981192 0.193033i \(-0.938168\pi\)
−0.981192 + 0.193033i \(0.938168\pi\)
\(108\) −216.000 −0.192450
\(109\) 614.000 0.539546 0.269773 0.962924i \(-0.413051\pi\)
0.269773 + 0.962924i \(0.413051\pi\)
\(110\) 0 0
\(111\) −798.000 −0.682368
\(112\) −128.000 −0.107990
\(113\) −1254.00 −1.04395 −0.521975 0.852961i \(-0.674805\pi\)
−0.521975 + 0.852961i \(0.674805\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −768.000 −0.614716
\(117\) 198.000 0.156454
\(118\) 0 0
\(119\) 144.000 0.110928
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 0 0
\(123\) −288.000 −0.211123
\(124\) 896.000 0.648897
\(125\) 0 0
\(126\) 0 0
\(127\) −1394.00 −0.973996 −0.486998 0.873403i \(-0.661908\pi\)
−0.486998 + 0.873403i \(0.661908\pi\)
\(128\) 0 0
\(129\) 1146.00 0.782168
\(130\) 0 0
\(131\) −252.000 −0.168071 −0.0840357 0.996463i \(-0.526781\pi\)
−0.0840357 + 0.996463i \(0.526781\pi\)
\(132\) 264.000 0.174078
\(133\) −244.000 −0.159079
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1050.00 0.654800 0.327400 0.944886i \(-0.393828\pi\)
0.327400 + 0.944886i \(0.393828\pi\)
\(138\) 0 0
\(139\) 1874.00 1.14353 0.571765 0.820418i \(-0.306259\pi\)
0.571765 + 0.820418i \(0.306259\pi\)
\(140\) 0 0
\(141\) −1080.00 −0.645053
\(142\) 0 0
\(143\) −242.000 −0.141518
\(144\) 576.000 0.333333
\(145\) 0 0
\(146\) 0 0
\(147\) −1017.00 −0.570617
\(148\) 2128.00 1.18190
\(149\) 1476.00 0.811534 0.405767 0.913976i \(-0.367004\pi\)
0.405767 + 0.913976i \(0.367004\pi\)
\(150\) 0 0
\(151\) 1478.00 0.796543 0.398271 0.917268i \(-0.369610\pi\)
0.398271 + 0.917268i \(0.369610\pi\)
\(152\) 0 0
\(153\) −648.000 −0.342403
\(154\) 0 0
\(155\) 0 0
\(156\) −528.000 −0.270986
\(157\) −854.000 −0.434119 −0.217059 0.976158i \(-0.569646\pi\)
−0.217059 + 0.976158i \(0.569646\pi\)
\(158\) 0 0
\(159\) −954.000 −0.475831
\(160\) 0 0
\(161\) 144.000 0.0704894
\(162\) 0 0
\(163\) −1544.00 −0.741935 −0.370968 0.928646i \(-0.620974\pi\)
−0.370968 + 0.928646i \(0.620974\pi\)
\(164\) 768.000 0.365675
\(165\) 0 0
\(166\) 0 0
\(167\) −240.000 −0.111208 −0.0556041 0.998453i \(-0.517708\pi\)
−0.0556041 + 0.998453i \(0.517708\pi\)
\(168\) 0 0
\(169\) −1713.00 −0.779700
\(170\) 0 0
\(171\) 1098.00 0.491030
\(172\) −3056.00 −1.35475
\(173\) −2532.00 −1.11274 −0.556371 0.830934i \(-0.687807\pi\)
−0.556371 + 0.830934i \(0.687807\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −704.000 −0.301511
\(177\) 1980.00 0.840824
\(178\) 0 0
\(179\) 1092.00 0.455977 0.227989 0.973664i \(-0.426785\pi\)
0.227989 + 0.973664i \(0.426785\pi\)
\(180\) 0 0
\(181\) −2290.00 −0.940411 −0.470205 0.882557i \(-0.655820\pi\)
−0.470205 + 0.882557i \(0.655820\pi\)
\(182\) 0 0
\(183\) −1290.00 −0.521090
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 792.000 0.309715
\(188\) 2880.00 1.11726
\(189\) −54.0000 −0.0207827
\(190\) 0 0
\(191\) −4392.00 −1.66384 −0.831921 0.554894i \(-0.812759\pi\)
−0.831921 + 0.554894i \(0.812759\pi\)
\(192\) −1536.00 −0.577350
\(193\) 5074.00 1.89241 0.946203 0.323572i \(-0.104884\pi\)
0.946203 + 0.323572i \(0.104884\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 2712.00 0.988338
\(197\) −1692.00 −0.611929 −0.305964 0.952043i \(-0.598979\pi\)
−0.305964 + 0.952043i \(0.598979\pi\)
\(198\) 0 0
\(199\) 4664.00 1.66142 0.830709 0.556707i \(-0.187935\pi\)
0.830709 + 0.556707i \(0.187935\pi\)
\(200\) 0 0
\(201\) −1140.00 −0.400047
\(202\) 0 0
\(203\) −192.000 −0.0663830
\(204\) 1728.00 0.593060
\(205\) 0 0
\(206\) 0 0
\(207\) −648.000 −0.217580
\(208\) 1408.00 0.469362
\(209\) −1342.00 −0.444153
\(210\) 0 0
\(211\) −1870.00 −0.610124 −0.305062 0.952333i \(-0.598677\pi\)
