Properties

Label 819.2.y.h.811.1
Level $819$
Weight $2$
Character 819.811
Analytic conductor $6.540$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 819 = 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 819.y (of order \(4\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.53974792554\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Defining polynomial: \(x^{12} + 35 x^{8} + 295 x^{4} + 169\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 91)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 811.1
Root \(1.33026 - 1.33026i\) of defining polynomial
Character \(\chi\) \(=\) 819.811
Dual form 819.2.y.h.307.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.854638 + 0.854638i) q^{2} +0.539189i q^{4} +(-0.612999 - 0.612999i) q^{5} +(-2.64571 + 0.0148122i) q^{7} +(-2.17009 - 2.17009i) q^{8} +O(q^{10})\) \(q+(-0.854638 + 0.854638i) q^{2} +0.539189i q^{4} +(-0.612999 - 0.612999i) q^{5} +(-2.64571 + 0.0148122i) q^{7} +(-2.17009 - 2.17009i) q^{8} +1.04778 q^{10} +(1.85464 + 1.85464i) q^{11} +(0.104263 + 3.60404i) q^{13} +(2.24846 - 2.27378i) q^{14} +2.63090 q^{16} -3.04726 q^{17} +(-0.104263 - 0.104263i) q^{19} +(0.330522 - 0.330522i) q^{20} -3.17009 q^{22} -6.51026i q^{23} -4.24846i q^{25} +(-3.16926 - 2.99104i) q^{26} +(-0.00798659 - 1.42654i) q^{28} +3.78765 q^{29} +(-6.77330 - 6.77330i) q^{31} +(2.09171 - 2.09171i) q^{32} +(2.60430 - 2.60430i) q^{34} +(1.63090 + 1.61274i) q^{35} +(-2.02472 - 2.02472i) q^{37} +0.178214 q^{38} +2.66052i q^{40} +(-2.27378 - 2.27378i) q^{41} -3.18342i q^{43} +(-1.00000 + 1.00000i) q^{44} +(5.56391 + 5.56391i) q^{46} +(5.21678 - 5.21678i) q^{47} +(6.99956 - 0.0783777i) q^{49} +(3.63090 + 3.63090i) q^{50} +(-1.94326 + 0.0562174i) q^{52} -3.43188 q^{53} -2.27378i q^{55} +(5.77356 + 5.70928i) q^{56} +(-3.23707 + 3.23707i) q^{58} +(-9.15135 + 9.15135i) q^{59} -9.20756i q^{61} +11.5774 q^{62} +8.83710i q^{64} +(2.14536 - 2.27319i) q^{65} +(-1.04945 + 1.04945i) q^{67} -1.64305i q^{68} +(-2.77213 + 0.0155200i) q^{70} +(4.10310 - 4.10310i) q^{71} +(-6.92561 + 6.92561i) q^{73} +3.46081 q^{74} +(0.0562174 - 0.0562174i) q^{76} +(-4.93430 - 4.87936i) q^{77} +17.5958 q^{79} +(-1.61274 - 1.61274i) q^{80} +3.88652 q^{82} +(-10.5474 - 10.5474i) q^{83} +(1.86797 + 1.86797i) q^{85} +(2.72067 + 2.72067i) q^{86} -8.04945i q^{88} +(3.39552 - 3.39552i) q^{89} +(-0.329233 - 9.53371i) q^{91} +3.51026 q^{92} +8.91692i q^{94} +0.127826i q^{95} +(-4.44330 - 4.44330i) q^{97} +(-5.91510 + 6.04907i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{2} - 8 q^{7} - 4 q^{8} + O(q^{10}) \) \( 12 q + 4 q^{2} - 8 q^{7} - 4 q^{8} + 8 q^{11} - 8 q^{14} + 16 q^{16} - 16 q^{22} - 20 q^{28} + 4 q^{29} + 16 q^{32} + 4 q^{35} + 12 q^{37} - 12 q^{44} + 24 q^{46} + 28 q^{50} + 12 q^{53} - 44 q^{58} + 40 q^{65} + 60 q^{67} + 4 q^{70} + 48 q^{74} - 4 q^{79} + 12 q^{85} - 36 q^{86} - 32 q^{91} - 24 q^{92} + 28 q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/819\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(379\) \(703\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.854638 + 0.854638i −0.604320 + 0.604320i −0.941456 0.337136i \(-0.890542\pi\)
