Properties

Label 825.2.bx.d.49.2
Level $825$
Weight $2$
Character 825.49
Analytic conductor $6.588$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [825,2,Mod(49,825)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(825, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 5, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("825.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 825 = 3 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 825.bx (of order \(10\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.58765816676\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\Q(\zeta_{20})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 33)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 49.2
Root \(0.951057 - 0.309017i\) of defining polynomial
Character \(\chi\) \(=\) 825.49
Dual form 825.2.bx.d.724.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.48990 - 0.809017i) q^{2} +(0.587785 - 0.809017i) q^{3} +(3.92705 - 2.85317i) q^{4} +(0.809017 - 2.48990i) q^{6} +(0.587785 + 0.809017i) q^{7} +(4.39201 - 6.04508i) q^{8} +(-0.309017 - 0.951057i) q^{9} +(-3.30902 + 0.224514i) q^{11} -4.85410i q^{12} +(0.224514 - 0.0729490i) q^{13} +(2.11803 + 1.53884i) q^{14} +(3.04508 - 9.37181i) q^{16} +(-1.08981 - 0.354102i) q^{17} +(-1.53884 - 2.11803i) q^{18} +(4.73607 + 3.44095i) q^{19} +1.00000 q^{21} +(-8.05748 + 3.23607i) q^{22} -0.236068i q^{23} +(-2.30902 - 7.10642i) q^{24} +(0.500000 - 0.363271i) q^{26} +(-0.951057 - 0.309017i) q^{27} +(4.61653 + 1.50000i) q^{28} +(-4.85410 + 3.52671i) q^{29} +(-1.88197 - 5.79210i) q^{31} -10.8541i q^{32} +(-1.76336 + 2.80902i) q^{33} -3.00000 q^{34} +(-3.92705 - 2.85317i) q^{36} +(3.66547 + 5.04508i) q^{37} +(14.5761 + 4.73607i) q^{38} +(0.0729490 - 0.224514i) q^{39} +(-0.190983 - 0.138757i) q^{41} +(2.48990 - 0.809017i) q^{42} +6.70820i q^{43} +(-12.3541 + 10.3229i) q^{44} +(-0.190983 - 0.587785i) q^{46} +(-5.93085 + 8.16312i) q^{47} +(-5.79210 - 7.97214i) q^{48} +(1.85410 - 5.70634i) q^{49} +(-0.927051 + 0.673542i) q^{51} +(0.673542 - 0.927051i) q^{52} +(-0.363271 + 0.118034i) q^{53} -2.61803 q^{54} +7.47214 q^{56} +(5.56758 - 1.80902i) q^{57} +(-9.23305 + 12.7082i) q^{58} +(5.97214 - 4.33901i) q^{59} +(-3.57295 + 10.9964i) q^{61} +(-9.37181 - 12.8992i) q^{62} +(0.587785 - 0.809017i) q^{63} +(-2.69098 - 8.28199i) q^{64} +(-2.11803 + 8.42075i) q^{66} +1.85410i q^{67} +(-5.29007 + 1.71885i) q^{68} +(-0.190983 - 0.138757i) q^{69} +(3.19098 - 9.82084i) q^{71} +(-7.10642 - 2.30902i) q^{72} +(-3.35520 - 4.61803i) q^{73} +(13.2082 + 9.59632i) q^{74} +28.4164 q^{76} +(-2.12663 - 2.54508i) q^{77} -0.618034i q^{78} +(-3.39919 - 10.4616i) q^{79} +(-0.809017 + 0.587785i) q^{81} +(-0.587785 - 0.190983i) q^{82} +(-1.40008 - 0.454915i) q^{83} +(3.92705 - 2.85317i) q^{84} +(5.42705 + 16.7027i) q^{86} +6.00000i q^{87} +(-13.1760 + 20.9894i) q^{88} +8.23607 q^{89} +(0.190983 + 0.138757i) q^{91} +(-0.673542 - 0.927051i) q^{92} +(-5.79210 - 1.88197i) q^{93} +(-8.16312 + 25.1235i) q^{94} +(-8.78115 - 6.37988i) q^{96} +(-7.46969 + 2.42705i) q^{97} -15.7082i q^{98} +(1.23607 + 3.07768i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 18 q^{4} + 2 q^{6} + 2 q^{9} - 22 q^{11} + 8 q^{14} + 2 q^{16} + 20 q^{19} + 8 q^{21} - 14 q^{24} + 4 q^{26} - 12 q^{29} - 24 q^{31} - 24 q^{34} - 18 q^{36} + 14 q^{39} - 6 q^{41} - 72 q^{44} - 6 q^{46}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/825\mathbb{Z}\right)^\times\).

\(n\) \(376\) \(551\) \(727\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.48990 0.809017i 1.76062 0.572061i 0.763359 0.645974i \(-0.223549\pi\)
0.997265 + 0.0739128i \(0.0235486\pi\)
\(3\) 0.587785 0.809017i 0.339358 0.467086i
\(4\) 3.92705 2.85317i 1.96353 1.42658i
\(5\) 0 0
\(6\) 0.809017 2.48990i 0.330280 1.01650i
\(7\) 0.587785 + 0.809017i 0.222162 + 0.305780i 0.905520 0.424304i \(-0.139481\pi\)
−0.683358 + 0.730084i \(0.739481\pi\)
\(8\) 4.39201 6.04508i 1.55281 2.13726i
\(9\) −0.309017 0.951057i −0.103006 0.317019i
\(10\) 0 0
\(11\) −3.30902 + 0.224514i −0.997706 + 0.0676935i
\(12\) 4.85410i 1.40126i
\(13\) 0.224514 0.0729490i 0.0622690 0.0202324i −0.277717 0.960663i \(-0.589578\pi\)
0.339986 + 0.940431i \(0.389578\pi\)
\(14\) 2.11803 + 1.53884i 0.566068 + 0.411273i
\(15\) 0 0
\(16\) 3.04508 9.37181i 0.761271 2.34295i
\(17\) −1.08981 0.354102i −0.264319 0.0858823i 0.173860 0.984770i \(-0.444376\pi\)
−0.438178 + 0.898888i \(0.644376\pi\)
\(18\) −1.53884 2.11803i −0.362708 0.499225i
\(19\) 4.73607 + 3.44095i 1.08653 + 0.789409i 0.978810 0.204772i \(-0.0656454\pi\)
0.107719 + 0.994181i \(0.465645\pi\)
\(20\) 0 0
\(21\) 1.00000 0.218218
\(22\) −8.05748 + 3.23607i −1.71786 + 0.689932i
\(23\) 0.236068i 0.0492236i −0.999697 0.0246118i \(-0.992165\pi\)
0.999697 0.0246118i \(-0.00783497\pi\)
\(24\) −2.30902 7.10642i −0.471326 1.45059i
\(25\) 0 0
\(26\) 0.500000 0.363271i 0.0980581 0.0712434i
\(27\) −0.951057 0.309017i −0.183031 0.0594703i
\(28\) 4.61653 + 1.50000i 0.872441 + 0.283473i
\(29\) −4.85410 + 3.52671i −0.901384 + 0.654894i −0.938821 0.344405i \(-0.888081\pi\)
0.0374370 + 0.999299i \(0.488081\pi\)
\(30\) 0 0
\(31\) −1.88197 5.79210i −0.338011 1.04029i −0.965220 0.261440i \(-0.915803\pi\)
0.627209 0.778851i \(-0.284197\pi\)
\(32\) 10.8541i 1.91875i
\(33\) −1.76336 + 2.80902i −0.306961 + 0.488987i
\(34\) −3.00000 −0.514496
\(35\) 0 0
\(36\) −3.92705 2.85317i −0.654508 0.475528i
\(37\) 3.66547 + 5.04508i 0.602599 + 0.829407i 0.995943 0.0899846i \(-0.0286818\pi\)
−0.393344 + 0.919391i \(0.628682\pi\)
\(38\) 14.5761 + 4.73607i 2.36456 + 0.768292i
\(39\) 0.0729490 0.224514i 0.0116812 0.0359510i
\(40\) 0 0
\(41\) −0.190983 0.138757i −0.0298265 0.0216702i 0.572772 0.819715i \(-0.305868\pi\)
−0.602599 + 0.798044i \(0.705868\pi\)
\(42\) 2.48990 0.809017i 0.384200 0.124834i
\(43\) 6.70820i 1.02299i 0.859286 + 0.511496i \(0.170908\pi\)
−0.859286 + 0.511496i \(0.829092\pi\)
\(44\) −12.3541 + 10.3229i −1.86245 + 1.55623i
\(45\) 0 0
\(46\) −0.190983 0.587785i −0.0281589 0.0866642i
\(47\) −5.93085 + 8.16312i −0.865104 + 1.19071i 0.115224 + 0.993339i \(0.463241\pi\)
−0.980328 + 0.197374i \(0.936759\pi\)
\(48\) −5.79210 7.97214i −0.836017 1.15068i
\(49\) 1.85410 5.70634i 0.264872 0.815191i
\(50\) 0 0
\(51\) −0.927051 + 0.673542i −0.129813 + 0.0943147i
\(52\) 0.673542 0.927051i 0.0934035 0.128559i
\(53\) −0.363271 + 0.118034i −0.0498991 + 0.0162132i −0.333860 0.942623i \(-0.608351\pi\)
0.283961 + 0.958836i \(0.408351\pi\)
\(54\) −2.61803 −0.356269
\(55\) 0 0
\(56\) 7.47214 0.998506
\(57\) 5.56758 1.80902i 0.737444 0.239610i
\(58\) −9.23305 + 12.7082i −1.21236 + 1.66867i
\(59\) 5.97214 4.33901i 0.777506 0.564891i −0.126724 0.991938i \(-0.540446\pi\)
0.904229 + 0.427047i \(0.140446\pi\)
\(60\) 0 0
\(61\) −3.57295 + 10.9964i −0.457469 + 1.40795i 0.410742 + 0.911751i \(0.365270\pi\)
−0.868212 + 0.496194i \(0.834730\pi\)
\(62\) −9.37181 12.8992i −1.19022 1.63820i
\(63\) 0.587785 0.809017i 0.0740540 0.101927i
\(64\) −2.69098 8.28199i −0.336373 1.03525i