−0.305062 + 0.952333i \(0.598677\pi\)
\(212\) 2544.00 0.824163
\(213\) 504.000 0.162129
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 224.000 0.0700742
\(218\) 0 0
\(219\) −654.000 −0.201796
\(220\) 0 0
\(221\) −1584.00 −0.482133
\(222\) 0 0
\(223\) −2300.00 −0.690670 −0.345335 0.938479i \(-0.612235\pi\)
−0.345335 + 0.938479i \(0.612235\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1332.00 0.389462 0.194731 0.980857i \(-0.437617\pi\)
0.194731 + 0.980857i \(0.437617\pi\)
\(228\) −2928.00 −0.850489
\(229\) −6022.00 −1.73775 −0.868875 0.495031i \(-0.835157\pi\)
−0.868875 + 0.495031i \(0.835157\pi\)
\(230\) 0 0
\(231\) 66.0000 0.0187986
\(232\) 0 0
\(233\) 4716.00 1.32599 0.662994 0.748624i \(-0.269285\pi\)
0.662994 + 0.748624i \(0.269285\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −5280.00 −1.45635
\(237\) −2118.00 −0.580502
\(238\) 0 0
\(239\) −6420.00 −1.73755 −0.868777 0.495204i \(-0.835093\pi\)
−0.868777 + 0.495204i \(0.835093\pi\)
\(240\) 0 0
\(241\) 3302.00 0.882575 0.441287 0.897366i \(-0.354522\pi\)
0.441287 + 0.897366i \(0.354522\pi\)
\(242\) 0 0
\(243\) 243.000 0.0641500
\(244\) 3440.00 0.902555
\(245\) 0 0
\(246\) 0 0
\(247\) 2684.00 0.691412
\(248\) 0 0
\(249\) −3204.00 −0.815443
\(250\) 0 0
\(251\) 732.000 0.184077 0.0920387 0.995755i \(-0.470662\pi\)
0.0920387 + 0.995755i \(0.470662\pi\)
\(252\) 144.000 0.0359966
\(253\) 792.000 0.196809
\(254\) 0 0
\(255\) 0 0
\(256\) 4096.00 1.00000
\(257\) 3438.00 0.834461 0.417231 0.908801i \(-0.363001\pi\)
0.417231 + 0.908801i \(0.363001\pi\)
\(258\) 0 0
\(259\) 532.000 0.127633
\(260\) 0 0
\(261\) 864.000 0.204905
\(262\) 0 0
\(263\) 696.000 0.163183 0.0815916 0.996666i \(-0.474000\pi\)
0.0815916 + 0.996666i \(0.474000\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −18.0000 −0.00412578
\(268\) 3040.00 0.692901
\(269\) −7338.00 −1.66322 −0.831609 0.555361i \(-0.812580\pi\)
−0.831609 + 0.555361i \(0.812580\pi\)
\(270\) 0 0
\(271\) 5114.00 1.14632 0.573161 0.819443i \(-0.305717\pi\)
0.573161 + 0.819443i \(0.305717\pi\)
\(272\) −4608.00 −1.02721
\(273\) −132.000 −0.0292637
\(274\) 0 0
\(275\) 0 0
\(276\) 1728.00 0.376860
\(277\) −986.000 −0.213874 −0.106937 0.994266i \(-0.534104\pi\)
−0.106937 + 0.994266i \(0.534104\pi\)
\(278\) 0 0
\(279\) −1008.00 −0.216299
\(280\) 0 0
\(281\) 3312.00 0.703122 0.351561 0.936165i \(-0.385651\pi\)
0.351561 + 0.936165i \(0.385651\pi\)
\(282\) 0 0
\(283\) −4298.00 −0.902790 −0.451395 0.892324i \(-0.649073\pi\)
−0.451395 + 0.892324i \(0.649073\pi\)
\(284\) −1344.00 −0.280816
\(285\) 0 0
\(286\) 0 0
\(287\) 192.000 0.0394892
\(288\) 0 0
\(289\) 271.000 0.0551598
\(290\) 0 0
\(291\) −2058.00 −0.414578
\(292\) 1744.00 0.349520
\(293\) −2736.00 −0.545525 −0.272763 0.962081i \(-0.587937\pi\)
−0.272763 + 0.962081i \(0.587937\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −297.000 −0.0580259
\(298\) 0 0
\(299\) −1584.00 −0.306372
\(300\) 0 0
\(301\) −764.000 −0.146300
\(302\) 0 0
\(303\) −2880.00 −0.546045
\(304\) 7808.00 1.47309
\(305\) 0 0
\(306\) 0 0
\(307\) 250.000 0.0464764 0.0232382 0.999730i \(-0.492602\pi\)
0.0232382 + 0.999730i \(0.492602\pi\)
\(308\) −176.000 −0.0325602
\(309\) 2532.00 0.466150
\(310\) 0 0
\(311\) 7248.00 1.32153 0.660766 0.750592i \(-0.270232\pi\)
0.660766 + 0.750592i \(0.270232\pi\)
\(312\) 0 0
\(313\) 7786.00 1.40604 0.703020 0.711170i \(-0.251834\pi\)
0.703020 + 0.711170i \(0.251834\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 5648.00 1.00546
\(317\) 4230.00 0.749465 0.374733 0.927133i \(-0.377735\pi\)
0.374733 + 0.927133i \(0.377735\pi\)
\(318\) 0 0
\(319\) −1056.00 −0.185344