0.337136 + 0.941456i \(0.390542\pi\)
\(3\) 0 0
\(4\) 0.539189i 0.269594i
\(5\) −0.612999 0.612999i −0.274142 0.274142i 0.556623 0.830765i \(-0.312097\pi\)
−0.830765 + 0.556623i \(0.812097\pi\)
\(6\) 0 0
\(7\) −2.64571 + 0.0148122i −0.999984 + 0.00559850i
\(8\) −2.17009 2.17009i −0.767241 0.767241i
\(9\) 0 0
\(10\) 1.04778 0.331338
\(11\) 1.85464 + 1.85464i 0.559194 + 0.559194i 0.929078 0.369884i \(-0.120602\pi\)
−0.369884 + 0.929078i \(0.620602\pi\)
\(12\) 0 0
\(13\) 0.104263 + 3.60404i 0.0289173 + 0.999582i
\(14\) 2.24846 2.27378i 0.600927 0.607694i
\(15\) 0 0
\(16\) 2.63090 0.657724
\(17\) −3.04726 −0.739070 −0.369535 0.929217i \(-0.620483\pi\)
−0.369535 + 0.929217i \(0.620483\pi\)
\(18\) 0 0
\(19\) −0.104263 0.104263i −0.0239195 0.0239195i 0.695046 0.718965i \(-0.255384\pi\)
−0.718965 + 0.695046i \(0.755384\pi\)
\(20\) 0.330522 0.330522i 0.0739070 0.0739070i
\(21\) 0 0
\(22\) −3.17009 −0.675865
\(23\) 6.51026i 1.35748i −0.734377 0.678741i \(-0.762526\pi\)
0.734377 0.678741i \(-0.237474\pi\)
\(24\) 0 0
\(25\) 4.24846i 0.849693i
\(26\) −3.16926 2.99104i −0.621543 0.586592i
\(27\) 0 0
\(28\) −0.00798659 1.42654i −0.00150932 0.269590i
\(29\) 3.78765 0.703350 0.351675 0.936122i \(-0.385612\pi\)
0.351675 + 0.936122i \(0.385612\pi\)
\(30\) 0 0
\(31\) −6.77330 6.77330i −1.21652 1.21652i −0.968842 0.247679i \(-0.920332\pi\)
−0.247679 0.968842i \(-0.579668\pi\)
\(32\) 2.09171 2.09171i 0.369765 0.369765i
\(33\) 0 0
\(34\) 2.60430 2.60430i 0.446635 0.446635i
\(35\) 1.63090 + 1.61274i 0.275672 + 0.272602i
\(36\) 0 0
\(37\) −2.02472 2.02472i −0.332863 0.332863i 0.520810 0.853673i \(-0.325630\pi\)
−0.853673 + 0.520810i \(0.825630\pi\)
\(38\) 0.178214 0.0289101
\(39\) 0 0
\(40\) 2.66052i 0.420665i
\(41\) −2.27378 2.27378i −0.355105 0.355105i 0.506900 0.862005i \(-0.330791\pi\)
−0.862005 + 0.506900i \(0.830791\pi\)
\(42\) 0 0
\(43\) 3.18342i 0.485467i −0.970093 0.242733i \(-0.921956\pi\)
0.970093 0.242733i \(-0.0780440\pi\)
\(44\) −1.00000 + 1.00000i −0.150756 + 0.150756i
\(45\) 0 0
\(46\) 5.56391 + 5.56391i 0.820354 + 0.820354i
\(47\) 5.21678 5.21678i 0.760946 0.760946i −0.215548 0.976493i \(-0.569154\pi\)
0.976493 + 0.215548i \(0.0691536\pi\)
\(48\) 0 0
\(49\) 6.99956 0.0783777i 0.999937 0.0111968i
\(50\) 3.63090 + 3.63090i 0.513486 + 0.513486i
\(51\) 0 0
\(52\) −1.94326 + 0.0562174i −0.269482 + 0.00779595i
\(53\) −3.43188 −0.471405 −0.235703 0.971825i \(-0.575739\pi\)
−0.235703 + 0.971825i \(0.575739\pi\)
\(54\) 0 0
\(55\) 2.27378i 0.306597i
\(56\) 5.77356 + 5.70928i 0.771525 + 0.762934i
\(57\) 0 0
