Properties

Label 8208.2.a.bu.1.4
Level $8208$
Weight $2$
Character 8208.1
Self dual yes
Analytic conductor $65.541$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8208,2,Mod(1,8208)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8208.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8208, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8208 = 2^{4} \cdot 3^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8208.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,-8,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(65.5412099791\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.27648.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 6x^{2} + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 513)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(0.741964\) of defining polynomial
Character \(\chi\) \(=\) 8208.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.30136 q^{5} -4.44949 q^{7} +4.04332 q^{11} +2.00000 q^{13} -6.60272 q^{17} -1.00000 q^{19} -4.78529 q^{23} +5.89898 q^{25} +2.55940 q^{29} -7.44949 q^{31} -14.6894 q^{35} +4.44949 q^{37} +3.70982 q^{41} +5.34847 q^{43} -0.741964 q^{47} +12.7980 q^{49} -10.9795 q^{53} +13.3485 q^{55} -11.3880 q^{59} -8.34847 q^{61} +6.60272 q^{65} +2.34847 q^{67} +10.2376 q^{71} -8.34847 q^{73} -17.9907 q^{77} -5.00000 q^{79} -5.86076 q^{83} -21.7980 q^{85} -5.52725 q^{89} -8.89898 q^{91} -3.30136 q^{95} +5.55051 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{7} + 8 q^{13} - 4 q^{19} + 4 q^{25} - 20 q^{31} + 8 q^{37} - 8 q^{43} + 12 q^{49} + 24 q^{55} - 4 q^{61} - 20 q^{67} - 4 q^{73} - 20 q^{79} - 48 q^{85} - 16 q^{91} + 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 3.30136 1.47641 0.738207 0.674575i \(-0.235673\pi\)
0.738207 + 0.674575i \(0.235673\pi\)
\(6\) 0 0
\(7\) −4.44949 −1.68175 −0.840875 0.541230i \(-0.817959\pi\)
−0.840875 + 0.541230i \(0.817959\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 4.04332 1.21911 0.609554 0.792745i \(-0.291349\pi\)
0.609554 + 0.792745i \(0.291349\pi\)
\(12\) 0 0
\(13\) 2.00000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −6.60272 −1.60139 −0.800697 0.599069i \(-0.795538\pi\)
−0.800697 + 0.599069i \(0.795538\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −4.78529 −0.997801 −0.498901 0.866659i \(-0.666263\pi\)
−0.498901 + 0.866659i \(0.666263\pi\)
\(24\) 0 0
\(25\) 5.89898 1.17980
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 2.55940 0.475268 0.237634 0.971355i \(-0.423628\pi\)
0.237634 + 0.971355i \(0.423628\pi\)
\(30\) 0 0
\(31\) −7.44949 −1.33797 −0.668984 0.743277i \(-0.733271\pi\)
−0.668984 + 0.743277i \(0.733271\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −14.6894 −2.48296
\(36\) 0 0
\(37\) 4.44949 0.731492 0.365746 0.930715i \(-0.380814\pi\)
0.365746 + 0.930715i \(0.380814\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 3.70982 0.579376 0.289688 0.957121i \(-0.406448\pi\)
0.289688 + 0.957121i \(0.406448\pi\)
\(42\) 0 0
\(43\) 5.34847 0.815634 0.407817 0.913064i \(-0.366290\pi\)
0.407817 + 0.913064i \(0.366290\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −0.741964 −0.108227 −0.0541133 0.998535i \(-0.517233\pi\)
−0.0541133 + 0.998535i \(0.517233\pi\)
\(48\) 0 0
\(49\) 12.7980 1.82828
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −10.9795 −1.50816 −0.754079 0.656784i \(-0.771916\pi\)
−0.754079 + 0.656784i \(0.771916\pi\)
\(54\) 0 0
\(55\) 13.3485 1.79991
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −11.3880 −1.48259 −0.741296 0.671178i \(-0.765789\pi\)
−0.741296 + 0.671178i \(0.765789\pi\)
\(60\) 0 0
\(61\) −8.34847 −1.06891 −0.534456 0.845196i \(-0.679483\pi\)
−0.534456 + 0.845196i \(0.679483\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 6.60272 0.818967
\(66\) 0 0
\(67\) 2.34847 0.286911 0.143456 0.989657i \(-0.454179\pi\)
0.143456 + 0.989657i \(0.454179\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 10.2376 1.21498 0.607489 0.794328i \(-0.292177\pi\)
0.607489 + 0.794328i \(0.292177\pi\)