\(320\) 0 0
\(321\) −6516.00 −1.13298
\(322\) 0 0
\(323\) −8784.00 −1.51317
\(324\) −648.000 −0.111111
\(325\) 0 0
\(326\) 0 0
\(327\) 1842.00 0.311507
\(328\) 0 0
\(329\) 720.000 0.120653
\(330\) 0 0
\(331\) 7736.00 1.28462 0.642310 0.766445i \(-0.277976\pi\)
0.642310 + 0.766445i \(0.277976\pi\)
\(332\) 8544.00 1.41239
\(333\) −2394.00 −0.393965
\(334\) 0 0
\(335\) 0 0
\(336\) −384.000 −0.0623480
\(337\) 2014.00 0.325548 0.162774 0.986663i \(-0.447956\pi\)
0.162774 + 0.986663i \(0.447956\pi\)
\(338\) 0 0
\(339\) −3762.00 −0.602725
\(340\) 0 0
\(341\) 1232.00 0.195650
\(342\) 0 0
\(343\) 1364.00 0.214720
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −7692.00 −1.18999 −0.594997 0.803728i \(-0.702847\pi\)
−0.594997 + 0.803728i \(0.702847\pi\)
\(348\) −2304.00 −0.354906
\(349\) −1750.00 −0.268411 −0.134205 0.990954i \(-0.542848\pi\)
−0.134205 + 0.990954i \(0.542848\pi\)
\(350\) 0 0
\(351\) 594.000 0.0903287
\(352\) 0 0
\(353\) −8034.00 −1.21135 −0.605675 0.795712i \(-0.707097\pi\)
−0.605675 + 0.795712i \(0.707097\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 48.0000 0.00714605
\(357\) 432.000 0.0640444
\(358\) 0 0
\(359\) 2304.00 0.338720 0.169360 0.985554i \(-0.445830\pi\)
0.169360 + 0.985554i \(0.445830\pi\)
\(360\) 0 0
\(361\) 8025.00 1.17000
\(362\) 0 0
\(363\) 363.000 0.0524864
\(364\) 352.000 0.0506863
\(365\) 0 0
\(366\) 0 0
\(367\) 2356.00 0.335101 0.167551 0.985863i \(-0.446414\pi\)
0.167551 + 0.985863i \(0.446414\pi\)
\(368\) −4608.00 −0.652741
\(369\) −864.000 −0.121892
\(370\) 0 0
\(371\) 636.000 0.0890013
\(372\) 2688.00 0.374641
\(373\) 8602.00 1.19409 0.597044 0.802209i \(-0.296342\pi\)
0.597044 + 0.802209i \(0.296342\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 2112.00 0.288524
\(378\) 0 0
\(379\) −12016.0 −1.62855 −0.814275 0.580479i \(-0.802865\pi\)
−0.814275 + 0.580479i \(0.802865\pi\)
\(380\) 0 0
\(381\) −4182.00 −0.562337
\(382\) 0 0
\(383\) −1728.00 −0.230540 −0.115270 0.993334i \(-0.536773\pi\)
−0.115270 + 0.993334i \(0.536773\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 3438.00 0.451585
\(388\) 5488.00 0.718070
\(389\) 8010.00 1.04402 0.522009 0.852940i \(-0.325183\pi\)
0.522009 + 0.852940i \(0.325183\pi\)
\(390\) 0 0
\(391\) 5184.00 0.670502
\(392\) 0 0
\(393\) −756.000 −0.0970360
\(394\) 0 0
\(395\) 0 0
\(396\) 792.000 0.100504
\(397\) 10150.0 1.28316 0.641579 0.767057i \(-0.278280\pi\)
0.641579 + 0.767057i \(0.278280\pi\)
\(398\) 0 0
\(399\) −732.000 −0.0918442
\(400\) 0 0
\(401\) 11862.0 1.47721 0.738604 0.674140i \(-0.235486\pi\)
0.738604 + 0.674140i \(0.235486\pi\)
\(402\) 0 0
\(403\) −2464.00 −0.304567
\(404\) 7680.00 0.945778
\(405\) 0 0
\(406\) 0 0
\(407\) 2926.00 0.356355
\(408\) 0 0
\(409\) −682.000 −0.0824517 −0.0412258 0.999150i \(-0.513126\pi\)
−0.0412258 + 0.999150i \(0.513126\pi\)
\(410\) 0 0
\(411\) 3150.00 0.378049
\(412\) −6752.00 −0.807396
\(413\) −1320.00 −0.157271
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 5622.00 0.660217
\(418\) 0 0
\(419\) 10836.0 1.26342 0.631710 0.775205i \(-0.282353\pi\)
0.631710 + 0.775205i \(0.282353\pi\)
\(420\) 0 0
\(421\) 12350.0 1.42970 0.714848 0.699280i \(-0.246496\pi\)
0.714848 + 0.699280i \(0.246496\pi\)
\(422\) 0 0
\(423\) −3240.00 −0.372421
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 860.000 0.0974668
\(428\) 17376.0 1.96238
\(429\) −726.000 −0.0817054
\(430\) 0 0
\(431\) −5940.00 −0.663851 −0.331925 0.943306i \(-0.607698\pi\)
−0.331925 + 0.943306i \(0.607698\pi\)
\(432\) 1728.00 0.192450
\(433\) 12898.0 1.43150 0.715749 0.698358i \(-0.246086\pi\)
