Properties

Label 82.2.b
Level $82$
Weight $2$
Character orbit 82.b
Rep. character $\chi_{82}(81,\cdot)$
Character field $\Q$
Dimension $4$
Newform subspaces $2$
Sturm bound $21$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 82 = 2 \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 82.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 41 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(21\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(82, [\chi])\).

Total New Old
Modular forms 12 4 8
Cusp forms 8 4 4
Eisenstein series 4 0 4

Trace form

\( 4 q + 4 q^{4} - 4 q^{5} - 4 q^{10} + 4 q^{16} - 4 q^{18} - 4 q^{20} - 4 q^{21} - 16 q^{23} - 12 q^{25} + 16 q^{31} + 28 q^{33} + 12 q^{37} - 16 q^{39} - 4 q^{40} + 4 q^{41} + 20 q^{42} + 16 q^{43} + 4 q^{45}+ \cdots + 28 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(82, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
82.2.b.a 82.b 41.b $2$ $0.655$ \(\Q(\sqrt{-2}) \) None 82.2.b.a \(-2\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-q^{2}+\beta q^{3}+q^{4}-\beta q^{6}+3\beta q^{7}+\cdots\)
82.2.b.b 82.b 41.b $2$ $0.655$ \(\Q(\sqrt{-1}) \) None 82.2.b.b \(2\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+q^{2}+\beta q^{3}+q^{4}-2 q^{5}+\beta q^{6}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(82, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(82, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(41, [\chi])\)\(^{\oplus 2}\)