\(72\) 0 0
\(73\) −8.34847 −0.977114 −0.488557 0.872532i \(-0.662477\pi\)
−0.488557 + 0.872532i \(0.662477\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −17.9907 −2.05023
\(78\) 0 0
\(79\) −5.00000 −0.562544 −0.281272 0.959628i \(-0.590756\pi\)
−0.281272 + 0.959628i \(0.590756\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −5.86076 −0.643302 −0.321651 0.946858i \(-0.604238\pi\)
−0.321651 + 0.946858i \(0.604238\pi\)
\(84\) 0 0
\(85\) −21.7980 −2.36432
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −5.52725 −0.585887 −0.292944 0.956130i \(-0.594635\pi\)
−0.292944 + 0.956130i \(0.594635\pi\)
\(90\) 0 0
\(91\) −8.89898 −0.932867
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −3.30136 −0.338712
\(96\) 0 0
\(97\) 5.55051 0.563569 0.281784 0.959478i \(-0.409074\pi\)
0.281784 + 0.959478i \(0.409074\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −7.75314 −0.771467 −0.385733 0.922610i \(-0.626052\pi\)
−0.385733 + 0.922610i \(0.626052\pi\)
\(102\) 0 0
\(103\) −11.7980 −1.16249 −0.581244 0.813730i \(-0.697434\pi\)
−0.581244 + 0.813730i \(0.697434\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −17.9907 −1.73923 −0.869615 0.493731i \(-0.835633\pi\)
−0.869615 + 0.493731i \(0.835633\pi\)
\(108\) 0 0
\(109\) 8.24745 0.789962 0.394981 0.918689i \(-0.370751\pi\)
0.394981 + 0.918689i \(0.370751\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −4.04332 −0.380364 −0.190182 0.981749i \(-0.560908\pi\)
−0.190182 + 0.981749i \(0.560908\pi\)
\(114\) 0 0
\(115\) −15.7980 −1.47317
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 29.3787 2.69314
\(120\) 0 0
\(121\) 5.34847 0.486224
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 2.96786 0.265453
\(126\) 0 0
\(127\) 13.7980 1.22437 0.612185 0.790714i \(-0.290291\pi\)
0.612185 + 0.790714i \(0.290291\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 17.3237 1.51358 0.756790 0.653658i \(-0.226766\pi\)
0.756790 + 0.653658i \(0.226766\pi\)
\(132\) 0 0
\(133\) 4.44949 0.385820
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2.96786 0.253561 0.126780 0.991931i \(-0.459536\pi\)
0.126780 + 0.991931i \(0.459536\pi\)
\(138\) 0 0
\(139\) 10.0000 0.848189 0.424094 0.905618i \(-0.360592\pi\)
0.424094 + 0.905618i \(0.360592\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 8.08665 0.676239
\(144\) 0 0
\(145\) 8.44949 0.701692
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1.48393 0.121568 0.0607840 0.998151i \(-0.480640\pi\)
0.0607840 + 0.998151i \(0.480640\pi\)
\(150\) 0 0
\(151\) 9.69694 0.789126 0.394563 0.918869i \(-0.370896\pi\)
0.394563 + 0.918869i \(0.370896\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −24.5934 −1.97539
\(156\) 0 0
\(157\) −14.3485 −1.14513 −0.572566 0.819858i \(-0.694052\pi\)
−0.572566 + 0.819858i \(0.694052\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 21.2921 1.67805
\(162\) 0 0
\(163\) 16.2474 1.27260 0.636299 0.771442i \(-0.280464\pi\)
0.636299 + 0.771442i \(0.280464\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −2.15094 −0.166445 −0.0832223 0.996531i \(-0.526521\pi\)
−0.0832223 + 0.996531i \(0.526521\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −16.9153 −1.28604 −0.643022 0.765848i \(-0.722320\pi\)
−0.643022 + 0.765848i \(0.722320\pi\)
\(174\) 0 0
\(175\) −26.2474 −1.98412
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −6.26922 −0.468583 −0.234292 0.972166i \(-0.575277\pi\)
−0.234292 + 0.972166i \(0.575277\pi\)
\(180\) 0 0
\(181\) −15.1464 −1.12583 −0.562913 0.826516i \(-0.690319\pi\)
−0.562913 + 0.826516i \(0.690319\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 14.6894 1.07998
\(186\) 0 0
\(187\) −26.6969 −1.95227
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 8.49511 0.614684 0.307342 0.951599i \(-0.400560\pi\)
0.307342 + 0.951599i \(0.400560\pi\)
\(192\) 0 0
\(193\) −24.6969 −1.77772 −0.888862 0.458175i \(-0.848503\pi\)
−0.888862 + 0.458175i \(0.848503\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 7.26973 0.517947 0.258973 0.965884i \(-0.416616\pi\)