0.715749 + 0.698358i \(0.246086\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −4912.00 −0.539546
\(437\) −8784.00 −0.961546
\(438\) 0 0
\(439\) 11450.0 1.24483 0.622413 0.782689i \(-0.286152\pi\)
0.622413 + 0.782689i \(0.286152\pi\)
\(440\) 0 0
\(441\) −3051.00 −0.329446
\(442\) 0 0
\(443\) −2100.00 −0.225224 −0.112612 0.993639i \(-0.535922\pi\)
−0.112612 + 0.993639i \(0.535922\pi\)
\(444\) 6384.00 0.682368
\(445\) 0 0
\(446\) 0 0
\(447\) 4428.00 0.468540
\(448\) 1024.00 0.107990
\(449\) −11934.0 −1.25434 −0.627172 0.778881i \(-0.715788\pi\)
−0.627172 + 0.778881i \(0.715788\pi\)
\(450\) 0 0
\(451\) 1056.00 0.110255
\(452\) 10032.0 1.04395
\(453\) 4434.00 0.459884
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −578.000 −0.0591635 −0.0295817 0.999562i \(-0.509418\pi\)
−0.0295817 + 0.999562i \(0.509418\pi\)
\(458\) 0 0
\(459\) −1944.00 −0.197687
\(460\) 0 0
\(461\) −324.000 −0.0327336 −0.0163668 0.999866i \(-0.505210\pi\)
−0.0163668 + 0.999866i \(0.505210\pi\)
\(462\) 0 0
\(463\) 11788.0 1.18323 0.591614 0.806221i \(-0.298491\pi\)
0.591614 + 0.806221i \(0.298491\pi\)
\(464\) 6144.00 0.614716
\(465\) 0 0
\(466\) 0 0
\(467\) 14484.0 1.43520 0.717601 0.696454i \(-0.245240\pi\)
0.717601 + 0.696454i \(0.245240\pi\)
\(468\) −1584.00 −0.156454
\(469\) 760.000 0.0748263
\(470\) 0 0
\(471\) −2562.00 −0.250638
\(472\) 0 0
\(473\) −4202.00 −0.408474
\(474\) 0 0
\(475\) 0 0
\(476\) −1152.00 −0.110928
\(477\) −2862.00 −0.274721
\(478\) 0 0
\(479\) −3084.00 −0.294179 −0.147089 0.989123i \(-0.546990\pi\)
−0.147089 + 0.989123i \(0.546990\pi\)
\(480\) 0 0
\(481\) −5852.00 −0.554736
\(482\) 0 0
\(483\) 432.000 0.0406971
\(484\) −968.000 −0.0909091
\(485\) 0 0
\(486\) 0 0
\(487\) 5584.00 0.519579 0.259790 0.965665i \(-0.416347\pi\)
0.259790 + 0.965665i \(0.416347\pi\)
\(488\) 0 0
\(489\) −4632.00 −0.428356
\(490\) 0 0
\(491\) −10752.0 −0.988250 −0.494125 0.869391i \(-0.664512\pi\)
−0.494125 + 0.869391i \(0.664512\pi\)
\(492\) 2304.00 0.211123
\(493\) −6912.00 −0.631442
\(494\) 0 0
\(495\) 0 0
\(496\) −7168.00 −0.648897
\(497\) −336.000 −0.0303253
\(498\) 0 0
\(499\) −13372.0 −1.19963 −0.599813 0.800141i \(-0.704758\pi\)
−0.599813 + 0.800141i \(0.704758\pi\)
\(500\) 0 0
\(501\) −720.000 −0.0642060
\(502\) 0 0
\(503\) −9072.00 −0.804176 −0.402088 0.915601i \(-0.631715\pi\)
−0.402088 + 0.915601i \(0.631715\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −5139.00 −0.450160
\(508\) 11152.0 0.973996
\(509\) −14586.0 −1.27016 −0.635082 0.772445i \(-0.719034\pi\)
−0.635082 + 0.772445i \(0.719034\pi\)
\(510\) 0 0
\(511\) 436.000 0.0377446
\(512\) 0 0
\(513\) 3294.00 0.283496
\(514\) 0 0
\(515\) 0 0
\(516\) −9168.00 −0.782168
\(517\) 3960.00 0.336868
\(518\) 0 0
\(519\) −7596.00 −0.642442
\(520\) 0 0
\(521\) 2718.00 0.228556 0.114278 0.993449i \(-0.463545\pi\)
0.114278 + 0.993449i \(0.463545\pi\)
\(522\) 0 0
\(523\) 2086.00 0.174406 0.0872031 0.996191i \(-0.472207\pi\)
0.0872031 + 0.996191i \(0.472207\pi\)
\(524\) 2016.00 0.168071
\(525\) 0 0
\(526\) 0 0
\(527\) 8064.00 0.666553
\(528\) −2112.00 −0.174078
\(529\) −6983.00 −0.573929
\(530\) 0 0
\(531\) 5940.00 0.485450
\(532\) 1952.00 0.159079
\(533\) −2112.00 −0.171634
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 3276.00 0.263259
\(538\) 0 0
\(539\) 3729.00 0.297995
\(540\) 0 0
\(541\) 13838.0 1.09971 0.549854 0.835261i \(-0.314683\pi\)
0.549854 + 0.835261i \(0.314683\pi\)
\(542\) 0 0
\(543\) −6870.00 −0.542946
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −23546.0 −1.84050 −0.920251 0.391329i \(-0.872015\pi\)
−0.920251 + 0.391329i \(0.872015\pi\)
\(548\) −8400.00 −0.654800
\(549\) −3870.00 −0.300852
\(550\) 0 0
