Properties

Label 825.2.r.a.346.1
Level $825$
Weight $2$
Character 825.346
Analytic conductor $6.588$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 825 = 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 825.r (of order \(5\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.58765816676\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Defining polynomial: \(x^{4} - x^{3} + x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 346.1
Root \(-0.309017 + 0.951057i\) of defining polynomial
Character \(\chi\) \(=\) 825.346
Dual form 825.2.r.a.31.1

$q$-expansion

\(f(q)\) \(=\) \(q+2.23607 q^{2} +(0.309017 + 0.951057i) q^{3} +3.00000 q^{4} +(1.80902 - 1.31433i) q^{5} +(0.690983 + 2.12663i) q^{6} +(-0.309017 + 0.224514i) q^{7} +2.23607 q^{8} +(-0.809017 + 0.587785i) q^{9} +O(q^{10})\) \(q+2.23607 q^{2} +(0.309017 + 0.951057i) q^{3} +3.00000 q^{4} +(1.80902 - 1.31433i) q^{5} +(0.690983 + 2.12663i) q^{6} +(-0.309017 + 0.224514i) q^{7} +2.23607 q^{8} +(-0.809017 + 0.587785i) q^{9} +(4.04508 - 2.93893i) q^{10} +(-1.69098 + 2.85317i) q^{11} +(0.927051 + 2.85317i) q^{12} +(4.85410 - 3.52671i) q^{13} +(-0.690983 + 0.502029i) q^{14} +(1.80902 + 1.31433i) q^{15} -1.00000 q^{16} +(0.545085 + 1.67760i) q^{17} +(-1.80902 + 1.31433i) q^{18} +4.38197 q^{19} +(5.42705 - 3.94298i) q^{20} +(-0.309017 - 0.224514i) q^{21} +(-3.78115 + 6.37988i) q^{22} +(-1.07295 + 3.30220i) q^{23} +(0.690983 + 2.12663i) q^{24} +(1.54508 - 4.75528i) q^{25} +(10.8541 - 7.88597i) q^{26} +(-0.809017 - 0.587785i) q^{27} +(-0.927051 + 0.673542i) q^{28} -4.09017 q^{29} +(4.04508 + 2.93893i) q^{30} +(1.19098 + 0.865300i) q^{31} -6.70820 q^{32} +(-3.23607 - 0.726543i) q^{33} +(1.21885 + 3.75123i) q^{34} +(-0.263932 + 0.812299i) q^{35} +(-2.42705 + 1.76336i) q^{36} +(-6.35410 - 4.61653i) q^{37} +9.79837 q^{38} +(4.85410 + 3.52671i) q^{39} +(4.04508 - 2.93893i) q^{40} +(1.92705 - 5.93085i) q^{41} +(-0.690983 - 0.502029i) q^{42} -9.94427 q^{43} +(-5.07295 + 8.55951i) q^{44} +(-0.690983 + 2.12663i) q^{45} +(-2.39919 + 7.38394i) q^{46} +(-0.954915 - 2.93893i) q^{47} +(-0.309017 - 0.951057i) q^{48} +(-2.11803 + 6.51864i) q^{49} +(3.45492 - 10.6331i) q^{50} +(-1.42705 + 1.03681i) q^{51} +(14.5623 - 10.5801i) q^{52} +(-0.309017 + 0.951057i) q^{53} +(-1.80902 - 1.31433i) q^{54} +(0.690983 + 7.38394i) q^{55} +(-0.690983 + 0.502029i) q^{56} +(1.35410 + 4.16750i) q^{57} -9.14590 q^{58} +(1.38197 + 1.00406i) q^{59} +(5.42705 + 3.94298i) q^{60} +(-8.35410 - 6.06961i) q^{61} +(2.66312 + 1.93487i) q^{62} +(0.118034 - 0.363271i) q^{63} -13.0000 q^{64} +(4.14590 - 12.7598i) q^{65} +(-7.23607 - 1.62460i) q^{66} +(-0.690983 + 0.502029i) q^{67} +(1.63525 + 5.03280i) q^{68} -3.47214 q^{69} +(-0.590170 + 1.81636i) q^{70} +(1.19098 - 0.865300i) q^{71} +(-1.80902 + 1.31433i) q^{72} +(0.381966 + 1.17557i) q^{73} +(-14.2082 - 10.3229i) q^{74} +5.00000 q^{75} +13.1459 q^{76} +(-0.118034 - 1.26133i) q^{77} +(10.8541 + 7.88597i) q^{78} +(1.52786 - 4.70228i) q^{79} +(-1.80902 + 1.31433i) q^{80} +(0.309017 - 0.951057i) q^{81} +(4.30902 - 13.2618i) q^{82} +(3.57295 + 10.9964i) q^{83} +(-0.927051 - 0.673542i) q^{84} +(3.19098 + 2.31838i) q^{85} -22.2361 q^{86} +(-1.26393 - 3.88998i) q^{87} +(-3.78115 + 6.37988i) q^{88} +(-5.11803 + 15.7517i) q^{89} +(-1.54508 + 4.75528i) q^{90} +(-0.708204 + 2.17963i) q^{91} +(-3.21885 + 9.90659i) q^{92} +(-0.454915 + 1.40008i) q^{93} +(-2.13525 - 6.57164i) q^{94} +(7.92705 - 5.75934i) q^{95} +(-2.07295 - 6.37988i) q^{96} +(3.54508 - 10.9106i) q^{97} +(-4.73607 + 14.5761i) q^{98} +(-0.309017 - 3.30220i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{3} + 12 q^{4} + 5 q^{5} + 5 q^{6} + q^{7} - q^{9} + O(q^{10}) \) \( 4 q - q^{3} + 12 q^{4} + 5 q^{5} + 5 q^{6} + q^{7} - q^{9} + 5 q^{10} - 9 q^{11} - 3 q^{12} + 6 q^{13} - 5 q^{14} + 5 q^{15} - 4 q^{16} - 9 q^{17} - 5 q^{18} + 22 q^{19} + 15 q^{20} + q^{21} + 5 q^{22} - 11 q^{23} + 5 q^{24} - 5 q^{25} + 30 q^{26} - q^{27} + 3 q^{28} + 6 q^{29} + 5 q^{30} + 7 q^{31} - 4 q^{33} + 25 q^{34} - 10 q^{35} - 3 q^{36} - 12 q^{37} - 10 q^{38} + 6 q^{39} + 5 q^{40} + q^{41} - 5 q^{42} - 4 q^{43} - 27 q^{44} - 5 q^{45} + 15 q^{46} - 15 q^{47} + q^{48} - 4 q^{49} + 25 q^{50} + q^{51} + 18 q^{52} + q^{53} - 5 q^{54} + 5 q^{55} - 5 q^{56} - 8 q^{57} - 50 q^{58} + 10 q^{59} + 15 q^{60} - 20 q^{61} - 5 q^{62} - 4 q^{63} - 52 q^{64} + 30 q^{65} - 20 q^{66} - 5 q^{67} - 27 q^{68} + 4 q^{69} + 20 q^{70} + 7 q^{71} - 5 q^{72} + 6 q^{73} - 30 q^{74} + 20 q^{75} + 66 q^{76} + 4 q^{77} + 30 q^{78} + 24 q^{79} - 5 q^{80} - q^{81} + 15 q^{82} + 21 q^{83} + 3 q^{84} + 15 q^{85} - 80 q^{86} - 14 q^{87} + 5 q^{88} - 16 q^{89} + 5 q^{90} + 24 q^{91} - 33 q^{92} - 13 q^{93} + 25 q^{94} + 25 q^{95} - 15 q^{96} + 3 q^{97} - 10 q^{98} + q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/825\mathbb{Z}\right)^\times\).