0.258973 + 0.965884i \(0.416616\pi\)
\(198\) 0 0
\(199\) −14.0000 −0.992434 −0.496217 0.868199i \(-0.665278\pi\)
−0.496217 + 0.868199i \(0.665278\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −11.3880 −0.799281
\(204\) 0 0
\(205\) 12.2474 0.855399
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −4.04332 −0.279683
\(210\) 0 0
\(211\) −12.3485 −0.850104 −0.425052 0.905169i \(-0.639744\pi\)
−0.425052 + 0.905169i \(0.639744\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 17.6572 1.20421
\(216\) 0 0
\(217\) 33.1464 2.25013
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −13.2054 −0.888294
\(222\) 0 0
\(223\) −23.0000 −1.54019 −0.770097 0.637927i \(-0.779792\pi\)
−0.770097 + 0.637927i \(0.779792\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 24.2599 1.61019 0.805095 0.593147i \(-0.202115\pi\)
0.805095 + 0.593147i \(0.202115\pi\)
\(228\) 0 0
\(229\) −11.8990 −0.786307 −0.393153 0.919473i \(-0.628616\pi\)
−0.393153 + 0.919473i \(0.628616\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 23.9264 1.56747 0.783737 0.621093i \(-0.213311\pi\)
0.783737 + 0.621093i \(0.213311\pi\)
\(234\) 0 0
\(235\) −2.44949 −0.159787
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −6.67767 −0.431943 −0.215971 0.976400i \(-0.569292\pi\)
−0.215971 + 0.976400i \(0.569292\pi\)
\(240\) 0 0
\(241\) −23.3485 −1.50401 −0.752004 0.659159i \(-0.770912\pi\)
−0.752004 + 0.659159i \(0.770912\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 42.2507 2.69930
\(246\) 0 0
\(247\) −2.00000 −0.127257
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 15.0229 0.948235 0.474118 0.880461i \(-0.342767\pi\)
0.474118 + 0.880461i \(0.342767\pi\)
\(252\) 0 0
\(253\) −19.3485 −1.21643
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −20.2916 −1.26575 −0.632877 0.774253i \(-0.718126\pi\)
−0.632877 + 0.774253i \(0.718126\pi\)
\(258\) 0 0
\(259\) −19.7980 −1.23019
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −9.97903 −0.615334 −0.307667 0.951494i \(-0.599548\pi\)
−0.307667 + 0.951494i \(0.599548\pi\)
\(264\) 0 0
\(265\) −36.2474 −2.22666
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 11.3880 0.694339 0.347170 0.937802i \(-0.387143\pi\)
0.347170 + 0.937802i \(0.387143\pi\)
\(270\) 0 0
\(271\) −2.24745 −0.136523 −0.0682614 0.997667i \(-0.521745\pi\)
−0.0682614 + 0.997667i \(0.521745\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 23.8515 1.43830
\(276\) 0 0
\(277\) −13.0000 −0.781094 −0.390547 0.920583i \(-0.627714\pi\)
−0.390547 + 0.920583i \(0.627714\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 23.7765 1.41839 0.709194 0.705013i \(-0.249059\pi\)
0.709194 + 0.705013i \(0.249059\pi\)
\(282\) 0 0
\(283\) −6.89898 −0.410102 −0.205051 0.978751i \(-0.565736\pi\)
−0.205051 + 0.978751i \(0.565736\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −16.5068 −0.974366
\(288\) 0 0
\(289\) 26.5959 1.56447
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −4.04332 −0.236214 −0.118107 0.993001i \(-0.537683\pi\)
−0.118107 + 0.993001i \(0.537683\pi\)
\(294\) 0 0
\(295\) −37.5959 −2.18892
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −9.57058 −0.553481
\(300\) 0 0
\(301\) −23.7980 −1.37169
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −27.5613 −1.57816
\(306\) 0 0
\(307\) 10.7980 0.616272 0.308136 0.951342i \(-0.400295\pi\)
0.308136 + 0.951342i \(0.400295\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −7.67819 −0.435390 −0.217695 0.976017i \(-0.569854\pi\)
−0.217695 + 0.976017i \(0.569854\pi\)
\(312\) 0 0
\(313\) 11.2474 0.635743 0.317872 0.948134i \(-0.397032\pi\)
0.317872 + 0.948134i \(0.397032\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 20.1417 1.13127 0.565634 0.824656i \(-0.308631\pi\)
0.565634 + 0.824656i \(0.308631\pi\)
\(318\) 0 0
\(319\) 10.3485 0.579403
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 6.60272 0.367385
\(324\) 0 0
\(325\) 11.7980 0.654433
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 3.30136 0.182010
\(330\) 0 0