\(551\) 11712.0 0.905532
\(552\) 0 0
\(553\) 1412.00 0.108579
\(554\) 0 0
\(555\) 0 0
\(556\) −14992.0 −1.14353
\(557\) −15624.0 −1.18853 −0.594264 0.804270i \(-0.702557\pi\)
−0.594264 + 0.804270i \(0.702557\pi\)
\(558\) 0 0
\(559\) 8404.00 0.635870
\(560\) 0 0
\(561\) 2376.00 0.178814
\(562\) 0 0
\(563\) −2400.00 −0.179659 −0.0898294 0.995957i \(-0.528632\pi\)
−0.0898294 + 0.995957i \(0.528632\pi\)
\(564\) 8640.00 0.645053
\(565\) 0 0
\(566\) 0 0
\(567\) −162.000 −0.0119989
\(568\) 0 0
\(569\) −18300.0 −1.34829 −0.674144 0.738600i \(-0.735487\pi\)
−0.674144 + 0.738600i \(0.735487\pi\)
\(570\) 0 0
\(571\) 25454.0 1.86553 0.932764 0.360487i \(-0.117389\pi\)
0.932764 + 0.360487i \(0.117389\pi\)
\(572\) 1936.00 0.141518
\(573\) −13176.0 −0.960620
\(574\) 0 0
\(575\) 0 0
\(576\) −4608.00 −0.333333
\(577\) −19802.0 −1.42871 −0.714357 0.699781i \(-0.753281\pi\)
−0.714357 + 0.699781i \(0.753281\pi\)
\(578\) 0 0
\(579\) 15222.0 1.09258
\(580\) 0 0
\(581\) 2136.00 0.152524
\(582\) 0 0
\(583\) 3498.00 0.248495
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −18396.0 −1.29350 −0.646750 0.762702i \(-0.723872\pi\)
−0.646750 + 0.762702i \(0.723872\pi\)
\(588\) 8136.00 0.570617
\(589\) −13664.0 −0.955883
\(590\) 0 0
\(591\) −5076.00 −0.353297
\(592\) −17024.0 −1.18190
\(593\) −15012.0 −1.03958 −0.519788 0.854295i \(-0.673989\pi\)
−0.519788 + 0.854295i \(0.673989\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −11808.0 −0.811534
\(597\) 13992.0 0.959220
\(598\) 0 0
\(599\) 15408.0 1.05101 0.525504 0.850791i \(-0.323877\pi\)
0.525504 + 0.850791i \(0.323877\pi\)
\(600\) 0 0
\(601\) −1558.00 −0.105744 −0.0528720 0.998601i \(-0.516838\pi\)
−0.0528720 + 0.998601i \(0.516838\pi\)
\(602\) 0 0
\(603\) −3420.00 −0.230967
\(604\) −11824.0 −0.796543
\(605\) 0 0
\(606\) 0 0
\(607\) −22970.0 −1.53595 −0.767977 0.640478i \(-0.778736\pi\)
−0.767977 + 0.640478i \(0.778736\pi\)
\(608\) 0 0
\(609\) −576.000 −0.0383263
\(610\) 0 0
\(611\) −7920.00 −0.524401
\(612\) 5184.00 0.342403
\(613\) 11482.0 0.756531 0.378266 0.925697i \(-0.376521\pi\)
0.378266 + 0.925697i \(0.376521\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −246.000 −0.0160512 −0.00802560 0.999968i \(-0.502555\pi\)
−0.00802560 + 0.999968i \(0.502555\pi\)
\(618\) 0 0
\(619\) 11648.0 0.756337 0.378169 0.925737i \(-0.376554\pi\)
0.378169 + 0.925737i \(0.376554\pi\)
\(620\) 0 0
\(621\) −1944.00 −0.125620
\(622\) 0 0
\(623\) 12.0000 0.000771701 0
\(624\) 4224.00 0.270986
\(625\) 0 0
\(626\) 0 0
\(627\) −4026.00 −0.256432
\(628\) 6832.00 0.434119
\(629\) 19152.0 1.21405
\(630\) 0 0
\(631\) −22024.0 −1.38948 −0.694740 0.719261i \(-0.744480\pi\)
−0.694740 + 0.719261i \(0.744480\pi\)
\(632\) 0 0
\(633\) −5610.00 −0.352255
\(634\) 0 0
\(635\) 0 0
\(636\) 7632.00 0.475831
\(637\) −7458.00 −0.463888
\(638\) 0 0
\(639\) 1512.00 0.0936053
\(640\) 0 0
\(641\) 2322.00 0.143079 0.0715394 0.997438i \(-0.477209\pi\)
0.0715394 + 0.997438i \(0.477209\pi\)
\(642\) 0 0
\(643\) −14024.0 −0.860113 −0.430056 0.902802i \(-0.641506\pi\)
−0.430056 + 0.902802i \(0.641506\pi\)
\(644\) −1152.00 −0.0704894
\(645\) 0 0
\(646\) 0 0
\(647\) 7152.00 0.434581 0.217291 0.976107i \(-0.430278\pi\)
0.217291 + 0.976107i \(0.430278\pi\)
\(648\) 0 0
\(649\) −7260.00 −0.439106
\(650\) 0 0
\(651\) 672.000 0.0404574
\(652\) 12352.0 0.741935
\(653\) 3138.00 0.188054 0.0940271 0.995570i \(-0.470026\pi\)
0.0940271 + 0.995570i \(0.470026\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −6144.00 −0.365675
\(657\) −1962.00 −0.116507
\(658\) 0 0
\(659\) −15876.0 −0.938454 −0.469227 0.883078i \(-0.655467\pi\)
−0.469227 + 0.883078i \(0.655467\pi\)