\(65\) 0 0
\(66\) −2.11803 + 8.42075i −0.260712 + 1.03652i
\(67\) 1.85410i 0.226515i 0.993566 + 0.113257i \(0.0361284\pi\)
−0.993566 + 0.113257i \(0.963872\pi\)
\(68\) −5.29007 + 1.71885i −0.641515 + 0.208441i
\(69\) −0.190983 0.138757i −0.0229917 0.0167044i
\(70\) 0 0
\(71\) 3.19098 9.82084i 0.378700 1.16552i −0.562248 0.826968i \(-0.690063\pi\)
0.940948 0.338550i \(-0.109937\pi\)
\(72\) −7.10642 2.30902i −0.837500 0.272120i
\(73\) −3.35520 4.61803i −0.392696 0.540500i 0.566196 0.824271i \(-0.308415\pi\)
−0.958892 + 0.283771i \(0.908415\pi\)
\(74\) 13.2082 + 9.59632i 1.53542 + 1.11555i
\(75\) 0 0
\(76\) 28.4164 3.25959
\(77\) −2.12663 2.54508i −0.242352 0.290039i
\(78\) 0.618034i 0.0699786i
\(79\) −3.39919 10.4616i −0.382438 1.17702i −0.938322 0.345764i \(-0.887620\pi\)
0.555883 0.831260i \(-0.312380\pi\)
\(80\) 0 0
\(81\) −0.809017 + 0.587785i −0.0898908 + 0.0653095i
\(82\) −0.587785 0.190983i −0.0649100 0.0210905i
\(83\) −1.40008 0.454915i −0.153679 0.0499334i 0.231167 0.972914i \(-0.425746\pi\)
−0.384846 + 0.922981i \(0.625746\pi\)
\(84\) 3.92705 2.85317i 0.428476 0.311306i
\(85\) 0 0
\(86\) 5.42705 + 16.7027i 0.585214 + 1.80110i
\(87\) 6.00000i 0.643268i
\(88\) −13.1760 + 20.9894i −1.40457 + 2.23747i
\(89\) 8.23607 0.873021 0.436511 0.899699i \(-0.356214\pi\)
0.436511 + 0.899699i \(0.356214\pi\)
\(90\) 0 0
\(91\) 0.190983 + 0.138757i 0.0200205 + 0.0145457i
\(92\) −0.673542 0.927051i −0.0702216 0.0966517i
\(93\) −5.79210 1.88197i −0.600612 0.195151i
\(94\) −8.16312 + 25.1235i −0.841961 + 2.59129i
\(95\) 0 0
\(96\) −8.78115 6.37988i −0.896223 0.651144i
\(97\) −7.46969 + 2.42705i −0.758433 + 0.246430i −0.662606 0.748968i \(-0.730549\pi\)
−0.0958268 + 0.995398i \(0.530549\pi\)
\(98\) 15.7082i 1.58677i
\(99\) 1.23607 + 3.07768i 0.124230 + 0.309319i
\(100\) 0 0
\(101\) −3.16312 9.73508i −0.314742 0.968677i −0.975860 0.218395i \(-0.929918\pi\)
0.661118 0.750282i \(-0.270082\pi\)
\(102\) −1.76336 + 2.42705i −0.174598 + 0.240314i
\(103\) −6.43288 8.85410i −0.633851 0.872421i 0.364418 0.931235i \(-0.381268\pi\)
−0.998269 + 0.0588148i \(0.981268\pi\)
\(104\) 0.545085 1.67760i 0.0534500 0.164502i
\(105\) 0 0
\(106\) −0.809017 + 0.587785i −0.0785787 + 0.0570908i
\(107\) −6.74315 + 9.28115i −0.651885 + 0.897243i −0.999179 0.0405134i \(-0.987101\pi\)
0.347294 + 0.937756i \(0.387101\pi\)
\(108\) −4.61653 + 1.50000i −0.444225 + 0.144338i
\(109\) 12.0000 1.14939 0.574696 0.818367i \(-0.305120\pi\)
0.574696 + 0.818367i \(0.305120\pi\)
\(110\) 0 0
\(111\) 6.23607 0.591901
\(112\) 9.37181 3.04508i 0.885553 0.287733i
\(113\) −7.91872 + 10.8992i −0.744931 + 1.02531i 0.253389 + 0.967364i \(0.418455\pi\)
−0.998320 + 0.0579448i \(0.981545\pi\)
\(114\) 12.3992 9.00854i 1.16129 0.843727i
\(115\) 0 0
\(116\) −9.00000 + 27.6992i −0.835629 + 2.57180i
\(117\) −0.138757 0.190983i −0.0128281 0.0176564i
\(118\) 11.3597 15.6353i 1.04574 1.43934i
\(119\) −0.354102 1.08981i −0.0324605 0.0999031i
\(120\) 0 0
\(121\) 10.8992 1.48584i 0.990835 0.135076i
\(122\) 30.2705i 2.74056i
\(123\) −0.224514 + 0.0729490i −0.0202437 + 0.00657759i
\(124\) −23.9164 17.3763i −2.14776 1.56044i
\(125\) 0 0
\(126\) 0.809017 2.48990i 0.0720730 0.221818i
\(127\) 7.33094 + 2.38197i 0.650516 + 0.211365i 0.615641 0.788026i \(-0.288897\pi\)
0.0348741 + 0.999392i \(0.488897\pi\)
\(128\) −0.640786 0.881966i −0.0566380 0.0779555i
\(129\) 5.42705 + 3.94298i 0.477825 + 0.347160i
\(130\) 0 0
\(131\) −11.7984 −1.03083 −0.515414 0.856941i \(-0.672362\pi\)
−0.515414 + 0.856941i \(0.672362\pi\)
\(132\) 1.08981 + 16.0623i 0.0948561 + 1.39804i
\(133\) 5.85410i 0.507615i
\(134\) 1.50000 + 4.61653i 0.129580 + 0.398807i
\(135\) 0 0
\(136\) −6.92705 + 5.03280i −0.593990 + 0.431559i
\(137\) 9.28605 + 3.01722i 0.793361 + 0.257779i 0.677535 0.735491i \(-0.263048\pi\)
0.115826 + 0.993269i \(0.463048\pi\)
\(138\) −0.587785 0.190983i −0.0500356 0.0162576i
\(139\) 11.7812 8.55951i 0.999264 0.726008i 0.0373340 0.999303i \(-0.488113\pi\)
0.961930 + 0.273295i \(0.0881134\pi\)
\(140\) 0 0
\(141\) 3.11803 + 9.59632i 0.262586 + 0.808156i
\(142\) 27.0344i 2.26868i
\(143\) −0.726543 + 0.291796i −0.0607565 + 0.0244012i
\(144\) −9.85410 −0.821175
\(145\) 0 0
\(146\) −12.0902 8.78402i −1.00059 0.726971i
\(147\) −3.52671 4.85410i −0.290878 0.400360i
\(148\) 28.7890 + 9.35410i 2.36644 + 0.768902i
\(149\) 1.30902 4.02874i 0.107239 0.330047i −0.883011 0.469353i \(-0.844487\pi\)
0.990249 + 0.139306i \(0.0444871\pi\)
\(150\) 0 0
\(151\) −0.854102 0.620541i −0.0695058 0.0504989i 0.552490 0.833520i \(-0.313678\pi\)
−0.621996 + 0.783021i \(0.713678\pi\)
\(152\) 41.6017 13.5172i 3.37435 1.09639i
\(153\) 1.14590i 0.0926404i
\(154\) −7.35410 4.61653i −0.592610 0.372010i
\(155\) 0 0
\(156\) −0.354102 1.08981i −0.0283508 0.0872549i
\(157\) 9.23305 12.7082i 0.736878 1.01423i −0.261915 0.965091i \(-0.584354\pi\)
0.998792 0.0491340i \(-0.0156461\pi\)
\(158\) −16.9273 23.2984i −1.34666 1.85352i
\(159\) −0.118034 + 0.363271i −0.00936070 + 0.0288093i
\(160\) 0 0
\(161\) 0.190983 0.138757i 0.0150516 0.0109356i
\(162\) −1.53884 + 2.11803i −0.120903 + 0.166408i
\(163\) −4.89404 + 1.59017i −0.383331 + 0.124552i −0.494342 0.869267i \(-0.664591\pi\)
0.111011 + 0.993819i \(0.464591\pi\)
\(164\) −1.14590 −0.0894796
\(165\) 0 0
\(166\) −3.85410 −0.299136
\(167\) −11.4454 + 3.71885i −0.885674 + 0.287773i −0.716311 0.697781i \(-0.754171\pi\)
−0.169363 + 0.985554i \(0.554171\pi\)
\(168\) 4.39201 6.04508i 0.338851 0.466388i
\(169\) −10.4721 + 7.60845i −0.805549 + 0.585266i
\(170\) 0 0
\(171\) 1.80902 5.56758i 0.138339 0.425764i
\(172\) 19.1396 + 26.3435i 1.45938 + 2.00867i
\(173\) 10.6004 14.5902i 0.805932 1.10927i −0.186006 0.982549i \(-0.559555\pi\)
0.991938 0.126722i \(-0.0404455\pi\)
\(174\) 4.85410 + 14.9394i 0.367989 + 1.13255i
\(175\) 0 0
\(176\) −7.97214 + 31.6951i −0.600922 + 2.38911i
\(177\) 7.38197i 0.554863i
\(178\) 20.5070 6.66312i 1.53706 0.499422i
\(179\) −6.89919 5.01255i −0.515669 0.374656i 0.299301 0.954159i \(-0.403247\pi\)
−0.814970 + 0.579503i \(0.803247\pi\)
\(180\) 0 0
\(181\) 0.781153 2.40414i 0.0580626 0.178698i −0.917819 0.396999i \(-0.870051\pi\)
0.975881 + 0.218301i \(0.0700515\pi\)
\(182\) 0.587785 + 0.190983i 0.0435695 + 0.0141566i
\(183\) 6.79615 + 9.35410i 0.502386 + 0.691475i
\(184\) −1.42705 1.03681i −0.105204 0.0764349i
\(185\) 0 0
\(186\) −15.9443 −1.16909
\(187\) 3.68571 + 0.927051i 0.269526 + 0.0677927i
\(188\) 48.9787i 3.57214i
\(189\) −0.309017 0.951057i −0.0224777 0.0691792i
\(190\) 0 0
\(191\) 0.663119 0.481784i 0.0479816 0.0348607i −0.563536 0.826092i \(-0.690559\pi\)
0.611518 + 0.791231i \(0.290559\pi\)
\(192\) −8.28199 2.69098i −0.597701 0.194205i
\(193\) 2.99193 + 0.972136i 0.215364 + 0.0699759i 0.414712 0.909953i \(-0.363882\pi\)
−0.199348 + 0.979929i \(0.563882\pi\)
\(194\) −16.6353 + 12.0862i −1.19434 + 0.867740i
\(195\) 0 0
\(196\) −9.00000 27.6992i −0.642857 1.97851i
\(197\) 13.0344i 0.928666i 0.885661 + 0.464333i \(0.153706\pi\)