\(331\) 17.5959 0.967159 0.483580 0.875300i \(-0.339336\pi\)
0.483580 + 0.875300i \(0.339336\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 7.75314 0.423599
\(336\) 0 0
\(337\) 3.34847 0.182403 0.0912014 0.995832i \(-0.470929\pi\)
0.0912014 + 0.995832i \(0.470929\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −30.1207 −1.63113
\(342\) 0 0
\(343\) −25.7980 −1.39296
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −27.5613 −1.47957 −0.739784 0.672844i \(-0.765072\pi\)
−0.739784 + 0.672844i \(0.765072\pi\)
\(348\) 0 0
\(349\) −14.5959 −0.781302 −0.390651 0.920539i \(-0.627750\pi\)
−0.390651 + 0.920539i \(0.627750\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −23.4430 −1.24775 −0.623873 0.781526i \(-0.714442\pi\)
−0.623873 + 0.781526i \(0.714442\pi\)
\(354\) 0 0
\(355\) 33.7980 1.79381
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 29.0452 1.53295 0.766474 0.642275i \(-0.222009\pi\)
0.766474 + 0.642275i \(0.222009\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −27.5613 −1.44262
\(366\) 0 0
\(367\) 6.69694 0.349577 0.174789 0.984606i \(-0.444076\pi\)
0.174789 + 0.984606i \(0.444076\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 48.8534 2.53634
\(372\) 0 0
\(373\) 24.0454 1.24502 0.622512 0.782610i \(-0.286112\pi\)
0.622512 + 0.782610i \(0.286112\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 5.11879 0.263631
\(378\) 0 0
\(379\) −35.4949 −1.82325 −0.911625 0.411022i \(-0.865172\pi\)
−0.911625 + 0.411022i \(0.865172\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 15.6899 0.801716 0.400858 0.916140i \(-0.368712\pi\)
0.400858 + 0.916140i \(0.368712\pi\)
\(384\) 0 0
\(385\) −59.3939 −3.02699
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −2.48444 −0.125966 −0.0629831 0.998015i \(-0.520061\pi\)
−0.0629831 + 0.998015i \(0.520061\pi\)
\(390\) 0 0
\(391\) 31.5959 1.59787
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −16.5068 −0.830547
\(396\) 0 0
\(397\) −13.0000 −0.652451 −0.326226 0.945292i \(-0.605777\pi\)
−0.326226 + 0.945292i \(0.605777\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −7.60324 −0.379687 −0.189844 0.981814i \(-0.560798\pi\)
−0.189844 + 0.981814i \(0.560798\pi\)
\(402\) 0 0
\(403\) −14.8990 −0.742171
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 17.9907 0.891767
\(408\) 0 0
\(409\) 2.24745 0.111129 0.0555646 0.998455i \(-0.482304\pi\)
0.0555646 + 0.998455i \(0.482304\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 50.6708 2.49335
\(414\) 0 0
\(415\) −19.3485 −0.949779
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −18.3992 −0.898859 −0.449430 0.893316i \(-0.648373\pi\)
−0.449430 + 0.893316i \(0.648373\pi\)
\(420\) 0 0
\(421\) −23.1010 −1.12587 −0.562937 0.826500i \(-0.690329\pi\)
−0.562937 + 0.826500i \(0.690329\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −38.9493 −1.88932
\(426\) 0 0
\(427\) 37.1464 1.79764
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 11.3880 0.548541 0.274271 0.961653i \(-0.411564\pi\)
0.274271 + 0.961653i \(0.411564\pi\)
\(432\) 0 0
\(433\) 6.65153 0.319652 0.159826 0.987145i \(-0.448907\pi\)
0.159826 + 0.987145i \(0.448907\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 4.78529 0.228911
\(438\) 0 0
\(439\) −2.30306 −0.109919 −0.0549596 0.998489i \(-0.517503\pi\)
−0.0549596 + 0.998489i \(0.517503\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −8.01169 −0.380647 −0.190324 0.981721i \(-0.560954\pi\)
−0.190324 + 0.981721i \(0.560954\pi\)
\(444\) 0 0
\(445\) −18.2474 −0.865012
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 17.5823 0.829759 0.414879 0.909876i \(-0.363824\pi\)
0.414879 + 0.909876i \(0.363824\pi\)
\(450\) 0 0
\(451\) 15.0000 0.706322
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −29.3787 −1.37730
\(456\) 0 0
\(457\) 4.14643 0.193962 0.0969809 0.995286i \(-0.469081\pi\)
0.0969809 + 0.995286i \(0.469081\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 9.57058 0.445746 0.222873 0.974847i \(-0.428456\pi\)
0.222873 + 0.974847i \(0.428456\pi\)