\(660\) 0 0
\(661\) −20554.0 −1.20947 −0.604734 0.796428i \(-0.706720\pi\)
−0.604734 + 0.796428i \(0.706720\pi\)
\(662\) 0 0
\(663\) −4752.00 −0.278360
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −6912.00 −0.401250
\(668\) 1920.00 0.111208
\(669\) −6900.00 −0.398758
\(670\) 0 0
\(671\) 4730.00 0.272131
\(672\) 0 0
\(673\) −27806.0 −1.59263 −0.796317 0.604880i \(-0.793221\pi\)
−0.796317 + 0.604880i \(0.793221\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 13704.0 0.779700
\(677\) −20820.0 −1.18195 −0.590973 0.806691i \(-0.701256\pi\)
−0.590973 + 0.806691i \(0.701256\pi\)
\(678\) 0 0
\(679\) 1372.00 0.0775442
\(680\) 0 0
\(681\) 3996.00 0.224856
\(682\) 0 0
\(683\) 7020.00 0.393284 0.196642 0.980475i \(-0.436996\pi\)
0.196642 + 0.980475i \(0.436996\pi\)
\(684\) −8784.00 −0.491030
\(685\) 0 0
\(686\) 0 0
\(687\) −18066.0 −1.00329
\(688\) 24448.0 1.35475
\(689\) −6996.00 −0.386831
\(690\) 0 0
\(691\) 12536.0 0.690147 0.345074 0.938576i \(-0.387854\pi\)
0.345074 + 0.938576i \(0.387854\pi\)
\(692\) 20256.0 1.11274
\(693\) 198.000 0.0108534
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 6912.00 0.375625
\(698\) 0 0
\(699\) 14148.0 0.765560
\(700\) 0 0
\(701\) −33276.0 −1.79289 −0.896446 0.443153i \(-0.853860\pi\)
−0.896446 + 0.443153i \(0.853860\pi\)
\(702\) 0 0
\(703\) −32452.0 −1.74104
\(704\) 5632.00 0.301511
\(705\) 0 0
\(706\) 0 0
\(707\) 1920.00 0.102134
\(708\) −15840.0 −0.840824
\(709\) 9818.00 0.520060 0.260030 0.965601i \(-0.416267\pi\)
0.260030 + 0.965601i \(0.416267\pi\)
\(710\) 0 0
\(711\) −6354.00 −0.335153
\(712\) 0 0
\(713\) 8064.00 0.423561
\(714\) 0 0
\(715\) 0 0
\(716\) −8736.00 −0.455977
\(717\) −19260.0 −1.00318
\(718\) 0 0
\(719\) 3216.00 0.166810 0.0834051 0.996516i \(-0.473420\pi\)
0.0834051 + 0.996516i \(0.473420\pi\)
\(720\) 0 0
\(721\) −1688.00 −0.0871906
\(722\) 0 0
\(723\) 9906.00 0.509555
\(724\) 18320.0 0.940411
\(725\) 0 0
\(726\) 0 0
\(727\) 10960.0 0.559125 0.279563 0.960127i \(-0.409811\pi\)
0.279563 + 0.960127i \(0.409811\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −27504.0 −1.39162
\(732\) 10320.0 0.521090
\(733\) −14618.0 −0.736600 −0.368300 0.929707i \(-0.620060\pi\)
−0.368300 + 0.929707i \(0.620060\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 4180.00 0.208918
\(738\) 0 0
\(739\) 36518.0 1.81778 0.908888 0.417040i \(-0.136933\pi\)
0.908888 + 0.417040i \(0.136933\pi\)
\(740\) 0 0
\(741\) 8052.00 0.399187
\(742\) 0 0
\(743\) 37452.0 1.84923 0.924617 0.380899i \(-0.124385\pi\)
0.924617 + 0.380899i \(0.124385\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −9612.00 −0.470796
\(748\) −6336.00 −0.309715
\(749\) 4344.00 0.211918
\(750\) 0 0
\(751\) −10648.0 −0.517378 −0.258689 0.965961i \(-0.583291\pi\)
−0.258689 + 0.965961i \(0.583291\pi\)
\(752\) −23040.0 −1.11726
\(753\) 2196.00 0.106277
\(754\) 0 0
\(755\) 0 0
\(756\) 432.000 0.0207827
\(757\) 1258.00 0.0604000 0.0302000 0.999544i \(-0.490386\pi\)
0.0302000 + 0.999544i \(0.490386\pi\)
\(758\) 0 0
\(759\) 2376.00 0.113628
\(760\) 0 0
\(761\) 1740.00 0.0828843 0.0414421 0.999141i \(-0.486805\pi\)
0.0414421 + 0.999141i \(0.486805\pi\)
\(762\) 0 0
\(763\) −1228.00 −0.0582655
\(764\) 35136.0 1.66384
\(765\) 0 0
\(766\) 0 0
\(767\) 14520.0 0.683555
\(768\) 12288.0 0.577350
\(769\) −10774.0 −0.505228 −0.252614 0.967567i \(-0.581290\pi\)
−0.252614 + 0.967567i \(0.581290\pi\)
\(770\) 0 0
\(771\) 10314.0 0.481776
\(772\) −40592.0 −1.89241
\(773\) 19146.0 0.890859 0.445429 0.895317i \(-0.353051\pi\)
0.445429 + 0.895317i \(0.353051\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 1596.00 0.0736888