−0.885661 + 0.464333i \(0.846294\pi\)
\(198\) 5.56758 + 6.66312i 0.395671 + 0.473527i
\(199\) −6.70820 −0.475532 −0.237766 0.971322i \(-0.576415\pi\)
−0.237766 + 0.971322i \(0.576415\pi\)
\(200\) 0 0
\(201\) 1.50000 + 1.08981i 0.105802 + 0.0768695i
\(202\) −15.7517 21.6803i −1.10828 1.52542i
\(203\) −5.70634 1.85410i −0.400506 0.130132i
\(204\) −1.71885 + 5.29007i −0.120343 + 0.370379i
\(205\) 0 0
\(206\) −23.1803 16.8415i −1.61505 1.17340i
\(207\) −0.224514 + 0.0729490i −0.0156048 + 0.00507031i
\(208\) 2.32624i 0.161296i
\(209\) −16.4443 10.3229i −1.13747 0.714047i
\(210\) 0 0
\(211\) 1.11803 + 3.44095i 0.0769686 + 0.236885i 0.982137 0.188169i \(-0.0602552\pi\)
−0.905168 + 0.425054i \(0.860255\pi\)
\(212\) −1.08981 + 1.50000i −0.0748487 + 0.103020i
\(213\) −6.06961 8.35410i −0.415883 0.572414i
\(214\) −9.28115 + 28.5645i −0.634447 + 1.95263i
\(215\) 0 0
\(216\) −6.04508 + 4.39201i −0.411316 + 0.298839i
\(217\) 3.57971 4.92705i 0.243007 0.334470i
\(218\) 29.8788 9.70820i 2.02365 0.657523i
\(219\) −5.70820 −0.385725
\(220\) 0 0
\(221\) −0.270510 −0.0181965
\(222\) 15.5272 5.04508i 1.04212 0.338604i
\(223\) −4.22050 + 5.80902i −0.282625 + 0.389001i −0.926601 0.376045i \(-0.877284\pi\)
0.643976 + 0.765046i \(0.277284\pi\)
\(224\) 8.78115 6.37988i 0.586715 0.426274i
\(225\) 0 0
\(226\) −10.8992 + 33.5442i −0.725003 + 2.23133i
\(227\) −7.74721 10.6631i −0.514200 0.707736i 0.470420 0.882443i \(-0.344102\pi\)
−0.984621 + 0.174706i \(0.944102\pi\)
\(228\) 16.7027 22.9894i 1.10617 1.52251i
\(229\) −0.145898 0.449028i −0.00964121 0.0296726i 0.946120 0.323816i \(-0.104966\pi\)
−0.955761 + 0.294143i \(0.904966\pi\)
\(230\) 0 0
\(231\) −3.30902 + 0.224514i −0.217717 + 0.0147719i
\(232\) 44.8328i 2.94342i
\(233\) −3.94298 + 1.28115i −0.258313 + 0.0839311i −0.435311 0.900280i \(-0.643362\pi\)
0.176997 + 0.984211i \(0.443362\pi\)
\(234\) −0.500000 0.363271i −0.0326860 0.0237478i
\(235\) 0 0
\(236\) 11.0729 34.0790i 0.720788 2.21836i
\(237\) −10.4616 3.39919i −0.679555 0.220801i
\(238\) −1.76336 2.42705i −0.114301 0.157322i
\(239\) 0.309017 + 0.224514i 0.0199886 + 0.0145226i 0.597735 0.801694i \(-0.296068\pi\)
−0.577746 + 0.816217i \(0.696068\pi\)
\(240\) 0 0
\(241\) 8.29180 0.534122 0.267061 0.963680i \(-0.413948\pi\)
0.267061 + 0.963680i \(0.413948\pi\)
\(242\) 25.9358 12.5172i 1.66722 0.804637i
\(243\) 1.00000i 0.0641500i
\(244\) 17.3435 + 53.3777i 1.11030 + 3.41716i
\(245\) 0 0
\(246\) −0.500000 + 0.363271i −0.0318788 + 0.0231613i
\(247\) 1.31433 + 0.427051i 0.0836287 + 0.0271726i
\(248\) −43.2793 14.0623i −2.74824 0.892957i
\(249\) −1.19098 + 0.865300i −0.0754755 + 0.0548361i
\(250\) 0 0
\(251\) −6.79180 20.9030i −0.428694 1.31939i −0.899412 0.437102i \(-0.856005\pi\)
0.470718 0.882284i \(-0.343995\pi\)
\(252\) 4.85410i 0.305780i
\(253\) 0.0530006 + 0.781153i 0.00333212 + 0.0491107i
\(254\) 20.1803 1.26623
\(255\) 0 0
\(256\) 11.7812 + 8.55951i 0.736322 + 0.534969i
\(257\) −17.4823 24.0623i −1.09052 1.50097i −0.847390 0.530970i \(-0.821828\pi\)
−0.243125 0.969995i \(-0.578172\pi\)
\(258\) 16.7027 + 5.42705i 1.03987 + 0.337873i
\(259\) −1.92705 + 5.93085i −0.119741 + 0.368525i
\(260\) 0 0
\(261\) 4.85410 + 3.52671i 0.300461 + 0.218298i
\(262\) −29.3768 + 9.54508i −1.81490 + 0.589697i
\(263\) 15.2705i 0.941620i 0.882235 + 0.470810i \(0.156038\pi\)
−0.882235 + 0.470810i \(0.843962\pi\)
\(264\) 9.23607 + 22.9969i 0.568441 + 1.41536i
\(265\) 0 0
\(266\) 4.73607 + 14.5761i 0.290387 + 0.893719i
\(267\) 4.84104 6.66312i 0.296267 0.407776i
\(268\) 5.29007 + 7.28115i 0.323142 + 0.444767i
\(269\) 7.85410 24.1724i 0.478873 1.47382i −0.361789 0.932260i \(-0.617834\pi\)
0.840662 0.541560i \(-0.182166\pi\)
\(270\) 0 0
\(271\) −15.0623 + 10.9434i −0.914970 + 0.664765i −0.942267 0.334863i \(-0.891310\pi\)
0.0272970 + 0.999627i \(0.491310\pi\)
\(272\) −6.63715 + 9.13525i −0.402436 + 0.553906i
\(273\) 0.224514 0.0729490i 0.0135882 0.00441508i
\(274\) 25.5623 1.54428
\(275\) 0 0
\(276\) −1.14590 −0.0689750
\(277\) 27.7849 9.02786i 1.66943 0.542432i 0.686617 0.727019i \(-0.259095\pi\)
0.982816 + 0.184587i \(0.0590949\pi\)
\(278\) 22.4091 30.8435i 1.34401 1.84987i
\(279\) −4.92705 + 3.57971i −0.294975 + 0.214312i
\(280\) 0 0
\(281\) 7.65248 23.5519i 0.456508 1.40499i −0.412847 0.910801i \(-0.635465\pi\)
0.869355 0.494188i \(-0.164535\pi\)
\(282\) 15.5272 + 21.3713i 0.924630 + 1.27264i
\(283\) 3.35520 4.61803i 0.199446 0.274514i −0.697566 0.716521i \(-0.745733\pi\)
0.897011 + 0.442007i \(0.145733\pi\)
\(284\) −15.4894 47.6713i −0.919124 2.82877i
\(285\) 0 0
\(286\) −1.57295 + 1.31433i −0.0930104 + 0.0777178i
\(287\) 0.236068i 0.0139347i
\(288\) −10.3229 + 3.35410i −0.608281 + 0.197642i
\(289\) −12.6910 9.22054i −0.746528 0.542385i
\(290\) 0 0
\(291\) −2.42705 + 7.46969i −0.142276 + 0.437881i
\(292\) −26.3521 8.56231i −1.54214 0.501071i
\(293\) −12.7270 17.5172i −0.743520 1.02337i −0.998408 0.0563966i \(-0.982039\pi\)
0.254889 0.966970i \(-0.417961\pi\)
\(294\) −12.7082 9.23305i −0.741158 0.538482i
\(295\) 0 0
\(296\) 46.5967 2.70838
\(297\) 3.21644 + 0.809017i 0.186637 + 0.0469439i
\(298\) 11.0902i 0.642436i
\(299\) −0.0172209 0.0530006i −0.000995912 0.00306510i
\(300\) 0 0
\(301\) −5.42705 + 3.94298i −0.312810 + 0.227270i
\(302\) −2.62866 0.854102i −0.151262 0.0491480i
\(303\) −9.73508 3.16312i −0.559266 0.181716i
\(304\) 46.6697 33.9075i 2.67669 1.94473i
\(305\) 0 0
\(306\) 0.927051 + 2.85317i 0.0529960 + 0.163105i
\(307\) 27.9787i 1.59683i 0.602108 + 0.798415i \(0.294328\pi\)
−0.602108 + 0.798415i \(0.705672\pi\)
\(308\) −15.6129 3.92705i −0.889629 0.223764i
\(309\) −10.9443 −0.622598
\(310\) 0 0
\(311\) −9.42705 6.84915i −0.534559 0.388380i 0.287501 0.957780i \(-0.407175\pi\)
−0.822060 + 0.569400i \(0.807175\pi\)
\(312\) −1.03681 1.42705i −0.0586980 0.0807909i
\(313\) 2.40414 + 0.781153i 0.135890 + 0.0441534i 0.376172 0.926550i \(-0.377240\pi\)
−0.240282 + 0.970703i \(0.577240\pi\)
\(314\) 12.7082 39.1118i 0.717165 2.20721i
\(315\) 0 0
\(316\) −43.1976 31.3849i −2.43005 1.76554i
\(317\) 6.48588 2.10739i 0.364283 0.118363i −0.121155 0.992634i \(-0.538660\pi\)
0.485439 + 0.874271i \(0.338660\pi\)
\(318\) 1.00000i 0.0560772i
\(319\) 15.2705 12.7598i 0.854984 0.714410i
\(320\) 0 0
\(321\) 3.54508 + 10.9106i 0.197867 + 0.608973i
\(322\) 0.363271 0.500000i 0.0202443 0.0278639i
\(323\) −3.94298 5.42705i −0.219393 0.301969i
\(324\) −1.50000 + 4.61653i −0.0833333 + 0.256474i
\(325\) 0 0
\(326\) −10.8992 + 7.91872i −0.603650 + 0.438577i
\(327\) 7.05342 9.70820i 0.390055 0.536865i
\(328\) −1.67760 + 0.545085i −0.0926299 + 0.0300973i
\(329\) −10.0902 −0.556289
\(330\) 0 0
\(331\) 16.7082 0.918366 0.459183 0.888342i \(-0.348142\pi\)
0.459183 + 0.888342i \(0.348142\pi\)
\(332\) −6.79615 + 2.20820i −0.372987 + 0.121191i
\(333\) 3.66547 5.04508i 0.200866 0.276469i
\(334\) −25.4894 + 18.5191i −1.39472 + 1.01332i
\(335\) 0 0
\(336\) 3.04508 9.37181i 0.166123 0.511274i
\(337\) 10.6861 + 14.7082i 0.582111 + 0.801207i 0.993925 0.110061i \(-0.0351046\pi\)