\(n\) \(376\) \(551\) \(727\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\) \(1\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.23607 1.58114 0.790569 0.612372i \(-0.209785\pi\)
0.790569 + 0.612372i \(0.209785\pi\)
\(3\) 0.309017 + 0.951057i 0.178411 + 0.549093i
\(4\) 3.00000 1.50000
\(5\) 1.80902 1.31433i 0.809017 0.587785i
\(6\) 0.690983 + 2.12663i 0.282093 + 0.868192i
\(7\) −0.309017 + 0.224514i −0.116797 + 0.0848583i −0.644651 0.764477i \(-0.722997\pi\)
0.527853 + 0.849336i \(0.322997\pi\)
\(8\) 2.23607 0.790569
\(9\) −0.809017 + 0.587785i −0.269672 + 0.195928i
\(10\) 4.04508 2.93893i 1.27917 0.929370i
\(11\) −1.69098 + 2.85317i −0.509851 + 0.860263i
\(12\) 0.927051 + 2.85317i 0.267617 + 0.823639i
\(13\) 4.85410 3.52671i 1.34629 0.978134i 0.347098 0.937829i \(-0.387167\pi\)
0.999187 0.0403050i \(-0.0128330\pi\)
\(14\) −0.690983 + 0.502029i −0.184673 + 0.134173i
\(15\) 1.80902 + 1.31433i 0.467086 + 0.339358i
\(16\) −1.00000 −0.250000
\(17\) 0.545085 + 1.67760i 0.132203 + 0.406878i 0.995144 0.0984257i \(-0.0313807\pi\)
−0.862942 + 0.505303i \(0.831381\pi\)
\(18\) −1.80902 + 1.31433i −0.426389 + 0.309790i
\(19\) 4.38197 1.00529 0.502646 0.864492i \(-0.332360\pi\)
0.502646 + 0.864492i \(0.332360\pi\)
\(20\) 5.42705 3.94298i 1.21353 0.881678i
\(21\) −0.309017 0.224514i −0.0674330 0.0489930i
\(22\) −3.78115 + 6.37988i −0.806145 + 1.36020i
\(23\) −1.07295 + 3.30220i −0.223725 + 0.688556i 0.774693 + 0.632337i \(0.217904\pi\)
−0.998418 + 0.0562184i \(0.982096\pi\)
\(24\) 0.690983 + 2.12663i 0.141046 + 0.434096i
\(25\) 1.54508 4.75528i 0.309017 0.951057i
\(26\) 10.8541 7.88597i 2.12866 1.54657i
\(27\) −0.809017 0.587785i −0.155695 0.113119i
\(28\) −0.927051 + 0.673542i −0.175196 + 0.127287i
\(29\) −4.09017 −0.759525 −0.379763 0.925084i \(-0.623994\pi\)
−0.379763 + 0.925084i \(0.623994\pi\)
\(30\) 4.04508 + 2.93893i 0.738528 + 0.536572i
\(31\) 1.19098 + 0.865300i 0.213907 + 0.155412i 0.689580 0.724210i \(-0.257795\pi\)
−0.475673 + 0.879622i \(0.657795\pi\)
\(32\) −6.70820 −1.18585
\(33\) −3.23607 0.726543i −0.563327 0.126475i
\(34\) 1.21885 + 3.75123i 0.209031 + 0.643330i
\(35\) −0.263932 + 0.812299i −0.0446127 + 0.137304i
\(36\) −2.42705 + 1.76336i −0.404508 + 0.293893i
\(37\) −6.35410 4.61653i −1.04461 0.758952i −0.0734282 0.997301i \(-0.523394\pi\)
−0.971180 + 0.238348i \(0.923394\pi\)
\(38\) 9.79837 1.58951
\(39\) 4.85410 + 3.52671i 0.777278 + 0.564726i
\(40\) 4.04508 2.93893i 0.639584 0.464685i
\(41\) 1.92705 5.93085i 0.300955 0.926244i −0.680201 0.733026i \(-0.738108\pi\)
0.981156 0.193218i \(-0.0618925\pi\)
\(42\) −0.690983 0.502029i −0.106621 0.0774647i
\(43\) −9.94427 −1.51649 −0.758244 0.651971i \(-0.773942\pi\)
−0.758244 + 0.651971i \(0.773942\pi\)
\(44\) −5.07295 + 8.55951i −0.764776 + 1.29039i
\(45\) −0.690983 + 2.12663i −0.103006 + 0.317019i
\(46\) −2.39919 + 7.38394i −0.353741 + 1.08870i
\(47\) −0.954915 2.93893i −0.139289 0.428686i 0.856944 0.515410i \(-0.172360\pi\)
−0.996232 + 0.0867235i \(0.972360\pi\)
\(48\) −0.309017 0.951057i −0.0446028 0.137273i
\(49\) −2.11803 + 6.51864i −0.302576 + 0.931234i
\(50\) 3.45492 10.6331i 0.488599 1.50375i
\(51\) −1.42705 + 1.03681i −0.199827 + 0.145183i
\(52\) 14.5623 10.5801i 2.01943 1.46720i
\(53\) −0.309017 + 0.951057i −0.0424467 + 0.130638i −0.970034 0.242968i \(-0.921879\pi\)
0.927587 + 0.373606i \(0.121879\pi\)
\(54\) −1.80902 1.31433i −0.246176 0.178857i
\(55\) 0.690983 + 7.38394i 0.0931721 + 0.995650i
\(56\) −0.690983 + 0.502029i −0.0923365 + 0.0670864i
\(57\) 1.35410 + 4.16750i 0.179355 + 0.551999i
\(58\) −9.14590 −1.20092
\(59\) 1.38197 + 1.00406i 0.179917 + 0.130717i 0.674099 0.738641i \(-0.264532\pi\)
−0.494182 + 0.869359i \(0.664532\pi\)
\(60\) 5.42705 + 3.94298i 0.700629 + 0.509037i
\(61\) −8.35410 6.06961i −1.06963 0.777134i −0.0937869 0.995592i \(-0.529897\pi\)
−0.975846 + 0.218458i \(0.929897\pi\)
\(62\) 2.66312 + 1.93487i 0.338216 + 0.245729i
\(63\) 0.118034 0.363271i 0.0148709 0.0457679i
\(64\) −13.0000 −1.62500
\(65\) 4.14590 12.7598i 0.514235 1.58265i
\(66\) −7.23607 1.62460i −0.890698 0.199974i
\(67\) −0.690983 + 0.502029i −0.0844170 + 0.0613325i −0.629193 0.777249i \(-0.716615\pi\)
0.544776 + 0.838581i \(0.316615\pi\)
\(68\) 1.63525 + 5.03280i 0.198304 + 0.610316i
\(69\) −3.47214 −0.417996
\(70\) −0.590170 + 1.81636i −0.0705388 + 0.217096i
\(71\) 1.19098 0.865300i 0.141344 0.102692i −0.514866 0.857270i \(-0.672158\pi\)
0.656210 + 0.754578i \(0.272158\pi\)
\(72\) −1.80902 + 1.31433i −0.213195 + 0.154895i
\(73\) 0.381966 + 1.17557i 0.0447057 + 0.137590i 0.970918 0.239412i \(-0.0769548\pi\)
−0.926212 + 0.377003i \(0.876955\pi\)
\(74\) −14.2082 10.3229i −1.65167 1.20001i
\(75\) 5.00000 0.577350
\(76\) 13.1459 1.50794
\(77\) −0.118034 1.26133i −0.0134512 0.143742i
\(78\) 10.8541 + 7.88597i 1.22899 + 0.892910i
\(79\) 1.52786 4.70228i 0.171898 0.529048i −0.827580 0.561348i \(-0.810283\pi\)
0.999478 + 0.0322996i \(0.0102831\pi\)
\(80\) −1.80902 + 1.31433i −0.202254 + 0.146946i
\(81\) 0.309017 0.951057i 0.0343352 0.105673i
\(82\) 4.30902 13.2618i 0.475851 1.46452i
\(83\) 3.57295 + 10.9964i 0.392182 + 1.20701i 0.931134 + 0.364676i \(0.118820\pi\)
−0.538952 + 0.842336i \(0.681180\pi\)
\(84\) −0.927051 0.673542i −0.101150 0.0734895i
\(85\) 3.19098 + 2.31838i 0.346111 + 0.251464i
\(86\) −22.2361 −2.39778
\(87\) −1.26393 3.88998i −0.135508 0.417050i
\(88\) −3.78115 + 6.37988i −0.403072 + 0.680098i
\(89\) −5.11803 + 15.7517i −0.542511 + 1.66968i 0.184326 + 0.982865i \(0.440990\pi\)
−0.726837 + 0.686811i \(0.759010\pi\)
\(90\) −1.54508 + 4.75528i −0.162866 + 0.501251i
\(91\) −0.708204 + 2.17963i −0.0742399 + 0.228487i
\(92\) −3.21885 + 9.90659i −0.335588 + 1.03283i
\(93\) −0.454915 + 1.40008i −0.0471725 + 0.145182i
\(94\) −2.13525 6.57164i −0.220235 0.677813i
\(95\) 7.92705 5.75934i 0.813298 0.590896i
\(96\) −2.07295 6.37988i −0.211569 0.651144i
\(97\) 3.54508 10.9106i 0.359949 1.10781i −0.593135 0.805103i \(-0.702110\pi\)
0.953084 0.302706i \(-0.0978899\pi\)
\(98\) −4.73607 + 14.5761i −0.478415 + 1.47241i
\(99\) −0.309017 3.30220i −0.0310574 0.331883i
\(100\) 4.63525 14.2658i 0.463525 1.42658i
\(101\) −5.16312 15.8904i −0.513750 1.58116i −0.785546 0.618804i \(-0.787618\pi\)
0.271796 0.962355i \(-0.412382\pi\)