\(778\) 0 0
\(779\) −11712.0 −0.538673
\(780\) 0 0
\(781\) −1848.00 −0.0846692
\(782\) 0 0
\(783\) 2592.00 0.118302
\(784\) −21696.0 −0.988338
\(785\) 0 0
\(786\) 0 0
\(787\) 30670.0 1.38916 0.694579 0.719416i \(-0.255591\pi\)
0.694579 + 0.719416i \(0.255591\pi\)
\(788\) 13536.0 0.611929
\(789\) 2088.00 0.0942139
\(790\) 0 0
\(791\) 2508.00 0.112736
\(792\) 0 0
\(793\) −9460.00 −0.423625
\(794\) 0 0
\(795\) 0 0
\(796\) −37312.0 −1.66142
\(797\) −11970.0 −0.531994 −0.265997 0.963974i \(-0.585701\pi\)
−0.265997 + 0.963974i \(0.585701\pi\)
\(798\) 0 0
\(799\) 25920.0 1.14766
\(800\) 0 0
\(801\) −54.0000 −0.00238202
\(802\) 0 0
\(803\) 2398.00 0.105384
\(804\) 9120.00 0.400047
\(805\) 0 0
\(806\) 0 0
\(807\) −22014.0 −0.960260
\(808\) 0 0
\(809\) −19932.0 −0.866220 −0.433110 0.901341i \(-0.642584\pi\)
−0.433110 + 0.901341i \(0.642584\pi\)
\(810\) 0 0
\(811\) −31462.0 −1.36224 −0.681122 0.732170i \(-0.738508\pi\)
−0.681122 + 0.732170i \(0.738508\pi\)
\(812\) 1536.00 0.0663830
\(813\) 15342.0 0.661830
\(814\) 0 0
\(815\) 0 0
\(816\) −13824.0 −0.593060
\(817\) 46604.0 1.99568
\(818\) 0 0
\(819\) −396.000 −0.0168954
\(820\) 0 0
\(821\) −39720.0 −1.68847 −0.844237 0.535970i \(-0.819946\pi\)
−0.844237 + 0.535970i \(0.819946\pi\)
\(822\) 0 0
\(823\) 28492.0 1.20677 0.603383 0.797451i \(-0.293819\pi\)
0.603383 + 0.797451i \(0.293819\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 18324.0 0.770481 0.385241 0.922816i \(-0.374118\pi\)
0.385241 + 0.922816i \(0.374118\pi\)
\(828\) 5184.00 0.217580
\(829\) 21626.0 0.906034 0.453017 0.891502i \(-0.350348\pi\)
0.453017 + 0.891502i \(0.350348\pi\)
\(830\) 0 0
\(831\) −2958.00 −0.123480
\(832\) −11264.0 −0.469362
\(833\) 24408.0 1.01523
\(834\) 0 0
\(835\) 0 0
\(836\) 10736.0 0.444153
\(837\) −3024.00 −0.124880
\(838\) 0 0
\(839\) −36960.0 −1.52086 −0.760430 0.649420i \(-0.775012\pi\)
−0.760430 + 0.649420i \(0.775012\pi\)
\(840\) 0 0
\(841\) −15173.0 −0.622125
\(842\) 0 0
\(843\) 9936.00 0.405948
\(844\) 14960.0 0.610124
\(845\) 0 0
\(846\) 0 0
\(847\) −242.000 −0.00981726
\(848\) −20352.0 −0.824163
\(849\) −12894.0 −0.521226
\(850\) 0 0
\(851\) 19152.0 0.771471
\(852\) −4032.00 −0.162129
\(853\) −31502.0 −1.26449 −0.632244 0.774769i \(-0.717866\pi\)
−0.632244 + 0.774769i \(0.717866\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −5640.00 −0.224806 −0.112403 0.993663i \(-0.535855\pi\)
−0.112403 + 0.993663i \(0.535855\pi\)
\(858\) 0 0
\(859\) −2056.00 −0.0816645 −0.0408323 0.999166i \(-0.513001\pi\)
−0.0408323 + 0.999166i \(0.513001\pi\)
\(860\) 0 0
\(861\) 576.000 0.0227991
\(862\) 0 0
\(863\) −18336.0 −0.723250 −0.361625 0.932324i \(-0.617778\pi\)
−0.361625 + 0.932324i \(0.617778\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 813.000 0.0318465
\(868\) −1792.00 −0.0700742
\(869\) 7766.00 0.303157
\(870\) 0 0
\(871\) −8360.00 −0.325221
\(872\) 0 0
\(873\) −6174.00 −0.239357
\(874\) 0 0
\(875\) 0 0
\(876\) 5232.00 0.201796
\(877\) 51346.0 1.97700 0.988501 0.151213i \(-0.0483178\pi\)
0.988501 + 0.151213i \(0.0483178\pi\)
\(878\) 0 0
\(879\) −8208.00 −0.314959
\(880\) 0 0
\(881\) 32910.0 1.25853 0.629266 0.777190i \(-0.283356\pi\)
0.629266 + 0.777190i \(0.283356\pi\)
\(882\) 0 0
\(883\) −15356.0 −0.585244 −0.292622 0.956228i \(-0.594528\pi\)
−0.292622 + 0.956228i \(0.594528\pi\)
\(884\) 12672.0 0.482133
\(885\) 0 0
\(886\) 0 0
\(887\) −18372.0 −0.695458 −0.347729 0.937595i \(-0.613047\pi\)
−0.347729 + 0.937595i \(0.613047\pi\)
\(888\) 0 0
\(889\) 2788.00 0.105182
\(890\) 0 0
\(891\) −891.000 −0.0335013
\(892\) 18400.0 0.690670
\(893\) −43920.0 −1.64583