\(58\) −3.23707 + 3.23707i −0.425048 + 0.425048i
\(59\) −9.15135 + 9.15135i −1.19140 + 1.19140i −0.214731 + 0.976673i \(0.568887\pi\)
−0.976673 + 0.214731i \(0.931113\pi\)
\(60\) 0 0
\(61\) 9.20756i 1.17891i −0.807802 0.589454i \(-0.799343\pi\)
0.807802 0.589454i \(-0.200657\pi\)
\(62\) 11.5774 1.47034
\(63\) 0 0
\(64\) 8.83710i 1.10464i
\(65\) 2.14536 2.27319i 0.266099 0.281954i
\(66\) 0 0
\(67\) −1.04945 + 1.04945i −0.128211 + 0.128211i −0.768300 0.640090i \(-0.778897\pi\)
0.640090 + 0.768300i \(0.278897\pi\)
\(68\) 1.64305i 0.199249i
\(69\) 0 0
\(70\) −2.77213 + 0.0155200i −0.331333 + 0.00185500i
\(71\) 4.10310 4.10310i 0.486949 0.486949i −0.420393 0.907342i \(-0.638108\pi\)
0.907342 + 0.420393i \(0.138108\pi\)
\(72\) 0 0
\(73\) −6.92561 + 6.92561i −0.810581 + 0.810581i −0.984721 0.174140i \(-0.944286\pi\)
0.174140 + 0.984721i \(0.444286\pi\)
\(74\) 3.46081 0.402311
\(75\) 0 0
\(76\) 0.0562174 0.0562174i 0.00644858 0.00644858i
\(77\) −4.93430 4.87936i −0.562316 0.556055i
\(78\) 0 0
\(79\) 17.5958 1.97968 0.989842 0.142168i \(-0.0454074\pi\)
0.989842 + 0.142168i \(0.0454074\pi\)
\(80\) −1.61274 1.61274i −0.180310 0.180310i
\(81\) 0 0
\(82\) 3.88652 0.429194
\(83\) −10.5474 10.5474i −1.15773 1.15773i −0.984963 0.172763i \(-0.944731\pi\)
−0.172763 0.984963i \(-0.555269\pi\)
\(84\) 0 0
\(85\) 1.86797 + 1.86797i 0.202610 + 0.202610i
\(86\) 2.72067 + 2.72067i 0.293377 + 0.293377i
\(87\) 0 0
\(88\) 8.04945i 0.858074i
\(89\) 3.39552 3.39552i 0.359924 0.359924i −0.503861 0.863785i \(-0.668088\pi\)
0.863785 + 0.503861i \(0.168088\pi\)
\(90\) 0 0
\(91\) −0.329233 9.53371i −0.0345130 0.999404i
\(92\) 3.51026 0.365970
\(93\) 0 0
\(94\) 8.91692i 0.919710i
\(95\) 0.127826i 0.0131147i
\(96\) 0 0
\(97\) −4.44330 4.44330i −0.451149 0.451149i 0.444587 0.895736i \(-0.353351\pi\)
−0.895736 + 0.444587i \(0.853351\pi\)
\(98\) −5.91510 + 6.04907i −0.597516 + 0.611049i
\(99\) 0 0
\(100\) 2.29072 0.229072
\(101\) 1.16022 0.115446 0.0577231 0.998333i \(-0.481616\pi\)
0.0577231 + 0.998333i \(0.481616\pi\)
\(102\) 0 0
\(103\) 5.32104 0.524298 0.262149 0.965027i \(-0.415569\pi\)
0.262149 + 0.965027i \(0.415569\pi\)
\(104\) 7.59483 8.04735i 0.744734 0.789107i
\(105\) 0 0
\(106\) 2.93302 2.93302i 0.284880 0.284880i
\(107\) −10.2485 −0.990756 −0.495378 0.868677i \(-0.664971\pi\)
−0.495378 + 0.868677i \(0.664971\pi\)
\(108\) 0 0
\(109\) −5.85464 + 5.85464i −0.560773 + 0.560773i −0.929527 0.368754i \(-0.879784\pi\)
0.368754 + 0.929527i \(0.379784\pi\)
\(110\) 1.94326 + 1.94326i 0.185283 + 0.185283i
\(111\) 0 0
\(112\) −6.96059 + 0.0389695i −0.657714 + 0.00368227i
\(113\) −5.74539 −0.540481 −0.270241 0.962793i \(-0.587103\pi\)
−0.270241 + 0.962793i \(0.587103\pi\)
\(114\) 0 0
\(115\) −3.99078 + 3.99078i −0.372142 + 0.372142i
\(116\) 2.04226i 0.189619i
\(117\) 0 0
\(118\) 15.6422i 1.43998i
\(119\) 8.06217 0.0451368i 0.739058 0.00413768i
