Properties

Label 825.4.a.c
Level $825$
Weight $4$
Character orbit 825.a
Self dual yes
Analytic conductor $48.677$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [825,4,Mod(1,825)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(825, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("825.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 825 = 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 825.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.6765757547\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 3 q^{2} - 3 q^{3} + q^{4} + 9 q^{6} - 7 q^{7} + 21 q^{8} + 9 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - 3 q^{2} - 3 q^{3} + q^{4} + 9 q^{6} - 7 q^{7} + 21 q^{8} + 9 q^{9} + 11 q^{11} - 3 q^{12} - 16 q^{13} + 21 q^{14} - 71 q^{16} + 21 q^{17} - 27 q^{18} + 125 q^{19} + 21 q^{21} - 33 q^{22} - 81 q^{23} - 63 q^{24} + 48 q^{26} - 27 q^{27} - 7 q^{28} + 186 q^{29} - 58 q^{31} + 45 q^{32} - 33 q^{33} - 63 q^{34} + 9 q^{36} - 253 q^{37} - 375 q^{38} + 48 q^{39} + 63 q^{41} - 63 q^{42} - 100 q^{43} + 11 q^{44} + 243 q^{46} - 219 q^{47} + 213 q^{48} - 294 q^{49} - 63 q^{51} - 16 q^{52} - 192 q^{53} + 81 q^{54} - 147 q^{56} - 375 q^{57} - 558 q^{58} + 249 q^{59} - 64 q^{61} + 174 q^{62} - 63 q^{63} + 433 q^{64} + 99 q^{66} + 272 q^{67} + 21 q^{68} + 243 q^{69} - 645 q^{71} + 189 q^{72} - 112 q^{73} + 759 q^{74} + 125 q^{76} - 77 q^{77} - 144 q^{78} + 509 q^{79} + 81 q^{81} - 189 q^{82} - 1254 q^{83} + 21 q^{84} + 300 q^{86} - 558 q^{87} + 231 q^{88} + 756 q^{89} + 112 q^{91} - 81 q^{92} + 174 q^{93} + 657 q^{94} - 135 q^{96} + 839 q^{97} + 882 q^{98} + 99 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−3.00000 −3.00000 1.00000 0 9.00000 −7.00000 21.0000 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \(1\)
\(5\) \(-1\)
\(11\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 825.4.a.c 1
3.b odd 2 1 2475.4.a.i 1
5.b even 2 1 825.4.a.g yes 1
5.c odd 4 2 825.4.c.d 2
15.d odd 2 1 2475.4.a.d 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
825.4.a.c 1 1.a even 1 1 trivial
825.4.a.g yes 1 5.b even 2 1
825.4.c.d 2 5.c odd 4 2
2475.4.a.d 1 15.d odd 2 1
2475.4.a.i 1 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(825))\):

\( T_{2} + 3 \) Copy content Toggle raw display
\( T_{7} + 7 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 3 \) Copy content Toggle raw display
$3$ \( T + 3 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T + 7 \) Copy content Toggle raw display
$11$ \( T - 11 \) Copy content Toggle raw display
$13$ \( T + 16 \) Copy content Toggle raw display
$17$ \( T - 21 \) Copy content Toggle raw display
$19$ \( T - 125 \) Copy content Toggle raw display
$23$ \( T + 81 \) Copy content Toggle raw display
$29$ \( T - 186 \) Copy content Toggle raw display
$31$ \( T + 58 \) Copy content Toggle raw display
$37$ \( T + 253 \) Copy content Toggle raw display
$41$ \( T - 63 \) Copy content Toggle raw display
$43$ \( T + 100 \) Copy content Toggle raw display
$47$ \( T + 219 \) Copy content Toggle raw display
$53$ \( T + 192 \) Copy content Toggle raw display
$59$ \( T - 249 \) Copy content Toggle raw display
$61$ \( T + 64 \) Copy content Toggle raw display
$67$ \( T - 272 \) Copy content Toggle raw display
$71$ \( T + 645 \) Copy content Toggle raw display
$73$ \( T + 112 \) Copy content Toggle raw display
$79$ \( T - 509 \) Copy content Toggle raw display
$83$ \( T + 1254 \) Copy content Toggle raw display
$89$ \( T - 756 \) Copy content Toggle raw display
$97$ \( T - 839 \) Copy content Toggle raw display
show more
show less