\(462\) 0 0
\(463\) 2.89898 0.134727 0.0673635 0.997728i \(-0.478541\pi\)
0.0673635 + 0.997728i \(0.478541\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −9.49562 −0.439405 −0.219702 0.975567i \(-0.570509\pi\)
−0.219702 + 0.975567i \(0.570509\pi\)
\(468\) 0 0
\(469\) −10.4495 −0.482513
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 21.6256 0.994346
\(474\) 0 0
\(475\) −5.89898 −0.270664
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −37.9488 −1.73392 −0.866962 0.498374i \(-0.833931\pi\)
−0.866962 + 0.498374i \(0.833931\pi\)
\(480\) 0 0
\(481\) 8.89898 0.405759
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 18.3242 0.832061
\(486\) 0 0
\(487\) −6.34847 −0.287677 −0.143838 0.989601i \(-0.545945\pi\)
−0.143838 + 0.989601i \(0.545945\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −2.89290 −0.130555 −0.0652774 0.997867i \(-0.520793\pi\)
−0.0652774 + 0.997867i \(0.520793\pi\)
\(492\) 0 0
\(493\) −16.8990 −0.761092
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −45.5520 −2.04329
\(498\) 0 0
\(499\) 34.0000 1.52205 0.761025 0.648723i \(-0.224697\pi\)
0.761025 + 0.648723i \(0.224697\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −15.9147 −0.709603 −0.354802 0.934942i \(-0.615452\pi\)
−0.354802 + 0.934942i \(0.615452\pi\)
\(504\) 0 0
\(505\) −25.5959 −1.13900
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 9.64553 0.427531 0.213765 0.976885i \(-0.431427\pi\)
0.213765 + 0.976885i \(0.431427\pi\)
\(510\) 0 0
\(511\) 37.1464 1.64326
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −38.9493 −1.71631
\(516\) 0 0
\(517\) −3.00000 −0.131940
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −9.90408 −0.433906 −0.216953 0.976182i \(-0.569612\pi\)
−0.216953 + 0.976182i \(0.569612\pi\)
\(522\) 0 0
\(523\) −21.0454 −0.920251 −0.460126 0.887854i \(-0.652196\pi\)
−0.460126 + 0.887854i \(0.652196\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 49.1869 2.14261
\(528\) 0 0
\(529\) −0.101021 −0.00439220
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 7.41964 0.321380
\(534\) 0 0
\(535\) −59.3939 −2.56782
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 51.7463 2.22887
\(540\) 0 0
\(541\) −23.0454 −0.990799 −0.495400 0.868665i \(-0.664978\pi\)
−0.495400 + 0.868665i \(0.664978\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 27.2278 1.16631
\(546\) 0 0
\(547\) 4.00000 0.171028 0.0855138 0.996337i \(-0.472747\pi\)
0.0855138 + 0.996337i \(0.472747\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −2.55940 −0.109034
\(552\) 0 0
\(553\) 22.2474 0.946058
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −26.7444 −1.13320 −0.566598 0.823994i \(-0.691741\pi\)
−0.566598 + 0.823994i \(0.691741\pi\)
\(558\) 0 0
\(559\) 10.6969 0.452432
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −25.2605 −1.06460 −0.532301 0.846555i \(-0.678672\pi\)
−0.532301 + 0.846555i \(0.678672\pi\)
\(564\) 0 0
\(565\) −13.3485 −0.561574
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 9.90408 0.415201 0.207600 0.978214i \(-0.433435\pi\)
0.207600 + 0.978214i \(0.433435\pi\)
\(570\) 0 0
\(571\) 13.5505 0.567071 0.283536 0.958962i \(-0.408493\pi\)
0.283536 + 0.958962i \(0.408493\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −28.2283 −1.17720
\(576\) 0 0
\(577\) 40.6969 1.69424 0.847118 0.531405i \(-0.178336\pi\)
0.847118 + 0.531405i \(0.178336\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 26.0774 1.08187
\(582\) 0 0
\(583\) −44.3939 −1.83861
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −24.7434 −1.02127 −0.510634 0.859798i \(-0.670589\pi\)
−0.510634 + 0.859798i \(0.670589\pi\)
\(588\) 0 0
\(589\) 7.44949 0.306951
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −25.9275 −1.06471 −0.532357 0.846520i \(-0.678694\pi\)
−0.532357 + 0.846520i \(0.678694\pi\)
\(594\) 0 0
\(595\) 96.9898 3.97619
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −12.0550 −0.492555 −0.246277 0.969199i \(-0.579207\pi\)
−0.246277 + 0.969199i \(0.579207\pi\)
\(600\) 0 0