\(120\) 0 0
\(121\) 4.12064i 0.374603i
\(122\) 7.86913 + 7.86913i 0.712438 + 0.712438i
\(123\) 0 0
\(124\) 3.65209 3.65209i 0.327967 0.327967i
\(125\) −5.66930 + 5.66930i −0.507078 + 0.507078i
\(126\) 0 0
\(127\) 7.37629i 0.654540i −0.944931 0.327270i \(-0.893871\pi\)
0.944931 0.327270i \(-0.106129\pi\)
\(128\) −3.36910 3.36910i −0.297789 0.297789i
\(129\) 0 0
\(130\) 0.109245 + 3.77626i 0.00958142 + 0.331200i
\(131\) 11.9642i 1.04532i 0.852543 + 0.522658i \(0.175059\pi\)
−0.852543 + 0.522658i \(0.824941\pi\)
\(132\) 0 0
\(133\) 0.277394 + 0.274305i 0.0240531 + 0.0237853i
\(134\) 1.79380i 0.154960i
\(135\) 0 0
\(136\) 6.61282 + 6.61282i 0.567045 + 0.567045i
\(137\) −1.88357 1.88357i −0.160924 0.160924i 0.622052 0.782976i \(-0.286299\pi\)
−0.782976 + 0.622052i \(0.786299\pi\)
\(138\) 0 0
\(139\) 6.36883i 0.540197i 0.962833 + 0.270098i \(0.0870563\pi\)
−0.962833 + 0.270098i \(0.912944\pi\)
\(140\) −0.869570 + 0.879362i −0.0734921 + 0.0743196i
\(141\) 0 0
\(142\) 7.01333i 0.588546i
\(143\) −6.49082 + 6.87756i −0.542790 + 0.575131i
\(144\) 0 0
\(145\) −2.32183 2.32183i −0.192817 0.192817i
\(146\) 11.8378i 0.979701i
\(147\) 0 0
\(148\) 1.09171 1.09171i 0.0897379 0.0897379i
\(149\) −13.3360 + 13.3360i −1.09253 + 1.09253i −0.0972667 + 0.995258i \(0.531010\pi\)
−0.995258 + 0.0972667i \(0.968990\pi\)
\(150\) 0 0
\(151\) 7.64229 + 7.64229i 0.621921 + 0.621921i 0.946022 0.324102i \(-0.105062\pi\)
−0.324102 + 0.946022i \(0.605062\pi\)
\(152\) 0.452519i 0.0367041i
\(153\) 0 0
\(154\) 8.38713 0.0469561i 0.675854 0.00378383i
\(155\) 8.30406i 0.666998i
\(156\) 0 0
\(157\) 21.0290i 1.67830i 0.543903 + 0.839148i \(0.316946\pi\)
−0.543903 + 0.839148i \(0.683054\pi\)
\(158\) −15.0381 + 15.0381i −1.19636 + 1.19636i
\(159\) 0 0
\(160\) −2.56443 −0.202736
\(161\) 0.0964315 + 17.2243i 0.00759987 + 1.35746i
\(162\) 0 0
\(163\) −7.03612 7.03612i −0.551111 0.551111i 0.375650 0.926762i \(-0.377419\pi\)
−0.926762 + 0.375650i \(0.877419\pi\)
\(164\) 1.22600 1.22600i 0.0957344 0.0957344i
\(165\) 0 0
\(166\) 18.0284 1.39927
\(167\) 12.0684 12.0684i 0.933884 0.933884i −0.0640620 0.997946i \(-0.520406\pi\)
0.997946 + 0.0640620i \(0.0204055\pi\)
\(168\) 0 0
\(169\) −12.9783 + 0.751536i −0.998328 + 0.0578104i
\(170\) −3.19287 −0.244882
\(171\) 0 0
\(172\) 1.71646 0.130879
\(173\) −7.48239 −0.568876 −0.284438 0.958694i \(-0.591807\pi\)
−0.284438 + 0.958694i \(0.591807\pi\)
\(174\) 0 0
\(175\) 0.0629292 + 11.2402i 0.00475700 + 0.849680i
\(176\) 4.87936 + 4.87936i 0.367796 + 0.367796i
\(177\) 0 0
\(178\) 5.80387i 0.435019i
\(179\) 22.7009i 1.69674i −0.529402 0.848371i \(-0.677584\pi\)
0.529402 0.848371i \(-0.322416\pi\)
\(180\) 0 0
\(181\) 1.91735 0.142516 0.0712579 0.997458i \(-0.477299\pi\)
0.0712579 + 0.997458i \(0.477299\pi\)
\(182\) 8.42924 + 7.86649i 0.624817 + 0.583103i
\(183\) 0 0