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −4752.00 −0.176884
\(898\) 0 0
\(899\) −10752.0 −0.398887
\(900\) 0 0
\(901\) 22896.0 0.846589
\(902\) 0 0
\(903\) −2292.00 −0.0844662
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −7640.00 −0.279694 −0.139847 0.990173i \(-0.544661\pi\)
−0.139847 + 0.990173i \(0.544661\pi\)
\(908\) −10656.0 −0.389462
\(909\) −8640.00 −0.315259
\(910\) 0 0
\(911\) −53040.0 −1.92897 −0.964486 0.264134i \(-0.914914\pi\)
−0.964486 + 0.264134i \(0.914914\pi\)
\(912\) 23424.0 0.850489
\(913\) 11748.0 0.425851
\(914\) 0 0
\(915\) 0 0
\(916\) 48176.0 1.73775
\(917\) 504.000 0.0181500
\(918\) 0 0
\(919\) −11302.0 −0.405679 −0.202839 0.979212i \(-0.565017\pi\)
−0.202839 + 0.979212i \(0.565017\pi\)
\(920\) 0 0
\(921\) 750.000 0.0268332
\(922\) 0 0
\(923\) 3696.00 0.131804
\(924\) −528.000 −0.0187986
\(925\) 0 0
\(926\) 0 0
\(927\) 7596.00 0.269132
\(928\) 0 0
\(929\) 19254.0 0.679982 0.339991 0.940429i \(-0.389576\pi\)
0.339991 + 0.940429i \(0.389576\pi\)
\(930\) 0 0
\(931\) −41358.0 −1.45591
\(932\) −37728.0 −1.32599
\(933\) 21744.0 0.762987
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −22214.0 −0.774493 −0.387246 0.921976i \(-0.626574\pi\)
−0.387246 + 0.921976i \(0.626574\pi\)
\(938\) 0 0
\(939\) 23358.0 0.811778
\(940\) 0 0
\(941\) 41736.0 1.44586 0.722930 0.690921i \(-0.242795\pi\)
0.722930 + 0.690921i \(0.242795\pi\)
\(942\) 0 0
\(943\) 6912.00 0.238691
\(944\) 42240.0 1.45635
\(945\) 0 0
\(946\) 0 0
\(947\) −42732.0 −1.46632 −0.733159 0.680057i \(-0.761955\pi\)
−0.733159 + 0.680057i \(0.761955\pi\)
\(948\) 16944.0 0.580502
\(949\) −4796.00 −0.164051
\(950\) 0 0
\(951\) 12690.0 0.432704
\(952\) 0 0
\(953\) 25056.0 0.851672 0.425836 0.904800i \(-0.359980\pi\)
0.425836 + 0.904800i \(0.359980\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 51360.0 1.73755
\(957\) −3168.00 −0.107008
\(958\) 0 0
\(959\) −2100.00 −0.0707117
\(960\) 0 0
\(961\) −17247.0 −0.578933
\(962\) 0 0
\(963\) −19548.0 −0.654128
\(964\) −26416.0 −0.882575
\(965\) 0 0
\(966\) 0 0
\(967\) 14326.0 0.476415 0.238207 0.971214i \(-0.423440\pi\)
0.238207 + 0.971214i \(0.423440\pi\)
\(968\) 0 0
\(969\) −26352.0 −0.873631
\(970\) 0 0
\(971\) 45924.0 1.51779 0.758894 0.651215i \(-0.225740\pi\)
0.758894 + 0.651215i \(0.225740\pi\)
\(972\) −1944.00 −0.0641500
\(973\) −3748.00 −0.123490
\(974\) 0 0
\(975\) 0 0
\(976\) −27520.0 −0.902555
\(977\) 38946.0 1.27533 0.637663 0.770316i \(-0.279901\pi\)
0.637663 + 0.770316i \(0.279901\pi\)
\(978\) 0 0
\(979\) 66.0000 0.00215462
\(980\) 0 0
\(981\) 5526.00 0.179849
\(982\) 0 0
\(983\) −21000.0 −0.681379 −0.340690 0.940176i \(-0.610661\pi\)
−0.340690 + 0.940176i \(0.610661\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 2160.00 0.0696591
\(988\) −21472.0 −0.691412
\(989\) −27504.0 −0.884304
\(990\) 0 0
\(991\) 7760.00 0.248743 0.124372 0.992236i \(-0.460309\pi\)
0.124372 + 0.992236i \(0.460309\pi\)
\(992\) 0 0
\(993\) 23208.0 0.741675
\(994\) 0 0
\(995\) 0 0
\(996\) 25632.0 0.815443
\(997\) −21350.0 −0.678196 −0.339098 0.940751i \(-0.610122\pi\)
−0.339098 + 0.940751i \(0.610122\pi\)
\(998\) 0 0
\(999\) −7182.00 −0.227456
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 825.4.a.e.1.1 1
3.2 odd 2 2475.4.a.f.1.1 1
5.2 odd 4 825.4.c.g.199.1 2
5.3 odd 4 825.4.c.g.199.2 2
5.4 even 2 165.4.a.a.1.1 1
15.14 odd 2 495.4.a.c.1.1 1
55.54 odd 2 1815.4.a.f.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
165.4.a.a.1.1 1 5.4 even 2
495.4.a.c.1.1 1 15.14 odd 2
825.4.a.e.1.1 1 1.1 even 1 trivial
825.4.c.g.199.1 2 5.2 odd 4
825.4.c.g.199.2 2 5.3 odd 4
1815.4.a.f.1.1 1 55.54 odd 2
2475.4.a.f.1.1 1 3.2 odd 2