\(102\) −3.19098 + 2.31838i −0.315954 + 0.229554i
\(103\) 4.70820 0.463913 0.231957 0.972726i \(-0.425487\pi\)
0.231957 + 0.972726i \(0.425487\pi\)
\(104\) 10.8541 7.88597i 1.06433 0.773283i
\(105\) −0.854102 −0.0833518
\(106\) −0.690983 + 2.12663i −0.0671142 + 0.206556i
\(107\) 11.6631 + 8.47375i 1.12752 + 0.819189i 0.985331 0.170652i \(-0.0545873\pi\)
0.142185 + 0.989840i \(0.454587\pi\)
\(108\) −2.42705 1.76336i −0.233543 0.169679i
\(109\) 5.47214 + 16.8415i 0.524136 + 1.61312i 0.766019 + 0.642818i \(0.222235\pi\)
−0.241883 + 0.970305i \(0.577765\pi\)
\(110\) 1.54508 + 16.5110i 0.147318 + 1.57426i
\(111\) 2.42705 7.46969i 0.230365 0.708992i
\(112\) 0.309017 0.224514i 0.0291994 0.0212146i
\(113\) 0.454915 1.40008i 0.0427948 0.131709i −0.927376 0.374130i \(-0.877941\pi\)
0.970171 + 0.242421i \(0.0779415\pi\)
\(114\) 3.02786 + 9.31881i 0.283585 + 0.872786i
\(115\) 2.39919 + 7.38394i 0.223725 + 0.688556i
\(116\) −12.2705 −1.13929
\(117\) −1.85410 + 5.70634i −0.171412 + 0.527551i
\(118\) 3.09017 + 2.24514i 0.284473 + 0.206682i
\(119\) −0.545085 0.396027i −0.0499679 0.0363038i
\(120\) 4.04508 + 2.93893i 0.369264 + 0.268286i
\(121\) −5.28115 9.64932i −0.480105 0.877211i
\(122\) −18.6803 13.5721i −1.69124 1.22876i
\(123\) 6.23607 0.562287
\(124\) 3.57295 + 2.59590i 0.320860 + 0.233119i
\(125\) −3.45492 10.6331i −0.309017 0.951057i
\(126\) 0.263932 0.812299i 0.0235129 0.0723654i
\(127\) −11.2082 8.14324i −0.994567 0.722595i −0.0336507 0.999434i \(-0.510713\pi\)
−0.960917 + 0.276838i \(0.910713\pi\)
\(128\) −15.6525 −1.38350
\(129\) −3.07295 9.45756i −0.270558 0.832692i
\(130\) 9.27051 28.5317i 0.813077 2.50240i
\(131\) 1.35410 0.983813i 0.118308 0.0859561i −0.527058 0.849830i \(-0.676705\pi\)
0.645366 + 0.763873i \(0.276705\pi\)
\(132\) −9.70820 2.17963i −0.844991 0.189712i
\(133\) −1.35410 + 0.983813i −0.117416 + 0.0853074i
\(134\) −1.54508 + 1.12257i −0.133475 + 0.0969753i
\(135\) −2.23607 −0.192450
\(136\) 1.21885 + 3.75123i 0.104515 + 0.321665i
\(137\) 8.29180 0.708416 0.354208 0.935167i \(-0.384750\pi\)
0.354208 + 0.935167i \(0.384750\pi\)
\(138\) −7.76393 −0.660910
\(139\) 3.66312 + 11.2739i 0.310702 + 0.956241i 0.977488 + 0.210992i \(0.0676695\pi\)
−0.666786 + 0.745249i \(0.732331\pi\)
\(140\) −0.791796 + 2.43690i −0.0669190 + 0.205955i
\(141\) 2.50000 1.81636i 0.210538 0.152965i
\(142\) 2.66312 1.93487i 0.223484 0.162371i
\(143\) 1.85410 + 19.8132i 0.155048 + 1.65686i
\(144\) 0.809017 0.587785i 0.0674181 0.0489821i
\(145\) −7.39919 + 5.37582i −0.614469 + 0.446438i
\(146\) 0.854102 + 2.62866i 0.0706860 + 0.217549i
\(147\) −6.85410 −0.565317
\(148\) −19.0623 13.8496i −1.56691 1.13843i
\(149\) −5.04508 + 15.5272i −0.413309 + 1.27204i 0.500445 + 0.865768i \(0.333170\pi\)
−0.913754 + 0.406267i \(0.866830\pi\)
\(150\) 11.1803 0.912871
\(151\) 0.500000 + 0.363271i 0.0406894 + 0.0295626i 0.607944 0.793980i \(-0.291994\pi\)
−0.567255 + 0.823542i \(0.691994\pi\)
\(152\) 9.79837 0.794753
\(153\) −1.42705 1.03681i −0.115370 0.0838214i
\(154\) −0.263932 2.82041i −0.0212682 0.227275i
\(155\) 3.29180 0.264403
\(156\) 14.5623 + 10.5801i 1.16592 + 0.847089i
\(157\) −3.80902 2.76741i −0.303993 0.220864i 0.425322 0.905042i \(-0.360161\pi\)
−0.729315 + 0.684179i \(0.760161\pi\)
\(158\) 3.41641 10.5146i 0.271795 0.836498i
\(159\) −1.00000 −0.0793052
\(160\) −12.1353 + 8.81678i −0.959376 + 0.697028i
\(161\) −0.409830 1.26133i −0.0322991 0.0994065i
\(162\) 0.690983 2.12663i 0.0542888 0.167084i
\(163\) 10.5172 7.64121i 0.823772 0.598506i −0.0940182 0.995570i \(-0.529971\pi\)
0.917791 + 0.397065i \(0.129971\pi\)
\(164\) 5.78115 17.7926i 0.451432 1.38937i
\(165\) −6.80902 + 2.93893i −0.530081 + 0.228795i
\(166\) 7.98936 + 24.5887i 0.620094 + 1.90845i
\(167\) −7.82624 5.68609i −0.605612 0.440003i 0.242254 0.970213i \(-0.422113\pi\)
−0.847867 + 0.530210i \(0.822113\pi\)
\(168\) −0.690983 0.502029i −0.0533105 0.0387323i
\(169\) 7.10739 21.8743i 0.546722 1.68264i
\(170\) 7.13525 + 5.18407i 0.547249 + 0.397600i
\(171\) −3.54508 + 2.57565i −0.271099 + 0.196965i
\(172\) −29.8328 −2.27473
\(173\) 10.7361 7.80021i 0.816248 0.593039i −0.0993872 0.995049i \(-0.531688\pi\)
0.915635 + 0.402010i \(0.131688\pi\)
\(174\) −2.82624 8.69827i −0.214257 0.659414i
\(175\) 0.590170 + 1.81636i 0.0446127 + 0.137304i
\(176\) 1.69098 2.85317i 0.127463 0.215066i
\(177\) −0.527864 + 1.62460i −0.0396767 + 0.122112i
\(178\) −11.4443 + 35.2218i −0.857784 + 2.63999i
\(179\) −7.00000 21.5438i −0.523205 1.61026i −0.767839 0.640643i \(-0.778668\pi\)
0.244635 0.969615i \(-0.421332\pi\)
\(180\) −2.07295 + 6.37988i −0.154508 + 0.475528i
\(181\) −4.20820 12.9515i −0.312793 0.962679i −0.976653 0.214822i \(-0.931083\pi\)
0.663860 0.747857i \(-0.268917\pi\)
\(182\) −1.58359 + 4.87380i −0.117384 + 0.361270i
\(183\) 3.19098 9.82084i 0.235884 0.725977i
\(184\) −2.39919 + 7.38394i −0.176870 + 0.544351i
\(185\) −17.5623 −1.29121
\(186\) −1.01722 + 3.13068i −0.0745863 + 0.229553i
\(187\) −5.70820 1.28157i −0.417425 0.0937178i
\(188\) −2.86475 8.81678i −0.208933 0.643030i
\(189\) 0.381966 0.0277839
\(190\) 17.7254 12.8783i 1.28594 0.934288i
\(191\) −13.4443 9.76784i −0.972793 0.706776i −0.0167069 0.999860i \(-0.505318\pi\)
−0.956086 + 0.293085i \(0.905318\pi\)
\(192\) −4.01722 12.3637i −0.289918 0.892276i
\(193\) −1.73607 + 5.34307i −0.124965 + 0.384602i −0.993895 0.110333i \(-0.964808\pi\)
0.868930 + 0.494935i \(0.164808\pi\)
\(194\) 7.92705 24.3970i 0.569129 1.75160i
\(195\) 13.4164 0.960769
\(196\) −6.35410 + 19.5559i −0.453864 + 1.39685i
\(197\) 12.5172 + 9.09429i 0.891815 + 0.647942i 0.936351 0.351066i \(-0.114181\pi\)
−0.0445356 + 0.999008i \(0.514181\pi\)
\(198\) −0.690983 7.38394i −0.0491060 0.524754i
\(199\) 10.7984 0.765476 0.382738 0.923857i \(-0.374981\pi\)
0.382738 + 0.923857i \(0.374981\pi\)
\(200\) 3.45492 10.6331i 0.244299 0.751876i
\(201\) −0.690983 0.502029i −0.0487382 0.0354104i
\(202\) −11.5451 35.5321i −0.812309 2.50003i
\(203\) 1.26393 0.918300i 0.0887106 0.0644521i
\(204\) −4.28115 + 3.11044i −0.299741 + 0.217774i
\(205\) −4.30902 13.2618i −0.300955 0.926244i
\(206\) 10.5279 0.733511
\(207\) −1.07295 3.30220i −0.0745751 0.229519i
\(208\) −4.85410 + 3.52671i −0.336571 + 0.244533i
\(209\) −7.40983 + 12.5025i −0.512549 + 0.864815i
\(210\) −1.90983 −0.131791