\(184\) −14.1278 + 14.1278i −1.04152 + 1.04152i
\(185\) 2.48231i 0.182503i
\(186\) 0 0
\(187\) −5.65157 5.65157i −0.413283 0.413283i
\(188\) 2.81283 + 2.81283i 0.205147 + 0.205147i
\(189\) 0 0
\(190\) −0.109245 0.109245i −0.00792546 0.00792546i
\(191\) 10.0072 0.724095 0.362047 0.932160i \(-0.382078\pi\)
0.362047 + 0.932160i \(0.382078\pi\)
\(192\) 0 0
\(193\) −10.2351 10.2351i −0.736741 0.736741i 0.235205 0.971946i \(-0.424424\pi\)
−0.971946 + 0.235205i \(0.924424\pi\)
\(194\) 7.59483 0.545277
\(195\) 0 0
\(196\) 0.0422604 + 3.77409i 0.00301860 + 0.269578i
\(197\) −15.2690 + 15.2690i −1.08787 + 1.08787i −0.0921223 + 0.995748i \(0.529365\pi\)
−0.995748 + 0.0921223i \(0.970635\pi\)
\(198\) 0 0
\(199\) −22.4635 −1.59240 −0.796198 0.605036i \(-0.793159\pi\)
−0.796198 + 0.605036i \(0.793159\pi\)
\(200\) −9.21953 + 9.21953i −0.651920 + 0.651920i
\(201\) 0 0
\(202\) −0.991567 + 0.991567i −0.0697664 + 0.0697664i
\(203\) −10.0210 + 0.0561036i −0.703339 + 0.00393770i
\(204\) 0 0
\(205\) 2.78765i 0.194698i
\(206\) −4.54756 + 4.54756i −0.316844 + 0.316844i
\(207\) 0 0
\(208\) 0.274305 + 9.48187i 0.0190196 + 0.657449i
\(209\) 0.386740i 0.0267513i
\(210\) 0 0
\(211\) −18.8504 −1.29772 −0.648859 0.760909i \(-0.724753\pi\)
−0.648859 + 0.760909i \(0.724753\pi\)
\(212\) 1.85043i 0.127088i
\(213\) 0 0
\(214\) 8.75872 8.75872i 0.598734 0.598734i
\(215\) −1.95143 + 1.95143i −0.133087 + 0.133087i
\(216\) 0 0
\(217\) 18.0205 + 17.8199i 1.22331 + 1.20969i
\(218\) 10.0072i 0.677772i
\(219\) 0 0
\(220\) 1.22600 0.0826568
\(221\) −0.317716 10.9825i −0.0213719 0.738760i
\(222\) 0 0
\(223\) −4.32131 4.32131i −0.289376 0.289376i 0.547457 0.836833i \(-0.315596\pi\)
−0.836833 + 0.547457i \(0.815596\pi\)
\(224\) −5.50307 + 5.56504i −0.367689 + 0.371830i
\(225\) 0 0
\(226\) 4.91023 4.91023i 0.326624 0.326624i
\(227\) −4.69031 4.69031i −0.311307 0.311307i 0.534109 0.845416i \(-0.320647\pi\)
−0.845416 + 0.534109i \(0.820647\pi\)
\(228\) 0 0
\(229\) 0.264743 0.264743i 0.0174947 0.0174947i −0.698305 0.715800i \(-0.746062\pi\)
0.715800 + 0.698305i \(0.246062\pi\)
\(230\) 6.82135i 0.449786i
\(231\) 0 0
\(232\) −8.21953 8.21953i −0.539639 0.539639i
\(233\) 6.16290i 0.403745i −0.979412 0.201872i \(-0.935297\pi\)
0.979412 0.201872i \(-0.0647026\pi\)
\(234\) 0 0
\(235\) −6.39576 −0.417214
\(236\) −4.93430 4.93430i −0.321196 0.321196i
\(237\) 0 0
\(238\) −6.85166 + 6.92881i −0.444127 + 0.449128i
\(239\) 5.63090 5.63090i 0.364232 0.364232i −0.501136 0.865369i \(-0.667084\pi\)
0.865369 + 0.501136i \(0.167084\pi\)
\(240\) 0 0
\(241\) −1.11217 + 1.11217i −0.0716414 + 0.0716414i −0.742020 0.670378i \(-0.766132\pi\)
0.670378 + 0.742020i \(0.266132\pi\)
\(242\) 3.52165 + 3.52165i 0.226380 + 0.226380i
\(243\) 0 0
\(244\) 4.96462 0.317827
\(245\) −4.33877 4.24268i −0.277194 0.271055i
\(246\) 0 0
\(247\) 0.364897 0.386639i 0.0232178 0.0246012i
\(248\) 29.3973i 1.86673i
