Properties

Label 825.2.d.a
Level $825$
Weight $2$
Character orbit 825.d
Analytic conductor $6.588$
Analytic rank $0$
Dimension $4$
CM discriminant -11
Inner twists $8$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 825 = 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 825.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.58765816676\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{11})\)
Defining polynomial: \(x^{4} - 5 x^{2} + 9\)
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 33)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -\beta_{1} + \beta_{2} ) q^{3} + 2 q^{4} + ( 2 - \beta_{3} ) q^{9} +O(q^{10})\) \( q + ( -\beta_{1} + \beta_{2} ) q^{3} + 2 q^{4} + ( 2 - \beta_{3} ) q^{9} + ( 1 + 2 \beta_{3} ) q^{11} + ( -2 \beta_{1} + 2 \beta_{2} ) q^{12} + 4 q^{16} + ( 2 \beta_{1} - \beta_{2} ) q^{23} + ( -2 \beta_{1} + 5 \beta_{2} ) q^{27} + 5 q^{31} + ( -\beta_{1} - 5 \beta_{2} ) q^{33} + ( 4 - 2 \beta_{3} ) q^{36} + 7 \beta_{2} q^{37} + ( 2 + 4 \beta_{3} ) q^{44} + ( 4 \beta_{1} - 2 \beta_{2} ) q^{47} + ( -4 \beta_{1} + 4 \beta_{2} ) q^{48} -7 q^{49} + ( 8 \beta_{1} - 4 \beta_{2} ) q^{53} + ( 1 + 2 \beta_{3} ) q^{59} + 8 q^{64} + 13 \beta_{2} q^{67} + ( -5 + \beta_{3} ) q^{69} + ( 5 + 10 \beta_{3} ) q^{71} + ( 1 - 5 \beta_{3} ) q^{81} + ( -5 - 10 \beta_{3} ) q^{89} + ( 4 \beta_{1} - 2 \beta_{2} ) q^{92} + ( -5 \beta_{1} + 5 \beta_{2} ) q^{93} -17 \beta_{2} q^{97} + ( 8 + 5 \beta_{3} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q + 8q^{4} + 10q^{9} + O(q^{10}) \) \( 4q + 8q^{4} + 10q^{9} + 16q^{16} + 20q^{31} + 20q^{36} - 28q^{49} + 32q^{64} - 22q^{69} + 14q^{81} + 22q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{4} - 5 x^{2} + 9\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\((\)\( \nu^{3} - 2 \nu \)\()/3\)
\(\beta_{3}\)\(=\)\( \nu^{2} - 3 \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(\beta_{3} + 3\)
\(\nu^{3}\)\(=\)\(3 \beta_{2} + 2 \beta_{1}\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/825\mathbb{Z}\right)^\times\).