−0.411814 + 0.911268i \(0.635105\pi\)
\(338\) −19.9192 + 27.4164i −1.08346 + 1.49126i
\(339\) 4.16312 + 12.8128i 0.226110 + 0.695894i
\(340\) 0 0
\(341\) 7.52786 + 18.7436i 0.407657 + 1.01502i
\(342\) 15.3262i 0.828748i
\(343\) 12.3637 4.01722i 0.667579 0.216910i
\(344\) 40.5517 + 29.4625i 2.18640 + 1.58851i
\(345\) 0 0
\(346\) 14.5902 44.9039i 0.784372 2.41405i
\(347\) −1.45309 0.472136i −0.0780057 0.0253456i 0.269754 0.962929i \(-0.413058\pi\)
−0.347760 + 0.937584i \(0.613058\pi\)
\(348\) 17.1190 + 23.5623i 0.917676 + 1.26307i
\(349\) 10.2812 + 7.46969i 0.550337 + 0.399844i 0.827910 0.560861i \(-0.189530\pi\)
−0.277572 + 0.960705i \(0.589530\pi\)
\(350\) 0 0
\(351\) −0.236068 −0.0126004
\(352\) 2.43690 + 35.9164i 0.129887 + 1.91435i
\(353\) 12.0000i 0.638696i 0.947638 + 0.319348i \(0.103464\pi\)
−0.947638 + 0.319348i \(0.896536\pi\)
\(354\) −5.97214 18.3803i −0.317415 0.976904i
\(355\) 0 0
\(356\) 32.3435 23.4989i 1.71420 1.24544i
\(357\) −1.08981 0.354102i −0.0576791 0.0187411i
\(358\) −21.2335 6.89919i −1.12223 0.364633i
\(359\) −7.85410 + 5.70634i −0.414524 + 0.301169i −0.775431 0.631433i \(-0.782467\pi\)
0.360907 + 0.932602i \(0.382467\pi\)
\(360\) 0 0
\(361\) 4.71885 + 14.5231i 0.248360 + 0.764375i
\(362\) 6.61803i 0.347836i
\(363\) 5.20431 9.69098i 0.273155 0.508645i
\(364\) 1.14590 0.0600614
\(365\) 0 0
\(366\) 24.4894 + 17.7926i 1.28008 + 0.930032i
\(367\) −13.0170 17.9164i −0.679484 0.935229i 0.320444 0.947267i \(-0.396168\pi\)
−0.999928 + 0.0120386i \(0.996168\pi\)
\(368\) −2.21238 0.718847i −0.115328 0.0374725i
\(369\) −0.0729490 + 0.224514i −0.00379757 + 0.0116877i
\(370\) 0 0
\(371\) −0.309017 0.224514i −0.0160434 0.0116562i
\(372\) −28.1154 + 9.13525i −1.45772 + 0.473641i
\(373\) 0.888544i 0.0460071i −0.999735 0.0230035i \(-0.992677\pi\)
0.999735 0.0230035i \(-0.00732290\pi\)
\(374\) 9.92705 0.673542i 0.513316 0.0348280i
\(375\) 0 0
\(376\) 23.2984 + 71.7050i 1.20152 + 3.69790i
\(377\) −0.832544 + 1.14590i −0.0428782 + 0.0590168i
\(378\) −1.53884 2.11803i −0.0791495 0.108940i
\(379\) 7.69098 23.6704i 0.395059 1.21587i −0.533856 0.845575i \(-0.679258\pi\)
0.928915 0.370292i \(-0.120742\pi\)
\(380\) 0 0
\(381\) 6.23607 4.53077i 0.319483 0.232118i
\(382\) 1.26133 1.73607i 0.0645351 0.0888250i
\(383\) −12.0862 + 3.92705i −0.617577 + 0.200663i −0.601064 0.799201i \(-0.705256\pi\)
−0.0165128 + 0.999864i \(0.505256\pi\)
\(384\) −1.09017 −0.0556325
\(385\) 0 0
\(386\) 8.23607 0.419205
\(387\) 6.37988 2.07295i 0.324308 0.105374i
\(388\) −22.4091 + 30.8435i −1.13765 + 1.56584i
\(389\) −29.7254 + 21.5968i −1.50714 + 1.09500i −0.539712 + 0.841850i \(0.681467\pi\)
−0.967427 + 0.253151i \(0.918533\pi\)
\(390\) 0 0
\(391\) −0.0835921 + 0.257270i −0.00422744 + 0.0130107i
\(392\) −26.3521 36.2705i −1.33098 1.83194i
\(393\) −6.93491 + 9.54508i −0.349820 + 0.481486i
\(394\) 10.5451 + 32.4544i 0.531254 + 1.63503i
\(395\) 0 0
\(396\) 13.6353 + 8.55951i 0.685197 + 0.430131i
\(397\) 18.7082i 0.938938i −0.882949 0.469469i \(-0.844445\pi\)
0.882949 0.469469i \(-0.155555\pi\)
\(398\) −16.7027 + 5.42705i −0.837233 + 0.272033i
\(399\) 4.73607 + 3.44095i 0.237100 + 0.172263i
\(400\) 0 0
\(401\) −9.79180 + 30.1360i −0.488979 + 1.50492i 0.337155 + 0.941449i \(0.390535\pi\)
−0.826134 + 0.563473i \(0.809465\pi\)
\(402\) 4.61653 + 1.50000i 0.230251 + 0.0748132i
\(403\) −0.845055 1.16312i −0.0420952 0.0579391i
\(404\) −40.1976 29.2052i −1.99990 1.45301i
\(405\) 0 0
\(406\) −15.7082 −0.779585
\(407\) −13.2618 15.8713i −0.657363 0.786712i
\(408\) 8.56231i 0.423897i
\(409\) 2.00000 + 6.15537i 0.0988936 + 0.304363i 0.988249 0.152854i \(-0.0488463\pi\)
−0.889355 + 0.457217i \(0.848846\pi\)
\(410\) 0 0
\(411\) 7.89919 5.73910i 0.389638 0.283089i
\(412\) −50.5245 16.4164i −2.48916 0.808778i
\(413\) 7.02067 + 2.28115i 0.345464 + 0.112248i
\(414\) −0.500000 + 0.363271i −0.0245737 + 0.0178538i
\(415\) 0 0
\(416\) −0.791796 2.43690i −0.0388210 0.119479i
\(417\) 14.5623i 0.713119i
\(418\) −49.2959 12.3992i −2.41114 0.606464i
\(419\) −31.4508 −1.53647 −0.768237 0.640165i \(-0.778866\pi\)
−0.768237 + 0.640165i \(0.778866\pi\)
\(420\) 0 0
\(421\) −8.50000 6.17561i −0.414265 0.300981i 0.361061 0.932542i \(-0.382414\pi\)
−0.775326 + 0.631561i \(0.782414\pi\)
\(422\) 5.56758 + 7.66312i 0.271026 + 0.373035i
\(423\) 9.59632 + 3.11803i 0.466589 + 0.151604i
\(424\) −0.881966 + 2.71441i −0.0428321 + 0.131824i
\(425\) 0 0
\(426\) −21.8713 15.8904i −1.05967 0.769895i
\(427\) −10.9964 + 3.57295i −0.532153 + 0.172907i
\(428\) 55.6869i 2.69173i
\(429\) −0.190983 + 0.759299i −0.00922075 + 0.0366593i
\(430\) 0 0
\(431\) −1.82624 5.62058i −0.0879668 0.270734i 0.897390 0.441238i \(-0.145460\pi\)
−0.985357 + 0.170504i \(0.945460\pi\)
\(432\) −5.79210 + 7.97214i −0.278672 + 0.383560i
\(433\) 20.7517 + 28.5623i 0.997264 + 1.37262i 0.926989 + 0.375089i \(0.122388\pi\)
0.0702758 + 0.997528i \(0.477612\pi\)
\(434\) 4.92705 15.1639i 0.236506 0.727891i
\(435\) 0 0
\(436\) 47.1246 34.2380i 2.25686 1.63970i
\(437\) 0.812299 1.11803i 0.0388575 0.0534828i
\(438\) −14.2128 + 4.61803i −0.679116 + 0.220658i
\(439\) −23.2918 −1.11166 −0.555828 0.831297i \(-0.687599\pi\)
−0.555828 + 0.831297i \(0.687599\pi\)
\(440\) 0 0
\(441\) −6.00000 −0.285714
\(442\) −0.673542 + 0.218847i −0.0320371 + 0.0104095i
\(443\) 18.5721 25.5623i 0.882387 1.21450i −0.0933668 0.995632i \(-0.529763\pi\)
0.975754 0.218870i \(-0.0702371\pi\)
\(444\) 24.4894 17.7926i 1.16221 0.844397i
\(445\) 0 0
\(446\) −5.80902 + 17.8783i −0.275065 + 0.846563i
\(447\) −2.48990 3.42705i −0.117768 0.162094i
\(448\) 5.11855 7.04508i 0.241829 0.332849i
\(449\) 2.79837 + 8.61251i 0.132063 + 0.406449i 0.995122 0.0986549i \(-0.0314540\pi\)
−0.863058 + 0.505104i \(0.831454\pi\)
\(450\) 0 0
\(451\) 0.663119 + 0.416272i 0.0312251 + 0.0196015i
\(452\) 65.3951i 3.07593i
\(453\) −1.00406 + 0.326238i −0.0471747 + 0.0153280i
\(454\) −27.9164 20.2825i −1.31018 0.951903i
\(455\) 0 0
\(456\) 13.5172 41.6017i 0.633002 1.94818i
\(457\) 22.8051 + 7.40983i 1.06678 + 0.346617i 0.789232 0.614095i \(-0.210479\pi\)
0.277546 + 0.960712i \(0.410479\pi\)
\(458\) −0.726543 1.00000i −0.0339491 0.0467269i
\(459\) 0.927051 + 0.673542i 0.0432710 + 0.0314382i
\(460\) 0 0
\(461\) 9.27051 0.431771 0.215885 0.976419i \(-0.430736\pi\)
0.215885 + 0.976419i \(0.430736\pi\)
\(462\) −8.05748 + 3.23607i −0.374868 + 0.150556i
\(463\) 1.72949i 0.0803762i −0.999192 0.0401881i \(-0.987204\pi\)
0.999192 0.0401881i \(-0.0127957\pi\)
\(464\) 18.2705 + 56.2308i 0.848187 + 2.61045i
\(465\) 0 0
\(466\) −8.78115 + 6.37988i −0.406779 + 0.295542i
\(467\) 19.8662 + 6.45492i 0.919297 + 0.298698i 0.730179 0.683256i \(-0.239437\pi\)
0.189119 + 0.981954i \(0.439437\pi\)
\(468\) −1.08981 0.354102i −0.0503767 0.0163684i
\(469\) −1.50000 + 1.08981i −0.0692636 + 0.0503229i
\(470\) 0 0
\(471\) −4.85410 14.9394i −0.223665 0.688371i
\(472\) 55.1591i 2.53890i
\(473\) −1.50609 22.1976i −0.0692499 1.02064i
\(474\) −28.7984 −1.32275
\(475\) 0 0