\(601\) 1.14643 0.0467638 0.0233819 0.999727i \(-0.492557\pi\)
0.0233819 + 0.999727i \(0.492557\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 17.6572 0.717868
\(606\) 0 0
\(607\) 1.24745 0.0506324 0.0253162 0.999679i \(-0.491941\pi\)
0.0253162 + 0.999679i \(0.491941\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −1.48393 −0.0600333
\(612\) 0 0
\(613\) −23.1010 −0.933041 −0.466521 0.884510i \(-0.654493\pi\)
−0.466521 + 0.884510i \(0.654493\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 3.15145 0.126873 0.0634364 0.997986i \(-0.479794\pi\)
0.0634364 + 0.997986i \(0.479794\pi\)
\(618\) 0 0
\(619\) −35.7980 −1.43884 −0.719421 0.694575i \(-0.755593\pi\)
−0.719421 + 0.694575i \(0.755593\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 24.5934 0.985316
\(624\) 0 0
\(625\) −19.6969 −0.787878
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −29.3787 −1.17141
\(630\) 0 0
\(631\) 27.3939 1.09053 0.545267 0.838263i \(-0.316428\pi\)
0.545267 + 0.838263i \(0.316428\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 45.5520 1.80768
\(636\) 0 0
\(637\) 25.5959 1.01415
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 22.5175 0.889386 0.444693 0.895683i \(-0.353313\pi\)
0.444693 + 0.895683i \(0.353313\pi\)
\(642\) 0 0
\(643\) 11.3485 0.447540 0.223770 0.974642i \(-0.428164\pi\)
0.223770 + 0.974642i \(0.428164\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 21.2171 0.834132 0.417066 0.908876i \(-0.363058\pi\)
0.417066 + 0.908876i \(0.363058\pi\)
\(648\) 0 0
\(649\) −46.0454 −1.80744
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −0.816917 −0.0319684 −0.0159842 0.999872i \(-0.505088\pi\)
−0.0159842 + 0.999872i \(0.505088\pi\)
\(654\) 0 0
\(655\) 57.1918 2.23467
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −13.6889 −0.533242 −0.266621 0.963801i \(-0.585907\pi\)
−0.266621 + 0.963801i \(0.585907\pi\)
\(660\) 0 0
\(661\) 39.5959 1.54010 0.770051 0.637982i \(-0.220231\pi\)
0.770051 + 0.637982i \(0.220231\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 14.6894 0.569629
\(666\) 0 0
\(667\) −12.2474 −0.474223
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −33.7556 −1.30312
\(672\) 0 0
\(673\) 15.1010 0.582102 0.291051 0.956708i \(-0.405995\pi\)
0.291051 + 0.956708i \(0.405995\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −11.5379 −0.443438 −0.221719 0.975111i \(-0.571167\pi\)
−0.221719 + 0.975111i \(0.571167\pi\)
\(678\) 0 0
\(679\) −24.6969 −0.947782
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −12.7220 −0.486795 −0.243397 0.969927i \(-0.578262\pi\)
−0.243397 + 0.969927i \(0.578262\pi\)
\(684\) 0 0
\(685\) 9.79796 0.374361
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −21.9591 −0.836575
\(690\) 0 0
\(691\) 26.0454 0.990814 0.495407 0.868661i \(-0.335019\pi\)
0.495407 + 0.868661i \(0.335019\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 33.0136 1.25228
\(696\) 0 0
\(697\) −24.4949 −0.927810
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 25.9275 0.979267 0.489634 0.871928i \(-0.337131\pi\)
0.489634 + 0.871928i \(0.337131\pi\)
\(702\) 0 0
\(703\) −4.44949 −0.167816
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 34.4975 1.29741
\(708\) 0 0
\(709\) 2.00000 0.0751116 0.0375558 0.999295i \(-0.488043\pi\)
0.0375558 + 0.999295i \(0.488043\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 35.6480 1.33503
\(714\) 0 0
\(715\) 26.6969 0.998409
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 2.37580 0.0886023 0.0443012 0.999018i \(-0.485894\pi\)
0.0443012 + 0.999018i \(0.485894\pi\)
\(720\) 0 0
\(721\) 52.4949 1.95501
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 15.0978 0.560719
\(726\) 0 0
\(727\) −49.3939 −1.83192 −0.915959 0.401272i \(-0.868568\pi\)
−0.915959 + 0.401272i \(0.868568\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −35.3144 −1.30615
\(732\) 0 0
\(733\) 33.0454 1.22056 0.610280 0.792186i \(-0.291057\pi\)
0.610280 + 0.792186i \(0.291057\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 9.49562 0.349776