\(n\) \(376\) \(551\) \(727\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
824.1
1.65831 0.500000i
1.65831 + 0.500000i
−1.65831 0.500000i
−1.65831 + 0.500000i
0 −1.65831 0.500000i 2.00000 0 0 0 0 2.50000 + 1.65831i 0
824.2 0 −1.65831 + 0.500000i 2.00000 0 0 0 0 2.50000 1.65831i 0
824.3 0 1.65831 0.500000i 2.00000 0 0 0 0 2.50000 1.65831i 0
824.4 0 1.65831 + 0.500000i 2.00000 0 0 0 0 2.50000 + 1.65831i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.b odd 2 1 CM by \(\Q(\sqrt{-11}) \)
3.b odd 2 1 inner
5.b even 2 1 inner
15.d odd 2 1 inner
33.d even 2 1 inner
55.d odd 2 1 inner
165.d even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 825.2.d.a 4
3.b odd 2 1 inner 825.2.d.a 4
5.b even 2 1 inner 825.2.d.a 4
5.c odd 4 1 33.2.d.a 2
5.c odd 4 1 825.2.f.a 2
11.b odd 2 1 CM 825.2.d.a 4
15.d odd 2 1 inner 825.2.d.a 4
15.e even 4 1 33.2.d.a 2
15.e even 4 1 825.2.f.a 2
20.e even 4 1 528.2.b.a 2
33.d even 2 1 inner 825.2.d.a 4
40.i odd 4 1 2112.2.b.e 2
40.k even 4 1 2112.2.b.f 2
45.k odd 12 2 891.2.g.a 4
45.l even 12 2 891.2.g.a 4
55.d odd 2 1 inner 825.2.d.a 4
55.e even 4 1 33.2.d.a 2
55.e even 4 1 825.2.f.a 2
55.k odd 20 4 363.2.f.c 8
55.l even 20 4 363.2.f.c 8
60.l odd 4 1 528.2.b.a 2
120.q odd 4 1 2112.2.b.f 2
120.w even 4 1 2112.2.b.e 2
165.d even 2 1 inner 825.2.d.a 4
165.l odd 4 1 33.2.d.a 2
165.l odd 4 1 825.2.f.a 2
165.u odd 20 4 363.2.f.c 8
165.v even 20 4 363.2.f.c 8
220.i odd 4 1 528.2.b.a 2
440.t even 4 1 2112.2.b.e 2
440.w odd 4 1 2112.2.b.f 2
495.bd odd 12 2 891.2.g.a 4
495.bf even 12 2 891.2.g.a 4
660.q even 4 1 528.2.b.a 2
1320.bn odd 4 1 2112.2.b.e 2
1320.bt even 4 1 2112.2.b.f 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
33.2.d.a 2 5.c odd 4 1
33.2.d.a 2 15.e even 4 1
33.2.d.a 2 55.e even 4 1
33.2.d.a 2 165.l odd 4 1
363.2.f.c 8 55.k odd 20 4
363.2.f.c 8 55.l even 20 4
363.2.f.c 8 165.u odd 20 4
363.2.f.c 8 165.v even 20 4
528.2.b.a 2 20.e even 4 1
528.2.b.a 2 60.l odd 4 1
528.2.b.a 2 220.i odd 4 1
528.2.b.a 2 660.q even 4 1
825.2.d.a 4 1.a even 1 1 trivial
825.2.d.a 4 3.b odd 2 1 inner
825.2.d.a 4 5.b even 2 1 inner
825.2.d.a 4 11.b odd 2 1 CM
825.2.d.a 4 15.d odd 2 1 inner
825.2.d.a 4 33.d even 2 1 inner
825.2.d.a 4 55.d odd 2 1 inner
825.2.d.a 4 165.d even 2 1 inner
825.2.f.a 2 5.c odd 4 1
825.2.f.a 2 15.e even 4 1
825.2.f.a 2 55.e even 4 1
825.2.f.a 2 165.l odd 4 1
891.2.g.a 4 45.k odd 12 2
891.2.g.a 4 45.l even 12 2
891.2.g.a 4 495.bd odd 12 2
891.2.g.a 4 495.bf even 12 2
2112.2.b.e 2 40.i odd 4 1
2112.2.b.e 2 120.w even 4 1
2112.2.b.e 2 440.t even 4 1
2112.2.b.e 2 1320.bn odd 4 1
2112.2.b.f 2 40.k even 4 1
2112.2.b.f 2 120.q odd 4 1
2112.2.b.f 2 440.w odd 4 1
2112.2.b.f 2 1320.bt even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(825, [\chi])\):

\( T_{2} \)
\( T_{7} \)
\( T_{23}^{2} - 11 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \)
$3$ \( 9 - 5 T^{2} + T^{4} \)
$5$ \( T^{4} \)
$7$ \( T^{4} \)
$11$ \( ( 11 + T^{2} )^{2} \)
$13$ \( T^{4} \)
$17$ \( T^{4} \)
$19$ \( T^{4} \)
$23$ \( ( -11 + T^{2} )^{2} \)
$29$ \( T^{4} \)
$31$ \( ( -5 + T )^{4} \)
$37$ \( ( 49 + T^{2} )^{2} \)
$41$ \( T^{4} \)
$43$ \( T^{4} \)
$47$ \( ( -44 + T^{2} )^{2} \)
$53$ \( ( -176 + T^{2} )^{2} \)
$59$ \( ( 11 + T^{2} )^{2} \)
$61$ \( T^{4} \)
$67$ \( ( 169 + T^{2} )^{2} \)
$71$ \( ( 275 + T^{2} )^{2} \)
$73$ \( T^{4} \)
$79$ \( T^{4} \)
$83$ \( T^{4} \)
$89$ \( ( 275 + T^{2} )^{2} \)
$97$ \( ( 289 + T^{2} )^{2} \)
show more
show less