Defining parameters
Level: | \( N \) | \(=\) | \( 82 = 2 \cdot 41 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 82.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 41 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(21\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(82, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 12 | 4 | 8 |
Cusp forms | 8 | 4 | 4 |
Eisenstein series | 4 | 0 | 4 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(82, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
82.2.b.a | $2$ | $0.655$ | \(\Q(\sqrt{-2}) \) | None | \(-2\) | \(0\) | \(0\) | \(0\) | \(q-q^{2}+\beta q^{3}+q^{4}-\beta q^{6}+3\beta q^{7}+\cdots\) |
82.2.b.b | $2$ | $0.655$ | \(\Q(\sqrt{-1}) \) | None | \(2\) | \(0\) | \(-4\) | \(0\) | \(q+q^{2}+\beta q^{3}+q^{4}-2 q^{5}+\beta q^{6}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(82, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(82, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(41, [\chi])\)\(^{\oplus 2}\)