\(211\) 1.70820 0.117598 0.0587988 0.998270i \(-0.481273\pi\)
0.0587988 + 0.998270i \(0.481273\pi\)
\(212\) −0.927051 + 2.85317i −0.0636701 + 0.195956i
\(213\) 1.19098 + 0.865300i 0.0816048 + 0.0592894i
\(214\) 26.0795 + 18.9479i 1.78276 + 1.29525i
\(215\) −17.9894 + 13.0700i −1.22686 + 0.891369i
\(216\) −1.80902 1.31433i −0.123088 0.0894287i
\(217\) −0.562306 −0.0381718
\(218\) 12.2361 + 37.6587i 0.828731 + 2.55057i
\(219\) −1.00000 + 0.726543i −0.0675737 + 0.0490952i
\(220\) 2.07295 + 22.1518i 0.139758 + 1.49348i
\(221\) 8.56231 + 6.22088i 0.575963 + 0.418462i
\(222\) 5.42705 16.7027i 0.364240 1.12101i
\(223\) −1.11803 + 0.812299i −0.0748691 + 0.0543956i −0.624590 0.780953i \(-0.714734\pi\)
0.549721 + 0.835348i \(0.314734\pi\)
\(224\) 2.07295 1.50609i 0.138505 0.100630i
\(225\) 1.54508 + 4.75528i 0.103006 + 0.317019i
\(226\) 1.01722 3.13068i 0.0676645 0.208250i
\(227\) 7.01722 + 21.5968i 0.465749 + 1.43343i 0.858038 + 0.513587i \(0.171684\pi\)
−0.392288 + 0.919842i \(0.628316\pi\)
\(228\) 4.06231 + 12.5025i 0.269033 + 0.827998i
\(229\) 5.25329 16.1680i 0.347147 1.06841i −0.613277 0.789868i \(-0.710149\pi\)
0.960424 0.278541i \(-0.0898509\pi\)
\(230\) 5.36475 + 16.5110i 0.353741 + 1.08870i
\(231\) 1.16312 0.502029i 0.0765276 0.0330311i
\(232\) −9.14590 −0.600458
\(233\) 16.4721 + 11.9677i 1.07913 + 0.784031i 0.977530 0.210795i \(-0.0676053\pi\)
0.101595 + 0.994826i \(0.467605\pi\)
\(234\) −4.14590 + 12.7598i −0.271026 + 0.834132i
\(235\) −5.59017 4.06150i −0.364662 0.264943i
\(236\) 4.14590 + 3.01217i 0.269875 + 0.196076i
\(237\) 4.94427 0.321165
\(238\) −1.21885 0.885544i −0.0790061 0.0574013i
\(239\) 1.54508 1.12257i 0.0999432 0.0726130i −0.536691 0.843779i \(-0.680326\pi\)
0.636635 + 0.771166i \(0.280326\pi\)
\(240\) −1.80902 1.31433i −0.116772 0.0848395i
\(241\) 3.44427 + 10.6004i 0.221865 + 0.682830i 0.998595 + 0.0529963i \(0.0168771\pi\)
−0.776730 + 0.629834i \(0.783123\pi\)
\(242\) −11.8090 21.5765i −0.759112 1.38699i
\(243\) 1.00000 0.0641500
\(244\) −25.0623 18.2088i −1.60445 1.16570i
\(245\) 4.73607 + 14.5761i 0.302576 + 0.931234i
\(246\) 13.9443 0.889054
\(247\) 21.2705 15.4539i 1.35341 0.983310i
\(248\) 2.66312 + 1.93487i 0.169108 + 0.122864i
\(249\) −9.35410 + 6.79615i −0.592792 + 0.430689i
\(250\) −7.72542 23.7764i −0.488599 1.50375i
\(251\) 8.97214 + 27.6134i 0.566316 + 1.74294i 0.664008 + 0.747725i \(0.268854\pi\)
−0.0976919 + 0.995217i \(0.531146\pi\)
\(252\) 0.354102 1.08981i 0.0223063 0.0686518i
\(253\) −7.60739 8.64527i −0.478273 0.543523i
\(254\) −25.0623 18.2088i −1.57255 1.14252i
\(255\) −1.21885 + 3.75123i −0.0763272 + 0.234911i
\(256\) −9.00000 −0.562500
\(257\) −9.51722 + 6.91467i −0.593668 + 0.431325i −0.843626 0.536932i \(-0.819583\pi\)
0.249958 + 0.968257i \(0.419583\pi\)
\(258\) −6.87132 21.1478i −0.427790 1.31660i
\(259\) 3.00000 0.186411
\(260\) 12.4377 38.2793i 0.771353 2.37398i
\(261\) 3.30902 2.40414i 0.204823 0.148813i
\(262\) 3.02786 2.19987i 0.187062 0.135909i
\(263\) 5.29180 + 16.2865i 0.326306 + 1.00427i 0.970848 + 0.239698i \(0.0770483\pi\)
−0.644541 + 0.764569i \(0.722952\pi\)
\(264\) −7.23607 1.62460i −0.445349 0.0999871i
\(265\) 0.690983 + 2.12663i 0.0424467 + 0.130638i
\(266\) −3.02786 + 2.19987i −0.185650 + 0.134883i
\(267\) −16.5623 −1.01360
\(268\) −2.07295 + 1.50609i −0.126626 + 0.0919988i
\(269\) 4.21885 + 12.9843i 0.257228 + 0.791665i 0.993383 + 0.114852i \(0.0366395\pi\)
−0.736155 + 0.676813i \(0.763361\pi\)
\(270\) −5.00000 −0.304290
\(271\) −20.7984 −1.26341 −0.631706 0.775208i \(-0.717645\pi\)
−0.631706 + 0.775208i \(0.717645\pi\)
\(272\) −0.545085 1.67760i −0.0330506 0.101719i
\(273\) −2.29180 −0.138706
\(274\) 18.5410 1.12010
\(275\) 10.9549 + 12.4495i 0.660606 + 0.750733i
\(276\) −10.4164 −0.626994
\(277\) 18.3820 1.10447 0.552233 0.833690i \(-0.313776\pi\)
0.552233 + 0.833690i \(0.313776\pi\)
\(278\) 8.19098 + 25.2093i 0.491263 + 1.51195i
\(279\) −1.47214 −0.0881345
\(280\) −0.590170 + 1.81636i −0.0352694 + 0.108548i
\(281\) 3.01722 + 9.28605i 0.179992 + 0.553959i 0.999826 0.0186420i \(-0.00593428\pi\)
−0.819834 + 0.572601i \(0.805934\pi\)
\(282\) 5.59017 4.06150i 0.332890 0.241859i
\(283\) 16.8885 1.00392 0.501960 0.864891i \(-0.332613\pi\)
0.501960 + 0.864891i \(0.332613\pi\)
\(284\) 3.57295 2.59590i 0.212016 0.154038i
\(285\) 7.92705 + 5.75934i 0.469558 + 0.341154i
\(286\) 4.14590 + 44.3036i 0.245152 + 2.61973i
\(287\) 0.736068 + 2.26538i 0.0434487 + 0.133721i
\(288\) 5.42705 3.94298i 0.319792 0.232343i
\(289\) 11.2361 8.16348i 0.660945 0.480205i
\(290\) −16.5451 + 12.0207i −0.971561 + 0.705880i
\(291\) 11.4721 0.672509
\(292\) 1.14590 + 3.52671i 0.0670586 + 0.206385i
\(293\) 20.0344 14.5559i 1.17042 0.850363i 0.179365 0.983783i \(-0.442596\pi\)
0.991060 + 0.133419i \(0.0425957\pi\)
\(294\) −15.3262 −0.893844
\(295\) 3.81966 0.222389
\(296\) −14.2082 10.3229i −0.825835 0.600004i
\(297\) 3.04508 1.31433i 0.176694 0.0762650i
\(298\) −11.2812 + 34.7198i −0.653500 + 2.01127i
\(299\) 6.43769 + 19.8132i 0.372301 + 1.14583i
\(300\) 15.0000 0.866025
\(301\) 3.07295 2.23263i 0.177122 0.128687i
\(302\) 1.11803 + 0.812299i 0.0643356 + 0.0467426i
\(303\) 13.5172 9.82084i 0.776544 0.564192i
\(304\) −4.38197 −0.251323
\(305\) −23.0902 −1.32214
\(306\) −3.19098 2.31838i −0.182416 0.132533i
\(307\) 28.4164 1.62181 0.810905 0.585178i \(-0.198975\pi\)
0.810905 + 0.585178i \(0.198975\pi\)
\(308\) −0.354102 3.78398i −0.0201768 0.215612i
\(309\) 1.45492 + 4.47777i 0.0827672 + 0.254731i
\(310\) 7.36068 0.418059
\(311\) −2.95492 + 2.14687i −0.167558 + 0.121738i −0.668404 0.743798i \(-0.733022\pi\)
0.500846 + 0.865536i \(0.333022\pi\)
\(312\) 10.8541 + 7.88597i 0.614493 + 0.446455i
\(313\) 0.416408 0.0235368 0.0117684 0.999931i \(-0.496254\pi\)
0.0117684 + 0.999931i \(0.496254\pi\)
\(314\) −8.51722 6.18812i −0.480655 0.349216i
\(315\) −0.263932 0.812299i −0.0148709 0.0457679i
\(316\) 4.58359 14.1068i 0.257847 0.793572i
\(317\) 8.09017 + 5.87785i 0.454389 + 0.330133i 0.791326 0.611394i \(-0.209391\pi\)
−0.336937 + 0.941527i \(0.609391\pi\)
\(318\) −2.23607 −0.125392
\(319\) 6.91641 11.6699i 0.387244 0.653392i
\(320\) −23.5172 + 17.0863i −1.31465 + 0.955151i
\(321\) −4.45492 + 13.7108i −0.248649 + 0.765263i
\(322\) −0.916408 2.82041i −0.0510694 0.157175i
\(323\) 2.38854 + 7.35118i 0.132902 + 0.409031i