\(476\) −4.50000 3.26944i −0.206257 0.149855i
\(477\) 0.224514 + 0.309017i 0.0102798 + 0.0141489i
\(478\) 0.951057 + 0.309017i 0.0435003 + 0.0141341i
\(479\) 8.77051 26.9929i 0.400735 1.23333i −0.523670 0.851921i \(-0.675437\pi\)
0.924405 0.381414i \(-0.124563\pi\)
\(480\) 0 0
\(481\) 1.19098 + 0.865300i 0.0543042 + 0.0394543i
\(482\) 20.6457 6.70820i 0.940387 0.305550i
\(483\) 0.236068i 0.0107415i
\(484\) 38.5623 36.9322i 1.75283 1.67874i
\(485\) 0 0
\(486\) 0.809017 + 2.48990i 0.0366978 + 0.112944i
\(487\) −7.46969 + 10.2812i −0.338484 + 0.465884i −0.943998 0.329951i \(-0.892968\pi\)
0.605514 + 0.795835i \(0.292968\pi\)
\(488\) 50.7818 + 69.8951i 2.29878 + 3.16400i
\(489\) −1.59017 + 4.89404i −0.0719100 + 0.221316i
\(490\) 0 0
\(491\) 14.4894 10.5271i 0.653896 0.475083i −0.210700 0.977551i \(-0.567574\pi\)
0.864596 + 0.502468i \(0.167574\pi\)
\(492\) −0.673542 + 0.927051i −0.0303656 + 0.0417947i
\(493\) 6.53888 2.12461i 0.294496 0.0956877i
\(494\) 3.61803 0.162783
\(495\) 0 0
\(496\) −60.0132 −2.69467
\(497\) 9.82084 3.19098i 0.440525 0.143135i
\(498\) −2.26538 + 3.11803i −0.101514 + 0.139722i
\(499\) −14.6803 + 10.6659i −0.657182 + 0.477471i −0.865710 0.500546i \(-0.833133\pi\)
0.208528 + 0.978016i \(0.433133\pi\)
\(500\) 0 0
\(501\) −3.71885 + 11.4454i −0.166146 + 0.511344i
\(502\) −33.8218 46.5517i −1.50954 2.07770i
\(503\) −5.08580 + 7.00000i −0.226765 + 0.312115i −0.907205 0.420689i \(-0.861788\pi\)
0.680441 + 0.732803i \(0.261788\pi\)
\(504\) −2.30902 7.10642i −0.102852 0.316545i
\(505\) 0 0
\(506\) 0.763932 + 1.90211i 0.0339609 + 0.0845592i
\(507\) 12.9443i 0.574875i
\(508\) 35.5851 11.5623i 1.57883 0.512994i
\(509\) 31.3435 + 22.7724i 1.38927 + 1.00937i 0.995945 + 0.0899695i \(0.0286770\pi\)
0.393330 + 0.919397i \(0.371323\pi\)
\(510\) 0 0
\(511\) 1.76393 5.42882i 0.0780318 0.240157i
\(512\) 38.3323 + 12.4549i 1.69406 + 0.550435i
\(513\) −3.44095 4.73607i −0.151922 0.209103i
\(514\) −62.9959 45.7692i −2.77863 2.01879i
\(515\) 0 0
\(516\) 32.5623 1.43348
\(517\) 17.7926 28.3435i 0.782516 1.24654i
\(518\) 16.3262i 0.717334i
\(519\) −5.57295 17.1518i −0.244625 0.752879i
\(520\) 0 0
\(521\) −7.23607 + 5.25731i −0.317018 + 0.230327i −0.734902 0.678173i \(-0.762772\pi\)
0.417884 + 0.908500i \(0.362772\pi\)
\(522\) 14.9394 + 4.85410i 0.653879 + 0.212458i
\(523\) −17.3763 5.64590i −0.759812 0.246878i −0.0966140 0.995322i \(-0.530801\pi\)
−0.663198 + 0.748444i \(0.730801\pi\)
\(524\) −46.3328 + 33.6628i −2.02406 + 1.47056i
\(525\) 0 0
\(526\) 12.3541 + 38.0220i 0.538664 + 1.65784i
\(527\) 6.97871i 0.303998i
\(528\) 20.9560 + 25.0795i 0.911993 + 1.09145i
\(529\) 22.9443 0.997577
\(530\) 0 0
\(531\) −5.97214 4.33901i −0.259169 0.188297i
\(532\) 16.7027 + 22.9894i 0.724156 + 0.996715i
\(533\) −0.0530006 0.0172209i −0.00229571 0.000745921i
\(534\) 6.66312 20.5070i 0.288341 0.887423i
\(535\) 0 0
\(536\) 11.2082 + 8.14324i 0.484121 + 0.351734i
\(537\) −8.11048 + 2.63525i −0.349993 + 0.113720i
\(538\) 66.5410i 2.86879i
\(539\) −4.85410 + 19.2986i −0.209081 + 0.831251i
\(540\) 0 0
\(541\) −2.31559 7.12667i −0.0995552 0.306399i 0.888859 0.458181i \(-0.151499\pi\)
−0.988414 + 0.151782i \(0.951499\pi\)
\(542\) −28.6502 + 39.4336i −1.23063 + 1.69382i
\(543\) −1.48584 2.04508i −0.0637635 0.0877630i
\(544\) −3.84346 + 11.8290i −0.164787 + 0.507162i
\(545\) 0 0
\(546\) 0.500000 0.363271i 0.0213980 0.0155466i
\(547\) −18.0701 + 24.8713i −0.772621 + 1.06342i 0.223438 + 0.974718i \(0.428272\pi\)
−0.996058 + 0.0887027i \(0.971728\pi\)
\(548\) 45.0754 14.6459i 1.92553 0.625642i
\(549\) 11.5623 0.493467
\(550\) 0 0
\(551\) −35.1246 −1.49636
\(552\) −1.67760 + 0.545085i −0.0714034 + 0.0232004i
\(553\) 6.46564 8.89919i 0.274947 0.378432i
\(554\) 61.8779 44.9569i 2.62894 1.91004i
\(555\) 0 0
\(556\) 21.8435 67.2273i 0.926369 2.85107i
\(557\) −22.1191 30.4443i −0.937215 1.28997i −0.956978 0.290161i \(-0.906291\pi\)
0.0197634 0.999805i \(-0.493709\pi\)
\(558\) −9.37181 + 12.8992i −0.396740 + 0.546066i
\(559\) 0.489357 + 1.50609i 0.0206976 + 0.0637006i
\(560\) 0 0
\(561\) 2.91641 2.43690i 0.123131 0.102886i
\(562\) 64.8328i 2.73481i
\(563\) 38.6098 12.5451i 1.62721 0.528712i 0.653582 0.756856i \(-0.273266\pi\)
0.973627 + 0.228144i \(0.0732656\pi\)
\(564\) 39.6246 + 28.7890i 1.66850 + 1.21223i
\(565\) 0 0
\(566\) 4.61803 14.2128i 0.194110 0.597411i
\(567\) −0.951057 0.309017i −0.0399406 0.0129775i
\(568\) −45.3530 62.4230i −1.90297 2.61921i
\(569\) 27.6525 + 20.0907i 1.15925 + 0.842246i 0.989683 0.143272i \(-0.0457625\pi\)
0.169569 + 0.985518i \(0.445763\pi\)
\(570\) 0 0
\(571\) −9.09017 −0.380412 −0.190206 0.981744i \(-0.560916\pi\)
−0.190206 + 0.981744i \(0.560916\pi\)
\(572\) −2.02063 + 3.21885i −0.0844866 + 0.134587i
\(573\) 0.819660i 0.0342418i
\(574\) −0.190983 0.587785i −0.00797148 0.0245337i
\(575\) 0 0
\(576\) −7.04508 + 5.11855i −0.293545 + 0.213273i
\(577\) 30.1563 + 9.79837i 1.25542 + 0.407912i 0.859861 0.510528i \(-0.170550\pi\)
0.395562 + 0.918439i \(0.370550\pi\)
\(578\) −39.0588 12.6910i −1.62463 0.527875i
\(579\) 2.54508 1.84911i 0.105770 0.0768465i
\(580\) 0 0
\(581\) −0.454915 1.40008i −0.0188731 0.0580853i
\(582\) 20.5623i 0.852335i
\(583\) 1.17557 0.472136i 0.0486872 0.0195539i
\(584\) −42.6525 −1.76497
\(585\) 0 0
\(586\) −45.8607 33.3197i −1.89449 1.37643i
\(587\) 1.24882 + 1.71885i 0.0515441 + 0.0709444i 0.834011 0.551748i \(-0.186039\pi\)
−0.782467 + 0.622692i \(0.786039\pi\)
\(588\) −27.6992 9.00000i −1.14229 0.371154i
\(589\) 11.0172 33.9075i 0.453957 1.39714i
\(590\) 0 0
\(591\) 10.5451 + 7.66145i 0.433767 + 0.315150i
\(592\) 58.4432 18.9894i 2.40200 0.780458i
\(593\) 14.0344i 0.576325i 0.957581 + 0.288163i \(0.0930444\pi\)
−0.957581 + 0.288163i \(0.906956\pi\)
\(594\) 8.66312 0.587785i 0.355452 0.0241171i
\(595\) 0 0
\(596\) −6.35410 19.5559i −0.260274 0.801041i
\(597\) −3.94298 + 5.42705i −0.161376 + 0.222114i
\(598\) −0.0857567 0.118034i −0.00350685 0.00482677i
\(599\) −3.90983 + 12.0332i −0.159751 + 0.491664i −0.998611 0.0526833i \(-0.983223\pi\)
0.838860 + 0.544347i \(0.183223\pi\)
\(600\) 0 0
\(601\) 5.57295 4.04898i 0.227325 0.165162i −0.468293 0.883573i \(-0.655131\pi\)
0.695618 + 0.718412i \(0.255131\pi\)
\(602\) −10.3229 + 14.2082i −0.420729 + 0.579083i
\(603\) 1.76336 0.572949i 0.0718094 0.0233323i
\(604\) −5.12461 −0.208517
\(605\) 0 0
\(606\) −26.7984 −1.08861
\(607\) 15.7517 5.11803i 0.639341 0.207735i 0.0286327 0.999590i \(-0.490885\pi\)
0.610709 + 0.791855i \(0.290885\pi\)
\(608\) 37.3485 51.4058i 1.51468 2.08478i
\(609\) −4.85410 + 3.52671i −0.196698 + 0.142910i
\(610\) 0 0
\(611\) −0.736068 + 2.26538i −0.0297781 + 0.0916476i
\(612\) 3.26944 + 4.50000i 0.132159 + 0.181902i
\(613\) 8.40051 11.5623i 0.339293 0.466997i −0.604942 0.796270i \(-0.706804\pi\)
0.944235 + 0.329273i \(0.106804\pi\)
\(614\) 22.6353 + 69.6642i 0.913485 + 2.81142i
\(615\) 0 0
\(616\) −24.7254 + 1.67760i −0.996216 + 0.0675924i
\(617\) 11.1803i 0.450104i 0.974347 + 0.225052i \(0.0722551\pi\)