\(249\) 0 0
\(250\) 9.69040i 0.612874i
\(251\) 12.1069 0.764182 0.382091 0.924125i \(-0.375204\pi\)
0.382091 + 0.924125i \(0.375204\pi\)
\(252\) 0 0
\(253\) 12.0742 12.0742i 0.759097 0.759097i
\(254\) 6.30406 + 6.30406i 0.395552 + 0.395552i
\(255\) 0 0
\(256\) −11.9155 −0.744717
\(257\) 17.5759 1.09635 0.548176 0.836363i \(-0.315322\pi\)
0.548176 + 0.836363i \(0.315322\pi\)
\(258\) 0 0
\(259\) 5.38682 + 5.32684i 0.334721 + 0.330994i
\(260\) 1.22568 + 1.15676i 0.0760133 + 0.0717389i
\(261\) 0 0
\(262\) −10.2250 10.2250i −0.631705 0.631705i
\(263\) 14.5259 0.895703 0.447851 0.894108i \(-0.352189\pi\)
0.447851 + 0.894108i \(0.352189\pi\)
\(264\) 0 0
\(265\) 2.10374 + 2.10374i 0.129232 + 0.129232i
\(266\) −0.471502 + 0.00263975i −0.0289097 + 0.000161853i
\(267\) 0 0
\(268\) −0.565851 0.565851i −0.0345648 0.0345648i
\(269\) 23.4152i 1.42765i 0.700324 + 0.713825i \(0.253039\pi\)
−0.700324 + 0.713825i \(0.746961\pi\)
\(270\) 0 0
\(271\) −2.41653 + 2.41653i −0.146794 + 0.146794i −0.776684 0.629890i \(-0.783100\pi\)
0.629890 + 0.776684i \(0.283100\pi\)
\(272\) −8.01703 −0.486104
\(273\) 0 0
\(274\) 3.21953 0.194499
\(275\) 7.87936 7.87936i 0.475143 0.475143i
\(276\) 0 0
\(277\) 29.0722i 1.74678i 0.487020 + 0.873391i \(0.338084\pi\)
−0.487020 + 0.873391i \(0.661916\pi\)
\(278\) −5.44304 5.44304i −0.326452 0.326452i
\(279\) 0 0
\(280\) −0.0394083 7.03897i −0.00235509 0.420659i
\(281\) −9.68455 9.68455i −0.577732 0.577732i 0.356546 0.934278i \(-0.383954\pi\)
−0.934278 + 0.356546i \(0.883954\pi\)
\(282\) 0 0
\(283\) 4.30357 0.255821 0.127910 0.991786i \(-0.459173\pi\)
0.127910 + 0.991786i \(0.459173\pi\)
\(284\) 2.21235 + 2.21235i 0.131279 + 0.131279i
\(285\) 0 0
\(286\) −0.330522 11.4251i −0.0195442 0.675582i
\(287\) 6.04945 + 5.98209i 0.357088 + 0.353112i
\(288\) 0 0
\(289\) −7.71420 −0.453776
\(290\) 3.96864 0.233047
\(291\) 0 0
\(292\) −3.73421 3.73421i −0.218528 0.218528i
\(293\) 3.57373 3.57373i 0.208780 0.208780i −0.594969 0.803749i \(-0.702836\pi\)
0.803749 + 0.594969i \(0.202836\pi\)
\(294\) 0 0
\(295\) 11.2195 0.653227
\(296\) 8.78765i 0.510772i
\(297\) 0 0
\(298\) 22.7948i 1.32047i
\(299\) 23.4633 0.678778i 1.35692 0.0392548i
\(300\) 0 0
\(301\) 0.0471535 + 8.42240i 0.00271788 + 0.485459i
\(302\) −13.0628 −0.751678
\(303\) 0 0
\(304\) −0.274305 0.274305i −0.0157325 0.0157325i
\(305\) −5.64423 + 5.64423i −0.323188 + 0.323188i
\(306\) 0 0
\(307\) 8.59457 8.59457i 0.490518 0.490518i −0.417952 0.908469i \(-0.637252\pi\)
0.908469 + 0.417952i \(0.137252\pi\)
\(308\) 2.63090 2.66052i 0.149909 0.151597i
\(309\) 0 0
\(310\) −7.09696 7.09696i −0.403080 0.403080i
\(311\) −22.5405 −1.27815 −0.639077 0.769143i \(-0.720683\pi\)
−0.639077 + 0.769143i \(0.720683\pi\)
\(312\) 0 0
\(313\) 4.30873i 0.243544i −0.992558 0.121772i \(-0.961142\pi\)
0.992558 0.121772i \(-0.0388576\pi\)