\(324\) 0.927051 2.85317i 0.0515028 0.158509i
\(325\) −9.27051 28.5317i −0.514235 1.58265i
\(326\) 23.5172 17.0863i 1.30250 0.946320i
\(327\) −14.3262 + 10.4086i −0.792243 + 0.575598i
\(328\) 4.30902 13.2618i 0.237926 0.732260i
\(329\) 0.954915 + 0.693786i 0.0526462 + 0.0382497i
\(330\) −15.2254 + 6.57164i −0.838132 + 0.361757i
\(331\) −20.1803 + 14.6619i −1.10921 + 0.805890i −0.982539 0.186055i \(-0.940430\pi\)
−0.126672 + 0.991945i \(0.540430\pi\)
\(332\) 10.7188 + 32.9892i 0.588273 + 1.81052i
\(333\) 7.85410 0.430402
\(334\) −17.5000 12.7145i −0.957557 0.695706i
\(335\) −0.590170 + 1.81636i −0.0322444 + 0.0992381i
\(336\) 0.309017 + 0.224514i 0.0168583 + 0.0122482i
\(337\) 22.7533 + 16.5312i 1.23945 + 0.900514i 0.997562 0.0697904i \(-0.0222330\pi\)
0.241889 + 0.970304i \(0.422233\pi\)
\(338\) 15.8926 48.9124i 0.864444 2.66048i
\(339\) 1.47214 0.0799554
\(340\) 9.57295 + 6.95515i 0.519166 + 0.377196i
\(341\) −4.48278 + 1.93487i −0.242756 + 0.104779i
\(342\) −7.92705 + 5.75934i −0.428646 + 0.311429i
\(343\) −1.63525 5.03280i −0.0882955 0.271746i
\(344\) −22.2361 −1.19889
\(345\) −6.28115 + 4.56352i −0.338166 + 0.245692i
\(346\) 24.0066 17.4418i 1.29060 0.937677i
\(347\) −0.0450850 + 0.0327561i −0.00242029 + 0.00175844i −0.588995 0.808137i \(-0.700476\pi\)
0.586574 + 0.809895i \(0.300476\pi\)
\(348\) −3.79180 11.6699i −0.203262 0.625575i
\(349\) −12.3992 9.00854i −0.663713 0.482216i 0.204202 0.978929i \(-0.434540\pi\)
−0.867915 + 0.496713i \(0.834540\pi\)
\(350\) 1.31966 + 4.06150i 0.0705388 + 0.217096i
\(351\) −6.00000 −0.320256
\(352\) 11.3435 19.1396i 0.604608 1.02015i
\(353\) 4.50000 + 3.26944i 0.239511 + 0.174015i 0.701065 0.713097i \(-0.252708\pi\)
−0.461554 + 0.887112i \(0.652708\pi\)
\(354\) −1.18034 + 3.63271i −0.0627344 + 0.193076i
\(355\) 1.01722 3.13068i 0.0539885 0.166159i
\(356\) −15.3541 + 47.2551i −0.813766 + 2.50451i
\(357\) 0.208204 0.640786i 0.0110193 0.0339140i
\(358\) −15.6525 48.1734i −0.827259 2.54604i
\(359\) 30.2705 + 21.9928i 1.59762 + 1.16074i 0.891891 + 0.452251i \(0.149379\pi\)
0.705726 + 0.708485i \(0.250621\pi\)
\(360\) −1.54508 + 4.75528i −0.0814331 + 0.250625i
\(361\) 0.201626 0.0106119
\(362\) −9.40983 28.9605i −0.494570 1.52213i
\(363\) 7.54508 8.00448i 0.396014 0.420126i
\(364\) −2.12461 + 6.53888i −0.111360 + 0.342731i
\(365\) 2.23607 + 1.62460i 0.117041 + 0.0850354i
\(366\) 7.13525 21.9601i 0.372966 1.14787i
\(367\) 9.80902 30.1891i 0.512027 1.57586i −0.276601 0.960985i \(-0.589208\pi\)
0.788628 0.614871i \(-0.210792\pi\)
\(368\) 1.07295 3.30220i 0.0559313 0.172139i
\(369\) 1.92705 + 5.93085i 0.100318 + 0.308748i
\(370\) −39.2705 −2.04158
\(371\) −0.118034 0.363271i −0.00612802 0.0188601i
\(372\) −1.36475 + 4.20025i −0.0707587 + 0.217773i
\(373\) −10.2082 + 31.4176i −0.528561 + 1.62674i 0.228604 + 0.973519i \(0.426584\pi\)
−0.757165 + 0.653223i \(0.773416\pi\)
\(374\) −12.7639 2.86568i −0.660007 0.148181i
\(375\) 9.04508 6.57164i 0.467086 0.339358i
\(376\) −2.13525 6.57164i −0.110117 0.338906i
\(377\) −19.8541 + 14.4248i −1.02254 + 0.742918i
\(378\) 0.854102 0.0439303
\(379\) −16.2984 + 11.8415i −0.837191 + 0.608255i −0.921585 0.388177i \(-0.873105\pi\)
0.0843934 + 0.996433i \(0.473105\pi\)
\(380\) 23.7812 17.2780i 1.21995 0.886344i
\(381\) 4.28115 13.1760i 0.219330 0.675029i
\(382\) −30.0623 21.8415i −1.53812 1.11751i
\(383\) −30.7984 22.3763i −1.57372 1.14338i −0.923477 0.383653i \(-0.874666\pi\)
−0.650246 0.759724i \(-0.725334\pi\)
\(384\) −4.83688 14.8864i −0.246831 0.759668i
\(385\) −1.87132 2.12663i −0.0953714 0.108383i
\(386\) −3.88197 + 11.9475i −0.197587 + 0.608110i
\(387\) 8.04508 5.84510i 0.408955 0.297123i
\(388\) 10.6353 32.7319i 0.539923 1.66171i
\(389\) −6.11803 18.8294i −0.310197 0.954687i −0.977687 0.210068i \(-0.932631\pi\)
0.667490 0.744619i \(-0.267369\pi\)
\(390\) 30.0000 1.51911
\(391\) −6.12461 −0.309735
\(392\) −4.73607 + 14.5761i −0.239208 + 0.736205i
\(393\) 1.35410 + 0.983813i 0.0683054 + 0.0496268i
\(394\) 27.9894 + 20.3355i 1.41008 + 1.02449i
\(395\) −3.41641 10.5146i −0.171898 0.529048i
\(396\) −0.927051 9.90659i −0.0465861 0.497825i
\(397\) −19.1074 13.8823i −0.958972 0.696734i −0.00606059 0.999982i \(-0.501929\pi\)
−0.952912 + 0.303247i \(0.901929\pi\)
\(398\) 24.1459 1.21032
\(399\) −1.35410 0.983813i −0.0677899 0.0492522i
\(400\) −1.54508 + 4.75528i −0.0772542 + 0.237764i
\(401\) 3.21885 9.90659i 0.160742 0.494712i −0.837956 0.545738i \(-0.816249\pi\)
0.998697 + 0.0510266i \(0.0162493\pi\)
\(402\) −1.54508 1.12257i −0.0770618 0.0559887i
\(403\) 8.83282 0.439994
\(404\) −15.4894 47.6713i −0.770624 2.37174i
\(405\) −0.690983 2.12663i −0.0343352 0.105673i
\(406\) 2.82624 2.05338i 0.140264 0.101908i
\(407\) 23.9164 10.3229i 1.18549 0.511685i
\(408\) −3.19098 + 2.31838i −0.157977 + 0.114777i
\(409\) −12.8992 + 9.37181i −0.637824 + 0.463406i −0.859102 0.511805i \(-0.828977\pi\)
0.221278 + 0.975211i \(0.428977\pi\)
\(410\) −9.63525 29.6543i −0.475851 1.46452i
\(411\) 2.56231 + 7.88597i 0.126389 + 0.388986i
\(412\) 14.1246 0.695870
\(413\) −0.652476 −0.0321062
\(414\) −2.39919 7.38394i −0.117914 0.362901i
\(415\) 20.9164 + 15.1967i 1.02675 + 0.745975i
\(416\) −32.5623 + 23.6579i −1.59650 + 1.15992i
\(417\) −9.59017 + 6.96767i −0.469633 + 0.341208i
\(418\) −16.5689 + 27.9564i −0.810411 + 1.36739i
\(419\) −24.9443 + 18.1231i −1.21861 + 0.885370i −0.995984 0.0895343i \(-0.971462\pi\)
−0.222624 + 0.974904i \(0.571462\pi\)
\(420\) −2.56231 −0.125028
\(421\) −6.48278 19.9519i −0.315951 0.972398i −0.975361 0.220614i \(-0.929194\pi\)
0.659410 0.751784i \(-0.270806\pi\)
\(422\) 3.81966 0.185938
\(423\) 2.50000 + 1.81636i 0.121554 + 0.0883143i
\(424\) −0.690983 + 2.12663i −0.0335571 + 0.103278i
\(425\) 8.81966 0.427816
\(426\) 2.66312 + 1.93487i 0.129029 + 0.0937447i
\(427\) 3.94427 0.190877
\(428\) 34.9894 + 25.4213i 1.69127 + 1.22878i
\(429\) −18.2705 + 7.88597i −0.882109 + 0.380738i
\(430\) −40.2254 + 29.2255i −1.93984 + 1.40938i
\(431\) −4.04508 2.93893i −0.194845 0.141563i 0.486085 0.873911i \(-0.338424\pi\)
−0.680930 + 0.732348i \(0.738424\pi\)
\(432\) 0.809017 + 0.587785i 0.0389238 + 0.0282798i
\(433\) 2.18034 6.71040i 0.104780 0.322481i −0.884898 0.465784i \(-0.845772\pi\)
0.989679 + 0.143303i \(0.0457723\pi\)