−0.974347 + 0.225052i \(0.927745\pi\)
\(618\) −27.2501 + 8.85410i −1.09616 + 0.356164i
\(619\) 19.5172 + 14.1801i 0.784463 + 0.569946i 0.906315 0.422602i \(-0.138883\pi\)
−0.121852 + 0.992548i \(0.538883\pi\)
\(620\) 0 0
\(621\) −0.0729490 + 0.224514i −0.00292734 + 0.00900944i
\(622\) −29.0135 9.42705i −1.16333 0.377990i
\(623\) 4.84104 + 6.66312i 0.193952 + 0.266952i
\(624\) −1.88197 1.36733i −0.0753389 0.0547369i
\(625\) 0 0
\(626\) 6.61803 0.264510
\(627\) −18.0171 + 7.23607i −0.719533 + 0.288981i
\(628\) 76.2492i 3.04268i
\(629\) −2.20820 6.79615i −0.0880469 0.270980i
\(630\) 0 0
\(631\) −15.5451 + 11.2942i −0.618840 + 0.449614i −0.852516 0.522701i \(-0.824924\pi\)
0.233676 + 0.972314i \(0.424924\pi\)
\(632\) −78.1707 25.3992i −3.10946 1.01033i
\(633\) 3.44095 + 1.11803i 0.136766 + 0.0444379i
\(634\) 14.4443 10.4944i 0.573655 0.416785i
\(635\) 0 0
\(636\) 0.572949 + 1.76336i 0.0227189 + 0.0699216i
\(637\) 1.41641i 0.0561201i
\(638\) 27.6992 44.1246i 1.09662 1.74691i
\(639\) −10.3262 −0.408500
\(640\) 0 0
\(641\) 20.2984 + 14.7476i 0.801738 + 0.582496i 0.911423 0.411470i \(-0.134984\pi\)
−0.109686 + 0.993966i \(0.534984\pi\)
\(642\) 17.6538 + 24.2984i 0.696740 + 0.958980i
\(643\) −19.8334 6.44427i −0.782154 0.254137i −0.109394 0.993998i \(-0.534891\pi\)
−0.672760 + 0.739861i \(0.734891\pi\)
\(644\) 0.354102 1.08981i 0.0139536 0.0429447i
\(645\) 0 0
\(646\) −14.2082 10.3229i −0.559014 0.406148i
\(647\) −42.8303 + 13.9164i −1.68383 + 0.547110i −0.985649 0.168808i \(-0.946008\pi\)
−0.698184 + 0.715918i \(0.746008\pi\)
\(648\) 7.47214i 0.293533i
\(649\) −18.7877 + 15.6987i −0.737483 + 0.616227i
\(650\) 0 0
\(651\) −1.88197 5.79210i −0.0737601 0.227010i
\(652\) −14.6821 + 20.2082i −0.574996 + 0.791414i
\(653\) −3.30220 4.54508i −0.129225 0.177863i 0.739502 0.673155i \(-0.235061\pi\)
−0.868727 + 0.495292i \(0.835061\pi\)
\(654\) 9.70820 29.8788i 0.379621 1.16835i
\(655\) 0 0
\(656\) −1.88197 + 1.36733i −0.0734784 + 0.0533852i
\(657\) −3.35520 + 4.61803i −0.130899 + 0.180167i
\(658\) −25.1235 + 8.16312i −0.979416 + 0.318232i
\(659\) 41.1246 1.60199 0.800994 0.598673i \(-0.204305\pi\)
0.800994 + 0.598673i \(0.204305\pi\)
\(660\) 0 0
\(661\) 36.5623 1.42211 0.711054 0.703137i \(-0.248218\pi\)
0.711054 + 0.703137i \(0.248218\pi\)
\(662\) 41.6017 13.5172i 1.61690 0.525362i
\(663\) −0.159002 + 0.218847i −0.00617511 + 0.00849932i
\(664\) −8.89919 + 6.46564i −0.345355 + 0.250915i
\(665\) 0 0
\(666\) 5.04508 15.5272i 0.195493 0.601666i
\(667\) 0.832544 + 1.14590i 0.0322362 + 0.0443693i
\(668\) −34.3363 + 47.2599i −1.32851 + 1.82854i
\(669\) 2.21885 + 6.82891i 0.0857856 + 0.264021i
\(670\) 0 0
\(671\) 9.35410 37.1895i 0.361111 1.43568i
\(672\) 10.8541i 0.418706i
\(673\) 34.0790 11.0729i 1.31365 0.426831i 0.433340 0.901230i \(-0.357335\pi\)
0.880310 + 0.474399i \(0.157335\pi\)
\(674\) 38.5066 + 27.9767i 1.48322 + 1.07762i
\(675\) 0 0
\(676\) −19.4164 + 59.7576i −0.746785 + 2.29837i
\(677\) 12.8658 + 4.18034i 0.494471 + 0.160664i 0.545629 0.838027i \(-0.316291\pi\)
−0.0511572 + 0.998691i \(0.516291\pi\)
\(678\) 20.7315 + 28.5344i 0.796188 + 1.09586i
\(679\) −6.35410 4.61653i −0.243848 0.177166i
\(680\) 0 0
\(681\) −13.1803 −0.505072
\(682\) 33.9075 + 40.5795i 1.29839 + 1.55387i
\(683\) 9.06888i 0.347011i −0.984833 0.173506i \(-0.944491\pi\)
0.984833 0.173506i \(-0.0555095\pi\)
\(684\) −8.78115 27.0256i −0.335756 1.03335i
\(685\) 0 0
\(686\) 27.5344 20.0049i 1.05127 0.763792i
\(687\) −0.449028 0.145898i −0.0171315 0.00556636i
\(688\) 62.8680 + 20.4271i 2.39682 + 0.778774i
\(689\) −0.0729490 + 0.0530006i −0.00277914 + 0.00201916i
\(690\) 0 0
\(691\) 0.416408 + 1.28157i 0.0158409 + 0.0487533i 0.958665 0.284539i \(-0.0918405\pi\)
−0.942824 + 0.333292i \(0.891840\pi\)
\(692\) 87.5410i 3.32781i
\(693\) −1.76336 + 2.80902i −0.0669843 + 0.106706i
\(694\) −4.00000 −0.151838
\(695\) 0 0
\(696\) 36.2705 + 26.3521i 1.37483 + 0.998873i
\(697\) 0.159002 + 0.218847i 0.00602262 + 0.00828942i
\(698\) 31.6421 + 10.2812i 1.19767 + 0.389147i
\(699\) −1.28115 + 3.94298i −0.0484577 + 0.149137i
\(700\) 0 0
\(701\) 28.1525 + 20.4540i 1.06330 + 0.772536i 0.974697 0.223531i \(-0.0717583\pi\)
0.0886075 + 0.996067i \(0.471758\pi\)
\(702\) −0.587785 + 0.190983i −0.0221845 + 0.00720819i
\(703\) 36.5066i 1.37687i
\(704\) 10.7639 + 26.8011i 0.405681 + 1.01010i
\(705\) 0 0
\(706\) 9.70820 + 29.8788i 0.365373 + 1.12450i
\(707\) 6.01661 8.28115i 0.226278 0.311445i
\(708\) −21.0620 28.9894i −0.791558 1.08949i
\(709\) −3.46556 + 10.6659i −0.130152 + 0.400566i −0.994804 0.101804i \(-0.967538\pi\)
0.864653 + 0.502370i \(0.167538\pi\)
\(710\) 0 0
\(711\) −8.89919 + 6.46564i −0.333746 + 0.242480i
\(712\) 36.1729 49.7877i 1.35564 1.86587i
\(713\) −1.36733 + 0.444272i −0.0512068 + 0.0166381i
\(714\) −3.00000 −0.112272
\(715\) 0 0
\(716\) −41.3951 −1.54701
\(717\) 0.363271 0.118034i 0.0135666 0.00440806i
\(718\) −14.9394 + 20.5623i −0.557533 + 0.767378i
\(719\) −31.1353 + 22.6211i −1.16115 + 0.843624i −0.989923 0.141608i \(-0.954773\pi\)
−0.171226 + 0.985232i \(0.554773\pi\)
\(720\) 0 0
\(721\) 3.38197 10.4086i 0.125951 0.387637i
\(722\) 23.4989 + 32.3435i 0.874538 + 1.20370i
\(723\) 4.87380 6.70820i 0.181258 0.249481i
\(724\) −3.79180 11.6699i −0.140921 0.433710i
\(725\) 0 0
\(726\) 5.11803 28.3399i 0.189948 1.05179i
\(727\) 9.14590i 0.339203i −0.985513 0.169601i \(-0.945752\pi\)
0.985513 0.169601i \(-0.0542480\pi\)
\(728\) 1.67760 0.545085i 0.0621760 0.0202022i
\(729\) 0.809017 + 0.587785i 0.0299636 + 0.0217698i
\(730\) 0 0
\(731\) 2.37539 7.31069i 0.0878569 0.270396i
\(732\) 53.3777 + 17.3435i 1.97290 + 0.641033i
\(733\) −0.237026 0.326238i −0.00875474 0.0120499i 0.804617 0.593794i \(-0.202371\pi\)
−0.813372 + 0.581744i \(0.802371\pi\)
\(734\) −46.9058 34.0790i −1.73132 1.25788i
\(735\) 0 0
\(736\) −2.56231 −0.0944478
\(737\) −0.416272 6.13525i −0.0153336 0.225995i
\(738\) 0.618034i 0.0227501i
\(739\) −0.927051 2.85317i −0.0341021 0.104956i 0.932557 0.361024i \(-0.117573\pi\)
−0.966659 + 0.256068i \(0.917573\pi\)
\(740\) 0 0
\(741\) 1.11803 0.812299i 0.0410720 0.0298406i
\(742\) −0.951057 0.309017i −0.0349144 0.0113444i
\(743\) 40.7894 + 13.2533i 1.49642 + 0.486216i 0.938971 0.343996i \(-0.111781\pi\)
0.557448 + 0.830212i \(0.311781\pi\)
\(744\) −36.8156 + 26.7481i −1.34973 + 0.980633i
\(745\) 0 0
\(746\) −0.718847 2.21238i −0.0263189 0.0810011i
\(747\) 1.47214i 0.0538626i
\(748\) 17.1190 6.87539i 0.625933 0.251389i
\(749\) −11.4721 −0.419183
\(750\) 0 0
\(751\) −13.0623 9.49032i −0.476650 0.346307i 0.323377 0.946270i \(-0.395182\pi\)
−0.800027 + 0.599963i \(0.795182\pi\)
\(752\) 58.4432 + 80.4402i 2.13121 + 2.93335i
\(753\) −20.9030 6.79180i −0.761748 0.247507i
\(754\) −1.14590 + 3.52671i −0.0417311 + 0.128435i
\(755\) 0 0
\(756\) −3.92705 2.85317i −0.142825 0.103769i
\(757\) −4.75528 + 1.54508i −0.172834 + 0.0561571i −0.394156 0.919044i \(-0.628963\pi\)
0.221322 + 0.975201i \(0.428963\pi\)
\(758\) 65.1591i 2.36668i