\(314\) −17.9722 17.9722i −1.01423 1.01423i
\(315\) 0 0
\(316\) 9.48747i 0.533712i
\(317\) −3.97107 + 3.97107i −0.223038 + 0.223038i −0.809776 0.586739i \(-0.800412\pi\)
0.586739 + 0.809776i \(0.300412\pi\)
\(318\) 0 0
\(319\) 7.02472 + 7.02472i 0.393309 + 0.393309i
\(320\) 5.41714 5.41714i 0.302827 0.302827i
\(321\) 0 0
\(322\) −14.8029 14.6381i −0.824934 0.815749i
\(323\) 0.317716 + 0.317716i 0.0176782 + 0.0176782i
\(324\) 0 0
\(325\) 15.3116 0.442957i 0.849338 0.0245708i
\(326\) 12.0267 0.666095
\(327\) 0 0
\(328\) 9.86861i 0.544903i
\(329\) −13.7248 + 13.8794i −0.756674 + 0.765194i
\(330\) 0 0
\(331\) 1.70928 1.70928i 0.0939503 0.0939503i −0.658570 0.752520i \(-0.728838\pi\)
0.752520 + 0.658570i \(0.228838\pi\)
\(332\) 5.68703 5.68703i 0.312117 0.312117i
\(333\) 0 0
\(334\) 20.6283i 1.12873i
\(335\) 1.28662 0.0702957
\(336\) 0 0
\(337\) 23.1327i 1.26012i 0.776546 + 0.630061i \(0.216970\pi\)
−0.776546 + 0.630061i \(0.783030\pi\)
\(338\) 10.4494 11.7340i 0.568373 0.638245i
\(339\) 0 0
\(340\) −1.00719 + 1.00719i −0.0546224 + 0.0546224i
\(341\) 25.1240i 1.36054i
\(342\) 0 0
\(343\) −18.5176 + 0.311044i −0.999859 + 0.0167948i
\(344\) −6.90829 + 6.90829i −0.372470 + 0.372470i
\(345\) 0 0
\(346\) 6.39473 6.39473i 0.343783 0.343783i
\(347\) 8.60424 0.461900 0.230950 0.972966i \(-0.425817\pi\)
0.230950 + 0.972966i \(0.425817\pi\)
\(348\) 0 0
\(349\) 19.0680 19.0680i 1.02069 1.02069i 0.0209053 0.999781i \(-0.493345\pi\)
0.999781 0.0209053i \(-0.00665484\pi\)
\(350\) −9.66008 9.55252i −0.516353 0.510604i
\(351\) 0 0
\(352\) 7.75872 0.413541
\(353\) −4.81231 4.81231i −0.256133 0.256133i 0.567346 0.823479i \(-0.307970\pi\)
−0.823479 + 0.567346i \(0.807970\pi\)
\(354\) 0 0
\(355\) −5.03040 −0.266986
\(356\) 1.83083 + 1.83083i 0.0970336 + 0.0970336i
\(357\) 0 0
\(358\) 19.4010 + 19.4010i 1.02538 + 1.02538i
\(359\) 12.5506 + 12.5506i 0.662394 + 0.662394i 0.955944 0.293549i \(-0.0948365\pi\)
−0.293549 + 0.955944i \(0.594837\pi\)
\(360\) 0 0
\(361\) 18.9783i 0.998856i
\(362\) −1.63864 + 1.63864i −0.0861252 + 0.0861252i
\(363\) 0 0
\(364\) 5.14047 0.177519i 0.269434 0.00930452i
\(365\) 8.49079 0.444428
\(366\) 0 0
\(367\) 22.8806i 1.19436i −0.802109 0.597178i \(-0.796289\pi\)
0.802109 0.597178i \(-0.203711\pi\)
\(368\) 17.1278i 0.892850i
\(369\) 0 0
\(370\) −2.12147 2.12147i −0.110290 0.110290i
\(371\) 9.07976 0.0508338i 0.471398 0.00263916i
\(372\) 0 0
\(373\) 10.5041 0.543883 0.271941 0.962314i \(-0.412334\pi\)
0.271941 + 0.962314i \(0.412334\pi\)
\(374\) 9.66008 0.499511
\(375\) 0 0
\(376\) −22.6417 −1.16766
\(377\) 0.394912 + 13.6509i 0.0203390 + 0.703055i
\(378\) 0 0
\(379\) 3.64229 3.64229i 0.187092 0.187092i −0.607346 0.794438i \(-0.707766\pi\)
0.794438 + 0.607346i \(0.207766\pi\)
\(380\) −0.0689224 −0.00353564
\(381\) 0 0
\(382\) −8.55252 + 8.55252i −0.437585 + 0.437585i