\(738\) 0 0
\(739\) 14.6515 0.538965 0.269483 0.963005i \(-0.413147\pi\)
0.269483 + 0.963005i \(0.413147\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −5.11879 −0.187790 −0.0938951 0.995582i \(-0.529932\pi\)
−0.0938951 + 0.995582i \(0.529932\pi\)
\(744\) 0 0
\(745\) 4.89898 0.179485
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 80.0496 2.92495
\(750\) 0 0
\(751\) −26.0000 −0.948753 −0.474377 0.880322i \(-0.657327\pi\)
−0.474377 + 0.880322i \(0.657327\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 32.0131 1.16508
\(756\) 0 0
\(757\) 31.6969 1.15204 0.576022 0.817434i \(-0.304604\pi\)
0.576022 + 0.817434i \(0.304604\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 47.7030 1.72923 0.864616 0.502434i \(-0.167562\pi\)
0.864616 + 0.502434i \(0.167562\pi\)
\(762\) 0 0
\(763\) −36.6969 −1.32852
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −22.7760 −0.822394
\(768\) 0 0
\(769\) 31.3939 1.13209 0.566046 0.824374i \(-0.308472\pi\)
0.566046 + 0.824374i \(0.308472\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −34.4226 −1.23809 −0.619047 0.785354i \(-0.712481\pi\)
−0.619047 + 0.785354i \(0.712481\pi\)
\(774\) 0 0
\(775\) −43.9444 −1.57853
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −3.70982 −0.132918
\(780\) 0 0
\(781\) 41.3939 1.48119
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −47.3695 −1.69069
\(786\) 0 0
\(787\) 19.2474 0.686097 0.343049 0.939318i \(-0.388540\pi\)
0.343049 + 0.939318i \(0.388540\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 17.9907 0.639677
\(792\) 0 0
\(793\) −16.6969 −0.592926
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −34.5725 −1.22462 −0.612310 0.790618i \(-0.709760\pi\)
−0.612310 + 0.790618i \(0.709760\pi\)
\(798\) 0 0
\(799\) 4.89898 0.173313
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −33.7556 −1.19121
\(804\) 0 0
\(805\) 70.2929 2.47750
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1.00052 0.0351762 0.0175881 0.999845i \(-0.494401\pi\)
0.0175881 + 0.999845i \(0.494401\pi\)
\(810\) 0 0
\(811\) 14.1010 0.495154 0.247577 0.968868i \(-0.420366\pi\)
0.247577 + 0.968868i \(0.420366\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 53.6387 1.87888
\(816\) 0 0
\(817\) −5.34847 −0.187119
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −18.6577 −0.651160 −0.325580 0.945515i \(-0.605559\pi\)
−0.325580 + 0.945515i \(0.605559\pi\)
\(822\) 0 0
\(823\) −44.2474 −1.54237 −0.771185 0.636612i \(-0.780335\pi\)
−0.771185 + 0.636612i \(0.780335\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 43.7346 1.52080 0.760401 0.649454i \(-0.225003\pi\)
0.760401 + 0.649454i \(0.225003\pi\)
\(828\) 0 0
\(829\) −44.2929 −1.53835 −0.769177 0.639035i \(-0.779334\pi\)
−0.769177 + 0.639035i \(0.779334\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −84.5013 −2.92780
\(834\) 0 0
\(835\) −7.10102 −0.245741
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 36.1314 1.24739 0.623697 0.781667i \(-0.285630\pi\)
0.623697 + 0.781667i \(0.285630\pi\)
\(840\) 0 0
\(841\) −22.4495 −0.774120
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −29.7122 −1.02213
\(846\) 0 0
\(847\) −23.7980 −0.817708
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −21.2921 −0.729883
\(852\) 0 0
\(853\) −27.6969 −0.948325 −0.474163 0.880437i \(-0.657249\pi\)
−0.474163 + 0.880437i \(0.657249\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −5.37734 −0.183687 −0.0918433 0.995773i \(-0.529276\pi\)
−0.0918433 + 0.995773i \(0.529276\pi\)
\(858\) 0 0
\(859\) −44.0000 −1.50126 −0.750630 0.660722i \(-0.770250\pi\)
−0.750630 + 0.660722i \(0.770250\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −56.6065 −1.92691 −0.963454 0.267872i \(-0.913680\pi\)
−0.963454 + 0.267872i \(0.913680\pi\)
\(864\) 0 0
\(865\) −55.8434 −1.89873
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −20.2166 −0.685802
\(870\) 0 0
\(871\) 4.69694 0.159150
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −13.2054 −0.446425
\(876\) 0 0