\(759\) 0.663119 + 0.416272i 0.0240697 + 0.0151097i
\(760\) 0 0
\(761\) 9.05166 + 27.8582i 0.328123 + 1.00986i 0.970011 + 0.243060i \(0.0781511\pi\)
−0.641889 + 0.766798i \(0.721849\pi\)
\(762\) 11.8617 16.3262i 0.429704 0.591437i
\(763\) 7.05342 + 9.70820i 0.255351 + 0.351461i
\(764\) 1.22949 3.78398i 0.0444814 0.136900i
\(765\) 0 0
\(766\) −26.9164 + 19.5559i −0.972529 + 0.706584i
\(767\) 1.02430 1.40983i 0.0369854 0.0509060i
\(768\) 13.8496 4.50000i 0.499754 0.162380i
\(769\) 34.5066 1.24434 0.622170 0.782883i \(-0.286251\pi\)
0.622170 + 0.782883i \(0.286251\pi\)
\(770\) 0 0
\(771\) −29.7426 −1.07116
\(772\) 14.5231 4.71885i 0.522698 0.169835i
\(773\) −15.9762 + 21.9894i −0.574624 + 0.790902i −0.993093 0.117329i \(-0.962567\pi\)
0.418469 + 0.908231i \(0.362567\pi\)
\(774\) 14.2082 10.3229i 0.510703 0.371048i
\(775\) 0 0
\(776\) −18.1353 + 55.8146i −0.651018 + 2.00363i
\(777\) 3.66547 + 5.04508i 0.131498 + 0.180991i
\(778\) −56.5411 + 77.8222i −2.02710 + 2.79006i
\(779\) −0.427051 1.31433i −0.0153007 0.0470907i
\(780\) 0 0
\(781\) −8.35410 + 33.2137i −0.298933 + 1.18848i
\(782\) 0.708204i 0.0253253i
\(783\) 5.70634 1.85410i 0.203928 0.0662602i
\(784\) −47.8328 34.7526i −1.70831 1.24116i
\(785\) 0 0
\(786\) −9.54508 + 29.3768i −0.340462 + 1.04783i
\(787\) −9.23305 3.00000i −0.329123 0.106938i 0.139795 0.990181i \(-0.455356\pi\)
−0.468917 + 0.883242i \(0.655356\pi\)
\(788\) 37.1895 + 51.1869i 1.32482 + 1.82346i
\(789\) 12.3541 + 8.97578i 0.439818 + 0.319546i
\(790\) 0 0
\(791\) −13.4721 −0.479014
\(792\) 24.0337 + 6.04508i 0.854000 + 0.214803i
\(793\) 2.72949i 0.0969270i
\(794\) −15.1353 46.5815i −0.537130 1.65312i
\(795\) 0 0
\(796\) −26.3435 + 19.1396i −0.933719 + 0.678387i
\(797\) 17.6336 + 5.72949i 0.624613 + 0.202949i 0.604187 0.796842i \(-0.293498\pi\)
0.0204255 + 0.999791i \(0.493498\pi\)
\(798\) 14.5761 + 4.73607i 0.515989 + 0.167655i
\(799\) 9.35410 6.79615i 0.330924 0.240431i
\(800\) 0 0
\(801\) −2.54508 7.83297i −0.0899262 0.276764i
\(802\) 82.9574i 2.92933i
\(803\) 12.1392 + 14.5279i 0.428384 + 0.512677i
\(804\) 9.00000 0.317406
\(805\) 0 0
\(806\) −3.04508 2.21238i −0.107259 0.0779279i
\(807\) −14.9394 20.5623i −0.525891 0.723827i
\(808\) −72.7418 23.6353i −2.55905 0.831485i
\(809\) −8.37132 + 25.7643i −0.294320 + 0.905824i 0.689129 + 0.724639i \(0.257993\pi\)
−0.983449 + 0.181185i \(0.942007\pi\)
\(810\) 0 0
\(811\) −29.5795 21.4908i −1.03868 0.754644i −0.0686507 0.997641i \(-0.521869\pi\)
−0.970027 + 0.242997i \(0.921869\pi\)
\(812\) −27.6992 + 9.00000i −0.972050 + 0.315838i
\(813\) 18.6180i 0.652963i
\(814\) −45.8607 28.7890i −1.60742 1.00905i
\(815\) 0 0
\(816\) 3.48936 + 10.7391i 0.122152 + 0.375945i
\(817\) −23.0826 + 31.7705i −0.807559 + 1.11151i
\(818\) 9.95959 + 13.7082i 0.348229 + 0.479296i
\(819\) 0.0729490 0.224514i 0.00254904 0.00784515i
\(820\) 0 0
\(821\) −32.8435 + 23.8622i −1.14624 + 0.832795i −0.987977 0.154601i \(-0.950591\pi\)
−0.158268 + 0.987396i \(0.550591\pi\)
\(822\) 15.0251 20.6803i 0.524062 0.721310i
\(823\) −26.4706 + 8.60081i −0.922706 + 0.299805i −0.731577 0.681759i \(-0.761215\pi\)
−0.191130 + 0.981565i \(0.561215\pi\)
\(824\) −81.7771 −2.84884
\(825\) 0 0
\(826\) 19.3262 0.672446
\(827\) 10.1311 3.29180i 0.352293 0.114467i −0.127524 0.991835i \(-0.540703\pi\)
0.479817 + 0.877369i \(0.340703\pi\)
\(828\) −0.673542 + 0.927051i −0.0234072 + 0.0322172i
\(829\) −25.3992 + 18.4536i −0.882150 + 0.640920i −0.933819 0.357745i \(-0.883546\pi\)
0.0516692 + 0.998664i \(0.483546\pi\)
\(830\) 0 0
\(831\) 9.02786 27.7849i 0.313173 0.963848i
\(832\) −1.20833 1.66312i −0.0418912 0.0576583i
\(833\) −4.04125 + 5.56231i −0.140021 + 0.192722i
\(834\) −11.7812 36.2587i −0.407948 1.25553i
\(835\) 0 0
\(836\) −94.0304 + 6.37988i −3.25211 + 0.220653i
\(837\) 6.09017i 0.210507i
\(838\) −78.3094 + 25.4443i −2.70515 + 0.878958i
\(839\) −14.4271 10.4819i −0.498077 0.361874i 0.310205 0.950670i \(-0.399602\pi\)
−0.808282 + 0.588796i \(0.799602\pi\)
\(840\) 0 0
\(841\) 2.16312 6.65740i 0.0745903 0.229565i
\(842\) −26.1603 8.50000i −0.901544 0.292929i
\(843\) −14.5559 20.0344i −0.501331 0.690023i
\(844\) 14.2082 + 10.3229i 0.489067 + 0.355328i
\(845\) 0 0
\(846\) 26.4164 0.908215
\(847\) 7.60845 + 7.94427i 0.261430 + 0.272968i
\(848\) 3.76393i 0.129254i
\(849\) −1.76393 5.42882i −0.0605380 0.186317i
\(850\) 0 0
\(851\) 1.19098 0.865300i 0.0408264 0.0296621i
\(852\) −47.6713 15.4894i −1.63319 0.530657i
\(853\) 53.1002 + 17.2533i 1.81811 + 0.590741i 0.999874 + 0.0158658i \(0.00505044\pi\)
0.818241 + 0.574876i \(0.194950\pi\)
\(854\) −24.4894 + 17.7926i −0.838009 + 0.608849i
\(855\) 0 0
\(856\) 26.4894 + 81.5259i 0.905388 + 2.78650i
\(857\) 27.7639i 0.948398i 0.880418 + 0.474199i \(0.157262\pi\)
−0.880418 + 0.474199i \(0.842738\pi\)
\(858\) 0.138757 + 2.04508i 0.00473710 + 0.0698180i
\(859\) 34.4164 1.17427 0.587136 0.809488i \(-0.300255\pi\)
0.587136 + 0.809488i \(0.300255\pi\)
\(860\) 0 0
\(861\) −0.190983 0.138757i −0.00650868 0.00472884i
\(862\) −9.09429 12.5172i −0.309753 0.426338i
\(863\) −0.106001 0.0344419i −0.00360832 0.00117241i 0.307212 0.951641i \(-0.400604\pi\)
−0.310821 + 0.950469i \(0.600604\pi\)
\(864\) −3.35410 + 10.3229i −0.114109 + 0.351191i
\(865\) 0 0
\(866\) 74.7771 + 54.3287i 2.54103 + 1.84617i
\(867\) −14.9191 + 4.84752i −0.506681 + 0.164631i
\(868\) 29.5623i 1.00341i
\(869\) 13.5967 + 33.8545i 0.461238 + 1.14844i
\(870\) 0 0
\(871\) 0.135255 + 0.416272i 0.00458294 + 0.0141048i
\(872\) 52.7041 72.5410i 1.78479 2.45655i
\(873\) 4.61653 + 6.35410i 0.156246 + 0.215054i
\(874\) 1.11803 3.44095i 0.0378181 0.116392i
\(875\) 0 0
\(876\) −22.4164 + 16.2865i −0.757380 + 0.550269i
\(877\) −34.0588 + 46.8779i −1.15008 + 1.58295i −0.407493 + 0.913208i \(0.633597\pi\)
−0.742590 + 0.669746i \(0.766403\pi\)
\(878\) −57.9942 + 18.8435i −1.95721 + 0.635936i
\(879\) −21.6525 −0.730320
\(880\) 0 0
\(881\) 6.20163 0.208938 0.104469 0.994528i \(-0.466686\pi\)
0.104469 + 0.994528i \(0.466686\pi\)
\(882\) −14.9394 + 4.85410i −0.503035 + 0.163446i
\(883\) −0.620541 + 0.854102i −0.0208829 + 0.0287428i −0.819331 0.573321i \(-0.805655\pi\)
0.798448 + 0.602064i \(0.205655\pi\)
\(884\) −1.06231 + 0.771810i −0.0357292 + 0.0259588i
\(885\) 0 0
\(886\) 25.5623 78.6727i 0.858782 2.64306i
\(887\) 32.0257 + 44.0795i 1.07532 + 1.48005i 0.864575 + 0.502504i \(0.167588\pi\)
0.210741 + 0.977542i \(0.432412\pi\)
\(888\) 27.3889 37.6976i 0.919111 1.26505i
\(889\) 2.38197 + 7.33094i 0.0798886 + 0.245872i
\(890\) 0 0
\(891\) 2.54508 2.12663i 0.0852636 0.0712447i
\(892\) 34.8541i 1.16700i
\(893\) −56.1778 + 18.2533i −1.87992 + 0.610823i
\(894\) −8.97214 6.51864i −0.300073 0.218016i
\(895\) 0 0
\(896\) 0.336881 1.03681i 0.0112544 0.0346375i
\(897\) −0.0530006 0.0172209i −0.00176964 0.000574990i
\(898\) 13.9353 + 19.1803i 0.465028 + 0.640056i
\(899\) 29.5623 + 21.4783i 0.985958 + 0.716340i
\(900\) 0 0
\(901\) 0.437694 0.0145817
\(902\) 1.98787 + 0.500000i 0.0661888 + 0.0166482i
\(903\) 6.70820i 0.223235i
