Properties

Label 825.2.m
Level $825$
Weight $2$
Character orbit 825.m
Rep. character $\chi_{825}(16,\cdot)$
Character field $\Q(\zeta_{5})$
Dimension $240$
Newform subspaces $4$
Sturm bound $240$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 825 = 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 825.m (of order \(5\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 275 \)
Character field: \(\Q(\zeta_{5})\)
Newform subspaces: \( 4 \)
Sturm bound: \(240\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(825, [\chi])\).

Total New Old
Modular forms 496 240 256
Cusp forms 464 240 224
Eisenstein series 32 0 32

Trace form

\( 240 q - 60 q^{4} - 4 q^{5} - 4 q^{6} - 6 q^{7} - 60 q^{9} + O(q^{10}) \) \( 240 q - 60 q^{4} - 4 q^{5} - 4 q^{6} - 6 q^{7} - 60 q^{9} + 8 q^{10} - 4 q^{11} + 4 q^{12} + 12 q^{13} - 8 q^{15} - 56 q^{16} + 2 q^{17} - 14 q^{19} + 14 q^{20} - 8 q^{21} - 30 q^{22} + 8 q^{23} - 12 q^{24} + 12 q^{25} - 40 q^{26} + 84 q^{28} - 16 q^{30} + 12 q^{31} - 40 q^{32} + 24 q^{33} - 32 q^{35} - 60 q^{36} - 40 q^{37} - 56 q^{38} - 16 q^{39} - 14 q^{40} - 24 q^{41} + 12 q^{42} + 52 q^{43} - 44 q^{44} - 4 q^{45} - 12 q^{46} - 14 q^{47} - 32 q^{48} - 62 q^{49} + 146 q^{50} - 16 q^{51} - 28 q^{52} + 6 q^{53} - 4 q^{54} - 56 q^{55} + 8 q^{57} + 2 q^{58} + 6 q^{59} - 38 q^{61} + 30 q^{62} + 24 q^{63} - 16 q^{64} + 36 q^{65} + 12 q^{66} - 56 q^{67} + 74 q^{68} - 8 q^{69} + 86 q^{70} - 64 q^{71} + 44 q^{73} + 22 q^{74} - 32 q^{75} + 168 q^{76} + 214 q^{77} - 24 q^{78} - 48 q^{79} + 28 q^{80} - 60 q^{81} - 24 q^{82} - 36 q^{83} - 24 q^{84} - 74 q^{85} - 88 q^{86} + 20 q^{87} - 44 q^{88} - 12 q^{90} - 40 q^{91} + 90 q^{92} + 72 q^{93} - 14 q^{94} - 10 q^{95} - 28 q^{96} - 10 q^{97} - 124 q^{98} - 4 q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(825, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
825.2.m.a $4$ $6.588$ \(\Q(\zeta_{10})\) None \(-2\) \(1\) \(-5\) \(3\) \(q+(-1+\zeta_{10}-\zeta_{10}^{2})q^{2}+\zeta_{10}q^{3}+\cdots\)
825.2.m.b $4$ $6.588$ \(\Q(\zeta_{10})\) None \(0\) \(-1\) \(5\) \(6\) \(q-\zeta_{10}q^{3}-2\zeta_{10}^{2}q^{4}+(2-\zeta_{10}+2\zeta_{10}^{2}+\cdots)q^{5}+\cdots\)
825.2.m.c $116$ $6.588$ None \(-2\) \(-29\) \(-1\) \(-13\)
825.2.m.d $116$ $6.588$ None \(4\) \(29\) \(-3\) \(-2\)

Decomposition of \(S_{2}^{\mathrm{old}}(825, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(825, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(275, [\chi])\)\(^{\oplus 2}\)