\(877\) 57.3485 1.93652 0.968260 0.249945i \(-0.0804125\pi\)
0.968260 + 0.249945i \(0.0804125\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 16.1733 0.544892 0.272446 0.962171i \(-0.412167\pi\)
0.272446 + 0.962171i \(0.412167\pi\)
\(882\) 0 0
\(883\) −12.0454 −0.405360 −0.202680 0.979245i \(-0.564965\pi\)
−0.202680 + 0.979245i \(0.564965\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −23.7765 −0.798338 −0.399169 0.916877i \(-0.630701\pi\)
−0.399169 + 0.916877i \(0.630701\pi\)
\(888\) 0 0
\(889\) −61.3939 −2.05908
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0.741964 0.0248289
\(894\) 0 0
\(895\) −20.6969 −0.691822
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −19.0662 −0.635893
\(900\) 0 0
\(901\) 72.4949 2.41516
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −50.0038 −1.66218
\(906\) 0 0
\(907\) 2.40408 0.0798262 0.0399131 0.999203i \(-0.487292\pi\)
0.0399131 + 0.999203i \(0.487292\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 2.63435 0.0872799 0.0436400 0.999047i \(-0.486105\pi\)
0.0436400 + 0.999047i \(0.486105\pi\)
\(912\) 0 0
\(913\) −23.6969 −0.784254
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −77.0817 −2.54546
\(918\) 0 0
\(919\) 46.2474 1.52556 0.762781 0.646657i \(-0.223833\pi\)
0.762781 + 0.646657i \(0.223833\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 20.4752 0.673948
\(924\) 0 0
\(925\) 26.2474 0.863011
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −48.0365 −1.57603 −0.788013 0.615659i \(-0.788890\pi\)
−0.788013 + 0.615659i \(0.788890\pi\)
\(930\) 0 0
\(931\) −12.7980 −0.419436
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −88.1362 −2.88236
\(936\) 0 0
\(937\) −48.3939 −1.58096 −0.790480 0.612488i \(-0.790169\pi\)
−0.790480 + 0.612488i \(0.790169\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 8.42015 0.274489 0.137245 0.990537i \(-0.456175\pi\)
0.137245 + 0.990537i \(0.456175\pi\)
\(942\) 0 0
\(943\) −17.7526 −0.578103
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −1.07547 −0.0349480 −0.0174740 0.999847i \(-0.505562\pi\)
−0.0174740 + 0.999847i \(0.505562\pi\)
\(948\) 0 0
\(949\) −16.6969 −0.542006
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 2.07598 0.0672477 0.0336239 0.999435i \(-0.489295\pi\)
0.0336239 + 0.999435i \(0.489295\pi\)
\(954\) 0 0
\(955\) 28.0454 0.907528
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −13.2054 −0.426426
\(960\) 0 0
\(961\) 24.4949 0.790158
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −81.5335 −2.62466
\(966\) 0 0
\(967\) −30.0454 −0.966195 −0.483098 0.875567i \(-0.660488\pi\)
−0.483098 + 0.875567i \(0.660488\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −26.5608 −0.852376 −0.426188 0.904635i \(-0.640144\pi\)
−0.426188 + 0.904635i \(0.640144\pi\)
\(972\) 0 0
\(973\) −44.4949 −1.42644
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 62.4673 1.99851 0.999253 0.0386481i \(-0.0123051\pi\)
0.999253 + 0.0386481i \(0.0123051\pi\)
\(978\) 0 0
\(979\) −22.3485 −0.714260
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 5.60221 0.178683 0.0893413 0.996001i \(-0.471524\pi\)
0.0893413 + 0.996001i \(0.471524\pi\)
\(984\) 0 0
\(985\) 24.0000 0.764704
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −25.5940 −0.813841
\(990\) 0 0
\(991\) −10.6969 −0.339799 −0.169900 0.985461i \(-0.554344\pi\)
−0.169900 + 0.985461i \(0.554344\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −46.2190 −1.46524
\(996\) 0 0
\(997\) 2.00000 0.0633406 0.0316703 0.999498i \(-0.489917\pi\)
0.0316703 + 0.999498i \(0.489917\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8208.2.a.bu.1.4 4
3.2 odd 2 inner 8208.2.a.bu.1.1 4
4.3 odd 2 513.2.a.h.1.2 4
12.11 even 2 513.2.a.h.1.3 yes 4
76.75 even 2 9747.2.a.be.1.3 4
228.227 odd 2 9747.2.a.be.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
513.2.a.h.1.2 4 4.3 odd 2
513.2.a.h.1.3 yes 4 12.11 even 2
8208.2.a.bu.1.1 4 3.2 odd 2 inner
8208.2.a.bu.1.4 4 1.1 even 1 trivial
9747.2.a.be.1.2 4 228.227 odd 2
9747.2.a.be.1.3 4 76.75 even 2