\(904\) 31.1074 + 95.7387i 1.03462 + 3.18422i
\(905\) 0 0
\(906\) −2.23607 + 1.62460i −0.0742884 + 0.0539737i
\(907\) −40.3202 13.1008i −1.33881 0.435005i −0.449896 0.893081i \(-0.648539\pi\)
−0.888913 + 0.458076i \(0.848539\pi\)
\(908\) −60.8474 19.7705i −2.01929 0.656107i
\(909\) −8.28115 + 6.01661i −0.274669 + 0.199558i
\(910\) 0 0
\(911\) 11.9271 + 36.7077i 0.395161 + 1.21618i 0.928836 + 0.370491i \(0.120810\pi\)
−0.533675 + 0.845689i \(0.679190\pi\)
\(912\) 57.6869i 1.91020i
\(913\) 4.73504 + 1.19098i 0.156707 + 0.0394158i
\(914\) 62.7771 2.07648
\(915\) 0 0
\(916\) −1.85410 1.34708i −0.0612613 0.0445089i
\(917\) −6.93491 9.54508i −0.229011 0.315206i
\(918\) 2.85317 + 0.927051i 0.0941686 + 0.0305972i
\(919\) −7.92705 + 24.3970i −0.261489 + 0.804781i 0.730992 + 0.682386i \(0.239058\pi\)
−0.992481 + 0.122395i \(0.960942\pi\)
\(920\) 0 0
\(921\) 22.6353 + 16.4455i 0.745857 + 0.541897i
\(922\) 23.0826 7.50000i 0.760186 0.246999i
\(923\) 2.43769i 0.0802377i
\(924\) −12.3541 + 10.3229i −0.406420 + 0.339597i
\(925\) 0 0
\(926\) −1.39919 4.30625i −0.0459801 0.141512i
\(927\) −6.43288 + 8.85410i −0.211284 + 0.290807i
\(928\) 38.2793 + 52.6869i 1.25658 + 1.72953i
\(929\) 3.92705 12.0862i 0.128842 0.396536i −0.865739 0.500495i \(-0.833151\pi\)
0.994582 + 0.103959i \(0.0331512\pi\)
\(930\) 0 0
\(931\) 28.4164 20.6457i 0.931310 0.676636i
\(932\) −11.8290 + 16.2812i −0.387470 + 0.533307i
\(933\) −11.0822 + 3.60081i −0.362814 + 0.117885i
\(934\) 54.6869 1.78941
\(935\) 0 0
\(936\) −1.76393 −0.0576559
\(937\) −39.6139 + 12.8713i −1.29413 + 0.420488i −0.873535 0.486761i \(-0.838178\pi\)
−0.420593 + 0.907249i \(0.638178\pi\)
\(938\) −2.85317 + 3.92705i −0.0931593 + 0.128223i
\(939\) 2.04508 1.48584i 0.0667388 0.0484886i
\(940\) 0 0
\(941\) −4.46556 + 13.7436i −0.145573 + 0.448028i −0.997084 0.0763087i \(-0.975687\pi\)
0.851511 + 0.524336i \(0.175687\pi\)
\(942\) −24.1724 33.2705i −0.787581 1.08401i
\(943\) −0.0327561 + 0.0450850i −0.00106669 + 0.00146817i
\(944\) −22.4787 69.1824i −0.731620 2.25169i
\(945\) 0 0
\(946\) −21.7082 54.0512i −0.705795 1.75736i
\(947\) 32.3951i 1.05270i −0.850268 0.526350i \(-0.823560\pi\)
0.850268 0.526350i \(-0.176440\pi\)
\(948\) −50.7818 + 16.5000i −1.64932 + 0.535895i
\(949\) −1.09017 0.792055i −0.0353884 0.0257112i
\(950\) 0 0
\(951\) 2.10739 6.48588i 0.0683368 0.210319i
\(952\) −8.14324 2.64590i −0.263924 0.0857540i
\(953\) 6.66991 + 9.18034i 0.216059 + 0.297380i 0.903265 0.429082i \(-0.141163\pi\)
−0.687206 + 0.726463i \(0.741163\pi\)
\(954\) 0.809017 + 0.587785i 0.0261929 + 0.0190303i
\(955\) 0 0
\(956\) 1.85410 0.0599659
\(957\) −1.34708 19.8541i −0.0435450 0.641792i
\(958\) 74.3050i 2.40068i
\(959\) 3.01722 + 9.28605i 0.0974311 + 0.299862i
\(960\) 0 0
\(961\) −4.92705 + 3.57971i −0.158937 + 0.115475i
\(962\) 3.66547 + 1.19098i 0.118179 + 0.0383988i
\(963\) 10.9106 + 3.54508i 0.351591 + 0.114239i
\(964\) 32.5623 23.6579i 1.04876 0.761970i
\(965\) 0 0
\(966\) −0.190983 0.587785i −0.00614478 0.0189117i
\(967\) 43.9230i 1.41247i 0.707978 + 0.706234i \(0.249607\pi\)
−0.707978 + 0.706234i \(0.750393\pi\)
\(968\) 38.8873 72.4123i 1.24989 2.32742i
\(969\) −6.70820 −0.215499
\(970\) 0 0
\(971\) 33.9787 + 24.6870i 1.09043 + 0.792243i 0.979472 0.201582i \(-0.0646083\pi\)
0.110957 + 0.993825i \(0.464608\pi\)
\(972\) 2.85317 + 3.92705i 0.0915155 + 0.125960i
\(973\) 13.8496 + 4.50000i 0.443997 + 0.144263i
\(974\) −10.2812 + 31.6421i −0.329429 + 1.01388i
\(975\) 0 0
\(976\) 92.1763 + 66.9700i 2.95049 + 2.14366i
\(977\) 0.567541 0.184405i 0.0181572 0.00589964i −0.299924 0.953963i \(-0.596961\pi\)
0.318082 + 0.948063i \(0.396961\pi\)
\(978\) 13.4721i 0.430791i
\(979\) −27.2533 + 1.84911i −0.871019 + 0.0590979i
\(980\) 0 0
\(981\) −3.70820 11.4127i −0.118394 0.364379i
\(982\) 27.5604 37.9336i 0.879488 1.21051i
\(983\) −4.76779 6.56231i −0.152069 0.209305i 0.726185 0.687499i \(-0.241292\pi\)
−0.878254 + 0.478194i \(0.841292\pi\)
\(984\) −0.545085 + 1.67760i −0.0173767 + 0.0534799i
\(985\) 0 0
\(986\) 14.5623 10.5801i 0.463758 0.336940i
\(987\) −5.93085 + 8.16312i −0.188781 + 0.259835i
\(988\) 6.37988 2.07295i 0.202971 0.0659493i
\(989\) 1.58359 0.0503553
\(990\) 0 0
\(991\) 3.74265 0.118889 0.0594445 0.998232i \(-0.481067\pi\)
0.0594445 + 0.998232i \(0.481067\pi\)
\(992\) −62.8680 + 20.4271i −1.99606 + 0.648560i
\(993\) 9.82084 13.5172i 0.311655 0.428956i
\(994\) 21.8713 15.8904i 0.693716 0.504014i
\(995\) 0 0
\(996\) −2.20820 + 6.79615i −0.0699696 + 0.215344i
\(997\) 12.4620 + 17.1525i 0.394676 + 0.543224i 0.959398 0.282057i \(-0.0910167\pi\)
−0.564722 + 0.825281i \(0.691017\pi\)
\(998\) −27.9237 + 38.4336i −0.883908 + 1.21660i
\(999\) −1.92705 5.93085i −0.0609692 0.187644i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 825.2.bx.d.49.2 8
5.2 odd 4 825.2.n.c.676.1 4
5.3 odd 4 33.2.e.b.16.1 4
5.4 even 2 inner 825.2.bx.d.49.1 8
11.9 even 5 inner 825.2.bx.d.724.1 8
15.8 even 4 99.2.f.a.82.1 4
20.3 even 4 528.2.y.b.49.1 4
45.13 odd 12 891.2.n.c.379.1 8
45.23 even 12 891.2.n.b.379.1 8
45.38 even 12 891.2.n.b.676.1 8
45.43 odd 12 891.2.n.c.676.1 8
55.3 odd 20 363.2.a.d.1.1 2
55.8 even 20 363.2.a.i.1.2 2
55.9 even 10 inner 825.2.bx.d.724.2 8
55.13 even 20 363.2.e.f.130.1 4
55.18 even 20 363.2.e.b.124.1 4
55.28 even 20 363.2.e.b.202.1 4
55.38 odd 20 363.2.e.k.202.1 4
55.42 odd 20 825.2.n.c.526.1 4
55.43 even 4 363.2.e.f.148.1 4
55.47 odd 20 9075.2.a.cb.1.2 2
55.48 odd 20 363.2.e.k.124.1 4
55.52 even 20 9075.2.a.u.1.1 2
55.53 odd 20 33.2.e.b.31.1 yes 4
165.8 odd 20 1089.2.a.l.1.1 2
165.53 even 20 99.2.f.a.64.1 4
165.113 even 20 1089.2.a.t.1.2 2
220.3 even 20 5808.2.a.cj.1.1 2
220.63 odd 20 5808.2.a.ci.1.1 2
220.163 even 20 528.2.y.b.97.1 4
495.218 even 60 891.2.n.b.757.1 8
495.328 odd 60 891.2.n.c.460.1 8
495.383 even 60 891.2.n.b.460.1 8
495.493 odd 60 891.2.n.c.757.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.2.e.b.16.1 4 5.3 odd 4
33.2.e.b.31.1 yes 4 55.53 odd 20
99.2.f.a.64.1 4 165.53 even 20
99.2.f.a.82.1 4 15.8 even 4
363.2.a.d.1.1 2 55.3 odd 20
363.2.a.i.1.2 2 55.8 even 20
363.2.e.b.124.1 4 55.18 even 20
363.2.e.b.202.1 4 55.28 even 20
363.2.e.f.130.1 4 55.13 even 20
363.2.e.f.148.1 4 55.43 even 4
363.2.e.k.124.1 4 55.48 odd 20
363.2.e.k.202.1 4 55.38 odd 20
528.2.y.b.49.1 4 20.3 even 4
528.2.y.b.97.1 4 220.163 even 20
825.2.n.c.526.1 4 55.42 odd 20
825.2.n.c.676.1 4 5.2 odd 4
825.2.bx.d.49.1 8 5.4 even 2 inner
825.2.bx.d.49.2 8 1.1 even 1 trivial
825.2.bx.d.724.1 8 11.9 even 5 inner
825.2.bx.d.724.2 8 55.9 even 10 inner
891.2.n.b.379.1 8 45.23 even 12
891.2.n.b.460.1 8 495.383 even 60
891.2.n.b.676.1 8 45.38 even 12
891.2.n.b.757.1 8 495.218 even 60
891.2.n.c.379.1 8 45.13 odd 12
891.2.n.c.460.1 8 495.328 odd 60
891.2.n.c.676.1 8 45.43 odd 12
891.2.n.c.757.1 8 495.493 odd 60
1089.2.a.l.1.1 2 165.8 odd 20
1089.2.a.t.1.2 2 165.113 even 20
5808.2.a.ci.1.1 2 220.63 odd 20
5808.2.a.cj.1.1 2 220.3 even 20
9075.2.a.u.1.1 2 55.52 even 20
9075.2.a.cb.1.2 2 55.47 odd 20