\(434\) −1.25735 −0.0603549
\(435\) −7.39919 5.37582i −0.354764 0.257751i
\(436\) 16.4164 + 50.5245i 0.786203 + 2.41969i
\(437\) −4.70163 + 14.4701i −0.224909 + 0.692200i
\(438\) −2.23607 + 1.62460i −0.106843 + 0.0776263i
\(439\) 6.11803 18.8294i 0.291998 0.898677i −0.692216 0.721691i \(-0.743365\pi\)
0.984213 0.176986i \(-0.0566348\pi\)
\(440\) 1.54508 + 16.5110i 0.0736590 + 0.787130i
\(441\) −2.11803 6.51864i −0.100859 0.310411i
\(442\) 19.1459 + 13.9103i 0.910678 + 0.661646i
\(443\) 9.37132 + 6.80866i 0.445245 + 0.323489i 0.787716 0.616039i \(-0.211264\pi\)
−0.342471 + 0.939529i \(0.611264\pi\)
\(444\) 7.28115 22.4091i 0.345548 1.06349i
\(445\) 11.4443 + 35.2218i 0.542511 + 1.66968i
\(446\) −2.50000 + 1.81636i −0.118378 + 0.0860070i
\(447\) −16.3262 −0.772205
\(448\) 4.01722 2.91868i 0.189796 0.137895i
\(449\) 0.281153 + 0.865300i 0.0132684 + 0.0408360i 0.957472 0.288528i \(-0.0931658\pi\)
−0.944203 + 0.329364i \(0.893166\pi\)
\(450\) 3.45492 + 10.6331i 0.162866 + 0.501251i
\(451\) 13.6631 + 15.5272i 0.643371 + 0.731146i
\(452\) 1.36475 4.20025i 0.0641922 0.197563i
\(453\) −0.190983 + 0.587785i −0.00897316 + 0.0276166i
\(454\) 15.6910 + 48.2919i 0.736414 + 2.26645i
\(455\) 1.58359 + 4.87380i 0.0742399 + 0.228487i
\(456\) 3.02786 + 9.31881i 0.141793 + 0.436393i
\(457\) 9.94427 30.6053i 0.465173 1.43166i −0.393591 0.919286i \(-0.628767\pi\)
0.858764 0.512371i \(-0.171233\pi\)
\(458\) 11.7467 36.1527i 0.548888 1.68930i
\(459\) 0.545085 1.67760i 0.0254424 0.0783036i
\(460\) 7.19756 + 22.1518i 0.335588 + 1.03283i
\(461\) −4.62868 + 14.2456i −0.215579 + 0.663484i 0.783533 + 0.621350i \(0.213416\pi\)
−0.999112 + 0.0421337i \(0.986584\pi\)
\(462\) 2.60081 1.12257i 0.121001 0.0522267i
\(463\) 1.89261 + 5.82485i 0.0879570 + 0.270704i 0.985354 0.170520i \(-0.0545446\pi\)
−0.897397 + 0.441223i \(0.854545\pi\)
\(464\) 4.09017 0.189881
\(465\) 1.01722 + 3.13068i 0.0471725 + 0.145182i
\(466\) 36.8328 + 26.7606i 1.70625 + 1.23966i
\(467\) 1.40983 + 4.33901i 0.0652392 + 0.200785i 0.978363 0.206898i \(-0.0663368\pi\)
−0.913123 + 0.407683i \(0.866337\pi\)
\(468\) −5.56231 + 17.1190i −0.257118 + 0.791327i
\(469\) 0.100813 0.310271i 0.00465511 0.0143270i
\(470\) −12.5000 9.08178i −0.576582 0.418911i
\(471\) 1.45492 4.47777i 0.0670389 0.206325i
\(472\) 3.09017 + 2.24514i 0.142237 + 0.103341i
\(473\) 16.8156 28.3727i 0.773182 1.30458i
\(474\) 11.0557 0.507806
\(475\) 6.77051 20.8375i 0.310652 0.956089i
\(476\) −1.63525 1.18808i −0.0749518 0.0544557i
\(477\) −0.309017 0.951057i −0.0141489 0.0435459i
\(478\) 3.45492 2.51014i 0.158024 0.114811i
\(479\) 21.1353 15.3557i 0.965694 0.701618i 0.0112282 0.999937i \(-0.496426\pi\)
0.954466 + 0.298319i \(0.0964259\pi\)
\(480\) −12.1353 8.81678i −0.553896 0.402429i
\(481\) −47.1246 −2.14870
\(482\) 7.70163 + 23.7032i 0.350799 + 1.07965i
\(483\) 1.07295 0.779543i 0.0488209 0.0354704i
\(484\) −15.8435 28.9480i −0.720157 1.31582i
\(485\) −7.92705 24.3970i −0.359949 1.10781i
\(486\) 2.23607 0.101430
\(487\) 1.20820 3.71847i 0.0547489 0.168500i −0.919943 0.392052i \(-0.871765\pi\)
0.974692 + 0.223552i \(0.0717653\pi\)
\(488\) −18.6803 13.5721i −0.845619 0.614378i
\(489\) 10.5172 + 7.64121i 0.475605 + 0.345547i
\(490\) 10.5902 + 32.5932i 0.478415 + 1.47241i
\(491\) −33.6074 24.4172i −1.51668 1.10193i −0.963102 0.269135i \(-0.913262\pi\)
−0.553578 0.832797i \(-0.686738\pi\)
\(492\) 18.7082 0.843431
\(493\) −2.22949 6.86167i −0.100411 0.309034i
\(494\) 47.5623 34.5560i 2.13993 1.55475i
\(495\) −4.89919 5.56758i −0.220202 0.250244i
\(496\) −1.19098 0.865300i −0.0534767 0.0388531i
\(497\) −0.173762 + 0.534785i −0.00779429 + 0.0239884i
\(498\) −20.9164 + 15.1967i −0.937287 + 0.680979i
\(499\) −10.6631 + 7.74721i −0.477347 + 0.346813i −0.800298 0.599603i \(-0.795325\pi\)
0.322951 + 0.946416i \(0.395325\pi\)
\(500\) −10.3647 31.8994i −0.463525 1.42658i
\(501\) 2.98936 9.20029i 0.133555 0.411039i
\(502\) 20.0623 + 61.7454i 0.895425 + 2.75583i
\(503\) 1.85410 + 5.70634i 0.0826703 + 0.254433i 0.983845 0.179023i \(-0.0572938\pi\)
−0.901174 + 0.433456i \(0.857294\pi\)
\(504\) 0.263932 0.812299i 0.0117565 0.0361827i
\(505\) −30.2254 21.9601i −1.34501 0.977210i
\(506\) −17.0106 19.3314i −0.756215 0.859386i
\(507\) 23.0000 1.02147
\(508\) −33.6246 24.4297i −1.49185 1.08389i
\(509\) −5.38197 + 16.5640i −0.238551 + 0.734186i 0.758079 + 0.652163i \(0.226138\pi\)
−0.996630 + 0.0820231i \(0.973862\pi\)
\(510\) −2.72542 + 8.38800i −0.120684 + 0.371427i
\(511\) −0.381966 0.277515i −0.0168972 0.0122765i
\(512\) 11.1803 0.494106
\(513\) −3.54508 2.57565i −0.156519 0.113718i
\(514\) −21.2812 + 15.4617i −0.938671 + 0.681985i
\(515\) 8.51722 6.18812i 0.375314 0.272681i
\(516\) −9.21885 28.3727i −0.405837 1.24904i
\(517\) 10.0000 + 2.24514i 0.439799 + 0.0987411i
\(518\) 6.70820 0.294742
\(519\) 10.7361 + 7.80021i 0.471261 + 0.342391i
\(520\) 9.27051 28.5317i 0.406539 1.25120i
\(521\) 2.47214 0.108306 0.0541531 0.998533i \(-0.482754\pi\)
0.0541531 + 0.998533i \(0.482754\pi\)
\(522\) 7.39919 5.37582i 0.323854 0.235293i
\(523\) −5.82624 4.23301i −0.254764 0.185097i 0.453072 0.891474i \(-0.350328\pi\)
−0.707835 + 0.706377i \(0.750328\pi\)
\(524\) 4.06231 2.95144i 0.177463 0.128934i
\(525\) −1.54508 + 1.12257i −0.0674330 + 0.0489930i
\(526\) 11.8328 + 36.4177i 0.515935 + 1.58789i
\(527\) −0.802439 + 2.46965i −0.0349548 + 0.107580i
\(528\) 3.23607 + 0.726543i 0.140832 + 0.0316187i
\(529\) 8.85410 + 6.43288i 0.384961 + 0.279691i
\(530\) 1.54508 + 4.75528i 0.0671142 + 0.206556i
\(531\) −1.70820 −0.0741297
\(532\) −4.06231 + 2.95144i −0.176123 + 0.127961i
\(533\) −11.5623 35.5851i −0.500819 1.54136i
\(534\) −37.0344 −1.60264
\(535\) 32.2361 1.39369
\(536\) −1.54508 + 1.12257i −0.0667375 + 0.0484876i
\(537\) 18.3262 13.3148i 0.790836 0.574576i
\(538\) 9.43363 + 29.0337i 0.406713 + 1.25173i
\(539\) −15.0172 17.0660i −0.646837 0.735085i
\(540\) −6.70820 −0.288675
\(541\) 1.61803 1.17557i 0.0695647 0.0505417i −0.552459 0.833540i \(-0.686311\pi\)
0.622024 + 0.782998i \(0.286311\pi\)
\(542\) −46.5066 −1.99763
\(543\) 11.0172 8.00448i 0.472794 0.343505i
\(544\) −3.65654 11.2537i −0.156773 0.482497i
\(545\) 32.0344 + 23.2744i 1.37220 + 0.996965i
\(546\) −5.12461 −0.219313
\(547\) 13.6697 + 42.0710i 0.584474 + 1.79883i 0.601372 + 0.798969i \(0.294621\pi\)
−0.0168983 + 0.999857i \(0.505379\pi\)
\(548\) 24.8754 1.06262
\(549\) 10.3262 0.440713
\(550\) 24.4959 + 27.8379i 1.04451 + 1.18701i
\(551\) −17.9230 −0.763545
\(552\) −7.76393 −0.330455
\(553\) 0.583592 + 1.79611i 0.0248169 + 0.0763784i
\(554\) 41.1033 1.74631
\(555\) −5.42705 16.7027i −0.230365 0.708992i
\(556\) 10.9894 + 33.8218i 0.466053 + 1.43436i
\(557\) −14.7254 + 10.6986i −0.623936 + 0.453316i −0.854294 0.519790i \(-0.826010\pi\)
0.230358 + 0.973106i \(0.426010\pi\)
\(558\) −3.29180 −0.139353
\(559\) −48.2705 + 35.0706i −2.04163 + 1.48333i
\(560\) 0.263932 0.812299i 0.0111532 0.0343259i
\(561\) −0.545085 5.82485i −0.0230135 0.245925i
\(562\) 6.74671 + 20.7642i 0.284593 + 0.875887i
\(563\) 34.4336 25.0175i 1.45120 1.05436i 0.465656 0.884966i \(-0.345818\pi\)
0.985548 0.169396i \(-0.0541817\pi\)
\(564\) 7.50000 5.44907i 0.315807 0.229447i
\(565\) −1.01722 3.13068i −0.0427948 0.131709i
\(566\) 37.7639 1.58734
\(567\) 0.118034 + 0.363271i 0.00495696 + 0.0152560i
\(568\) 2.66312 1.93487i 0.111742 0.0811853i
\(569\) −33.7426 −1.41457 −0.707283 0.706931i \(-0.750079\pi\)
−0.707283 + 0.706931i \(0.750079\pi\)
\(570\) 17.7254 + 12.8783i 0.742436 + 0.539412i
\(571\) −10.6353 7.72696i −0.445072 0.323363i 0.342575 0.939490i \(-0.388701\pi\)
−0.787647 + 0.616127i \(0.788701\pi\)
\(572\) 5.56231 + 59.4396i 0.232572 + 2.48529i
\(573\) 5.13525 15.8047i 0.214528 0.660250i
\(574\) 1.64590 + 5.06555i 0.0686985 + 0.211432i
\(575\) 14.0451 + 10.2044i 0.585721 + 0.425551i
\(576\) 10.5172 7.64121i 0.438218 0.318384i
\(577\) 10.7082 + 7.77997i 0.445788 + 0.323884i 0.787931 0.615764i \(-0.211153\pi\)
−0.342142 + 0.939648i \(0.611153\pi\)
\(578\) 25.1246 18.2541i 1.04505 0.759270i
\(579\) −5.61803 −0.233478
\(580\) −22.1976 + 16.1275i −0.921704 + 0.669657i
\(581\) −3.57295 2.59590i −0.148231 0.107696i
\(582\) 25.6525 1.06333
\(583\) −2.19098 2.48990i −0.0907412 0.103121i
\(584\) 0.854102 + 2.62866i 0.0353430 + 0.108775i
\(585\) 4.14590 + 12.7598i 0.171412 + 0.527551i
\(586\) 44.7984 32.5479i 1.85060 1.34454i
\(587\) 1.30902 + 0.951057i 0.0540289 + 0.0392543i 0.614472 0.788939i \(-0.289369\pi\)
−0.560443 + 0.828193i \(0.689369\pi\)
\(588\) −20.5623 −0.847975
\(589\) 5.21885 + 3.79171i 0.215039 + 0.156235i
\(590\) 8.54102 0.351628
\(591\) −4.78115 + 14.7149i −0.196670 + 0.605289i
\(592\) 6.35410 + 4.61653i 0.261152 + 0.189738i
\(593\) −7.29180 −0.299438 −0.149719 0.988729i \(-0.547837\pi\)
−0.149719 + 0.988729i \(0.547837\pi\)
\(594\) 6.80902 2.93893i 0.279377 0.120586i
\(595\) −1.50658 −0.0617637
\(596\) −15.1353 + 46.5815i −0.619964 + 1.90805i
\(597\) 3.33688 + 10.2699i 0.136569 + 0.420318i
\(598\) 14.3951 + 44.3036i 0.588660 + 1.81171i
\(599\) −13.3262 + 41.0139i −0.544495 + 1.67578i 0.177692 + 0.984086i \(0.443137\pi\)
−0.722187 + 0.691698i \(0.756863\pi\)
\(600\) 11.1803 0.456435
\(601\) 5.35410 3.88998i 0.218398 0.158676i −0.473207 0.880951i \(-0.656904\pi\)
0.691605 + 0.722276i \(0.256904\pi\)
\(602\) 6.87132 4.99231i 0.280054 0.203471i
\(603\) 0.263932 0.812299i 0.0107481 0.0330794i
\(604\) 1.50000 + 1.08981i 0.0610341 + 0.0443439i
\(605\) −22.2361 10.5146i −0.904025 0.427480i
\(606\) 30.2254 21.9601i 1.22782 0.892066i
\(607\) 6.54508 + 20.1437i 0.265657 + 0.817608i 0.991541 + 0.129791i \(0.0414306\pi\)
−0.725885 + 0.687817i \(0.758569\pi\)
\(608\) −29.3951 −1.19213
\(609\) 1.26393 + 0.918300i 0.0512171 + 0.0372114i
\(610\) −51.6312 −2.09049
\(611\) −15.0000 10.8981i −0.606835 0.440891i
\(612\) −4.28115 3.11044i −0.173055 0.125732i
\(613\) 11.9894 36.8994i 0.484246 1.49035i −0.348825 0.937188i \(-0.613419\pi\)
0.833071 0.553167i \(-0.186581\pi\)
\(614\) 63.5410 2.56431
\(615\) 11.2812 8.19624i 0.454900 0.330504i
\(616\) −0.263932 2.82041i −0.0106341 0.113638i
\(617\) 34.4615 25.0377i 1.38737 1.00798i 0.391219 0.920298i \(-0.372053\pi\)
0.996148 0.0876839i \(-0.0279465\pi\)
\(618\) 3.25329 + 10.0126i 0.130866 + 0.402766i
\(619\) 23.1803 0.931697 0.465848 0.884865i \(-0.345749\pi\)
0.465848 + 0.884865i \(0.345749\pi\)
\(620\) 9.87539 0.396605
\(621\) 2.80902 2.04087i 0.112722 0.0818973i
\(622\) −6.60739 + 4.80055i −0.264932 + 0.192485i
\(623\) −1.95492 6.01661i −0.0783220 0.241050i
\(624\) −4.85410 3.52671i −0.194320 0.141181i
\(625\) −20.2254 14.6946i −0.809017 0.587785i
\(626\) 0.931116 0.0372149
\(627\) −14.1803 3.18368i −0.566308 0.127144i
\(628\) −11.4271 8.30224i −0.455989 0.331295i
\(629\) 4.28115 13.1760i 0.170701 0.525363i
\(630\) −0.590170 1.81636i −0.0235129 0.0723654i
\(631\) 8.56231 26.3521i 0.340860 1.04906i −0.622903 0.782299i \(-0.714047\pi\)
0.963763 0.266760i \(-0.0859531\pi\)
\(632\) 3.41641 10.5146i 0.135897 0.418249i
\(633\) 0.527864 + 1.62460i 0.0209807 + 0.0645720i
\(634\) 18.0902 + 13.1433i 0.718452 + 0.521986i
\(635\) −30.9787 −1.22935
\(636\) −3.00000 −0.118958
\(637\) 12.7082 + 39.1118i 0.503517 + 1.54967i
\(638\) 15.4656 26.0948i 0.612287 1.03310i
\(639\) −0.454915 + 1.40008i −0.0179962 + 0.0553865i
\(640\) −28.3156 + 20.5725i −1.11927 + 0.813199i
\(641\) −0.927051 + 2.85317i −0.0366163 + 0.112693i −0.967694 0.252127i \(-0.918870\pi\)
0.931078 + 0.364821i \(0.118870\pi\)
\(642\) −9.96149 + 30.6583i −0.393149 + 1.20999i
\(643\) −4.38197 + 13.4863i −0.172808 + 0.531848i −0.999527 0.0307676i \(-0.990205\pi\)
0.826719 + 0.562615i \(0.190205\pi\)
\(644\) −1.22949 3.78398i −0.0484487 0.149110i
\(645\) −17.9894 13.0700i −0.708330 0.514632i
\(646\) 5.34095 + 16.4377i 0.210137 + 0.646734i
\(647\) 11.5279 35.4791i 0.453207 1.39483i −0.420020 0.907515i \(-0.637977\pi\)
0.873227 0.487313i \(-0.162023\pi\)
\(648\) 0.690983 2.12663i 0.0271444 0.0835418i
\(649\) −5.20163 + 2.24514i −0.204182 + 0.0881294i
\(650\) −20.7295 63.7988i −0.813077 2.50240i
\(651\) −0.173762 0.534785i −0.00681027 0.0209599i
\(652\) 31.5517 22.9236i 1.23566 0.897758i
\(653\) −21.0344 −0.823141 −0.411571 0.911378i \(-0.635020\pi\)
−0.411571 + 0.911378i \(0.635020\pi\)
\(654\) −32.0344 + 23.2744i −1.25265 + 0.910100i
\(655\) 1.15654 3.55947i 0.0451898 0.139080i
\(656\) −1.92705 + 5.93085i −0.0752387 + 0.231561i
\(657\) −1.00000 0.726543i −0.0390137 0.0283451i
\(658\) 2.13525 + 1.55135i 0.0832409 + 0.0604781i
\(659\) −8.40983 25.8828i −0.327600 1.00825i −0.970253 0.242093i \(-0.922166\pi\)
0.642653 0.766158i \(-0.277834\pi\)
\(660\) −20.4271 + 8.81678i −0.795122 + 0.343193i
\(661\) 4.94427 15.2169i 0.192310 0.591869i −0.807688 0.589611i \(-0.799281\pi\)
0.999997 0.00225826i \(-0.000718826\pi\)
\(662\) −45.1246 + 32.7849i −1.75382 + 1.27422i
\(663\) −3.27051 + 10.0656i −0.127016 + 0.390915i
\(664\) 7.98936 + 24.5887i 0.310047 + 0.954227i
\(665\) −1.15654 + 3.55947i −0.0448487 + 0.138030i
\(666\) 17.5623 0.680526
\(667\) 4.38854 13.5065i 0.169925 0.522976i
\(668\) −23.4787 17.0583i −0.908419 0.660005i
\(669\) −1.11803 0.812299i −0.0432257 0.0314053i
\(670\) −1.31966 + 4.06150i −0.0509829 + 0.156909i
\(671\) 31.4443 13.5721i 1.21389 0.523944i
\(672\) 2.07295 + 1.50609i 0.0799657 + 0.0580985i
\(673\) −13.9098 −0.536185 −0.268092 0.963393i \(-0.586393\pi\)
−0.268092 + 0.963393i \(0.586393\pi\)
\(674\) 50.8779 + 36.9650i 1.95974 + 1.42384i
\(675\) −4.04508 + 2.93893i −0.155695 + 0.113119i
\(676\) 21.3222 65.6229i 0.820084 2.52396i
\(677\) −4.04508 2.93893i −0.155465 0.112952i 0.507333 0.861750i \(-0.330631\pi\)
−0.662798 + 0.748798i \(0.730631\pi\)
\(678\) 3.29180 0.126421
\(679\) 1.35410 + 4.16750i 0.0519657 + 0.159934i
\(680\) 7.13525 + 5.18407i 0.273625 + 0.198800i
\(681\) −18.3713 + 13.3475i −0.703991 + 0.511479i
\(682\) −10.0238 + 4.32650i −0.383831 + 0.165670i
\(683\) 13.2533 9.62908i 0.507123 0.368446i −0.304608 0.952478i \(-0.598525\pi\)
0.811731 + 0.584031i \(0.198525\pi\)
\(684\) −10.6353 + 7.72696i −0.406649 + 0.295448i
\(685\) 15.0000 10.8981i 0.573121 0.416396i
\(686\) −3.65654 11.2537i −0.139607 0.429667i
\(687\) 17.0000 0.648590
\(688\) 9.94427 0.379122
\(689\) 1.85410 + 5.70634i 0.0706357 + 0.217394i
\(690\) −14.0451 + 10.2044i −0.534687 + 0.388473i
\(691\) −31.8885 + 23.1684i −1.21310 + 0.881367i −0.995508 0.0946736i \(-0.969819\pi\)
−0.217589 + 0.976040i \(0.569819\pi\)
\(692\) 32.2082 23.4006i 1.22437 0.889558i
\(693\) 0.836881 + 0.951057i 0.0317905 + 0.0361276i
\(694\) −0.100813 + 0.0732450i −0.00382681 + 0.00278034i
\(695\) 21.4443 + 15.5802i 0.813428 + 0.590990i
\(696\) −2.82624 8.69827i −0.107128 0.329707i
\(697\) 11.0000 0.416655
\(698\) −27.7254 20.1437i −1.04942 0.762450i
\(699\) −6.29180 + 19.3642i −0.237978 + 0.732420i
\(700\) 1.77051 + 5.44907i 0.0669190 + 0.205955i
\(701\) −16.5902 12.0535i −0.626602 0.455253i 0.228619 0.973516i \(-0.426579\pi\)
−0.855221 + 0.518263i \(0.826579\pi\)
\(702\) −13.4164 −0.506370
\(703\) −27.8435 20.2295i −1.05014 0.762968i
\(704\) 21.9828 37.0912i 0.828507 1.39793i
\(705\) 2.13525 6.57164i 0.0804184 0.247502i
\(706\) 10.0623 + 7.31069i 0.378700 + 0.275142i
\(707\) 5.16312 + 3.75123i 0.194179 + 0.141079i
\(708\) −1.58359 + 4.87380i −0.0595150 + 0.183168i
\(709\) −27.4721 −1.03174 −0.515869 0.856668i \(-0.672531\pi\)
−0.515869 + 0.856668i \(0.672531\pi\)
\(710\) 2.27458 7.00042i 0.0853633 0.262721i
\(711\) 1.52786 + 4.70228i 0.0572994 + 0.176349i
\(712\) −11.4443 + 35.2218i −0.428892 + 1.31999i
\(713\) −4.13525 + 3.00444i −0.154867 + 0.112517i
\(714\) 0.465558 1.43284i 0.0174231 0.0536227i
\(715\) 29.3951 + 33.4055i 1.09932 + 1.24929i
\(716\) −21.0000 64.6314i −0.784807 2.41539i
\(717\) 1.54508 + 1.12257i 0.0577023 + 0.0419231i
\(718\) 67.6869 + 49.1774i 2.52605 + 1.83529i
\(719\) −3.13525 + 9.64932i −0.116925 + 0.359859i −0.992344 0.123507i \(-0.960586\pi\)
0.875418 + 0.483366i \(0.160586\pi\)
\(720\) 0.690983 2.12663i 0.0257514 0.0792547i
\(721\) −1.45492 + 1.05706i −0.0541839 + 0.0393669i
\(722\) 0.450850 0.0167789
\(723\) −9.01722 + 6.55139i −0.335354 + 0.243649i
\(724\) −12.6246 38.8546i −0.469190 1.44402i
\(725\) −6.31966 + 19.4499i −0.234706 + 0.722352i
\(726\) 16.8713 17.8986i 0.626154 0.664278i
\(727\) 1.31966 4.06150i 0.0489435 0.150633i −0.923598 0.383363i \(-0.874766\pi\)
0.972541 + 0.232730i \(0.0747659\pi\)
\(728\) −1.58359 + 4.87380i −0.0586918 + 0.180635i
\(729\) 0.309017 + 0.951057i 0.0114451 + 0.0352243i
\(730\) 5.00000 + 3.63271i 0.185058 + 0.134453i
\(731\) −5.42047 16.6825i −0.200483 0.617025i
\(732\) 9.57295 29.4625i 0.353826 1.08897i
\(733\) −10.3713 + 31.9196i −0.383074 + 1.17898i 0.554795 + 0.831987i \(0.312797\pi\)
−0.937868 + 0.346992i \(0.887203\pi\)
\(734\) 21.9336 67.5048i 0.809585 2.49165i
\(735\) −12.3992 + 9.00854i −0.457351 + 0.332285i
\(736\) 7.19756 22.1518i 0.265306 0.816527i
\(737\) −0.263932 2.82041i −0.00972206 0.103891i
\(738\) 4.30902 + 13.2618i 0.158617 + 0.488173i
\(739\) −3.65248 −0.134358 −0.0671792 0.997741i \(-0.521400\pi\)
−0.0671792 + 0.997741i \(0.521400\pi\)
\(740\) −52.6869 −1.93681
\(741\) 21.2705 + 15.4539i 0.781392 + 0.567714i
\(742\) −0.263932 0.812299i −0.00968925 0.0298204i
\(743\) −3.01064 + 9.26581i −0.110450 + 0.339929i −0.990971 0.134078i \(-0.957193\pi\)
0.880521 + 0.474007i \(0.157193\pi\)
\(744\) −1.01722 + 3.13068i −0.0372931 + 0.114776i
\(745\) 11.2812 + 34.7198i 0.413309 + 1.27204i
\(746\) −22.8262 + 70.2519i −0.835728 + 2.57211i
\(747\) −9.35410 6.79615i −0.342249 0.248658i
\(748\) −17.1246 3.84471i −0.626138 0.140577i
\(749\) −5.50658 −0.201206
\(750\) 20.2254 14.6946i 0.738528 0.536572i
\(751\) 3.28115 + 2.38390i 0.119731 + 0.0869896i 0.646039 0.763304i \(-0.276424\pi\)
−0.526308 + 0.850294i \(0.676424\pi\)
\(752\) 0.954915 + 2.93893i 0.0348222 + 0.107172i
\(753\) −23.4894 + 17.0660i −0.856000 + 0.621920i
\(754\) −44.3951 + 32.2549i −1.61677 + 1.17466i
\(755\) 1.38197 0.0502949
\(756\) 1.14590 0.0416759
\(757\) −13.0106 40.0426i −0.472880 1.45537i −0.848796 0.528721i \(-0.822672\pi\)
0.375916 0.926654i \(-0.377328\pi\)
\(758\) −36.4443 + 26.4783i −1.32372 + 0.961736i
\(759\) 5.87132 9.90659i 0.213116 0.359587i
\(760\) 17.7254 12.8783i 0.642969 0.467144i
\(761\) 33.6180 1.21865 0.609326 0.792920i \(-0.291440\pi\)
0.609326 + 0.792920i \(0.291440\pi\)
\(762\) 9.57295 29.4625i 0.346791 1.06731i
\(763\) −5.47214 3.97574i −0.198105 0.143931i
\(764\) −40.3328 29.3035i −1.45919 1.06016i
\(765\) −3.94427 −0.142605
\(766\) −68.8673 50.0350i −2.48828 1.80784i
\(767\) 10.2492 0.370078
\(768\) −2.78115 8.55951i −0.100356 0.308865i
\(769\) −27.1803 + 19.7477i −0.980148 + 0.712119i −0.957742 0.287630i \(-0.907133\pi\)
−0.0224064 + 0.999749i \(0.507133\pi\)
\(770\) −4.18441 4.75528i −0.150795 0.171368i
\(771\) −9.51722 6.91467i −0.342754 0.249026i
\(772\) −5.20820 + 16.0292i −0.187447 + 0.576904i