\(383\) −24.5591 24.5591i −1.25491 1.25491i −0.953492 0.301419i \(-0.902540\pi\)
−0.301419 0.953492i \(-0.597460\pi\)
\(384\) 0 0
\(385\) 0.0336798 + 6.01577i 0.00171648 + 0.306592i
\(386\) 17.4947 0.890455
\(387\) 0 0
\(388\) 2.39578 2.39578i 0.121627 0.121627i
\(389\) 6.48974i 0.329043i 0.986374 + 0.164521i \(0.0526080\pi\)
−0.986374 + 0.164521i \(0.947392\pi\)
\(390\) 0 0
\(391\) 19.8385i 1.00327i
\(392\) −15.3597 15.0196i −0.775784 0.758603i
\(393\) 0 0
\(394\) 26.0989i 1.31484i
\(395\) −10.7862 10.7862i −0.542714 0.542714i
\(396\) 0 0
\(397\) 6.89530 6.89530i 0.346065 0.346065i −0.512576 0.858642i \(-0.671309\pi\)
0.858642 + 0.512576i \(0.171309\pi\)
\(398\) 19.1982 19.1982i 0.962317 0.962317i
\(399\) 0 0
\(400\) 11.1773i 0.558864i
\(401\) −9.02279 9.02279i −0.450576 0.450576i 0.444969 0.895546i \(-0.353215\pi\)
−0.895546 + 0.444969i \(0.853215\pi\)
\(402\) 0 0
\(403\) 23.7051 25.1175i 1.18083 1.25119i
\(404\) 0.625577i 0.0311236i
\(405\) 0 0
\(406\) 8.51640 8.61230i 0.422662 0.427421i
\(407\) 7.51026i 0.372270i
\(408\) 0 0
\(409\) −2.86088 2.86088i −0.141461 0.141461i 0.632830 0.774291i \(-0.281893\pi\)
−0.774291 + 0.632830i \(0.781893\pi\)
\(410\) −2.38243 2.38243i −0.117660 0.117660i
\(411\) 0 0
\(412\) 2.86905i 0.141348i
\(413\) 24.0763 24.3474i 1.18472 1.19806i
\(414\) 0 0
\(415\) 12.9311i 0.634762i
\(416\) 7.75670 + 7.32052i 0.380303 + 0.358918i
\(417\) 0 0
\(418\) 0.330522 + 0.330522i 0.0161664 + 0.0161664i
\(419\) 35.4097i 1.72988i −0.501878 0.864939i \(-0.667357\pi\)
0.501878 0.864939i \(-0.332643\pi\)
\(420\) 0 0
\(421\) 18.9307 18.9307i 0.922628 0.922628i −0.0745864 0.997215i \(-0.523764\pi\)
0.997215 + 0.0745864i \(0.0237636\pi\)
\(422\) 16.1103 16.1103i 0.784237 0.784237i
\(423\) 0 0
\(424\) 7.44748 + 7.44748i 0.361682 + 0.361682i
\(425\) 12.9462i 0.627982i
\(426\) 0 0
\(427\) 0.136385 + 24.3605i 0.00660011 + 1.17889i
\(428\) 5.52586i 0.267102i
\(429\) 0 0
\(430\) 3.33553i 0.160854i
\(431\) −12.6042 + 12.6042i −0.607125 + 0.607125i −0.942194 0.335069i \(-0.891240\pi\)
0.335069 + 0.942194i \(0.391240\pi\)
\(432\) 0 0
\(433\) −14.3392 −0.689098 −0.344549 0.938768i \(-0.611968\pi\)
−0.344549 + 0.938768i \(0.611968\pi\)
\(434\) −30.6305 + 0.171488i −1.47031 + 0.00823167i
\(435\) 0 0
\(436\) −3.15676 3.15676i −0.151181 0.151181i
\(437\) −0.678778 + 0.678778i −0.0324704 + 0.0324704i
\(438\) 0 0
\(439\) 19.9812 0.953651 0.476826 0.878998i \(-0.341787\pi\)
0.476826 + 0.878998i \(0.341787\pi\)
\(440\) −4.93430 + 4.93430i −0.235234 + 0.235234i
\(441\) 0 0
\(442\) 9.65756 + 9.11450i 0.459363 + 0.433532i
\(443\) 5.63809 0.267874 0.133937 0.990990i \(-0.457238\pi\)
0.133937 + 0.990990i \(0.457238\pi\)
\(444\) 0 0
\(445\) −4.16290 −0.197340
\(446\) 7.38630 0.349751
\(447\) 0 0
\(448\) −0.130897 23.3804i −0.00618431 1.10462i
\(449\) 12.9060 + 12.9060i 0.609073 + 0.609073i 0.942704 0.333631i \(-0.108274\pi\)
−0.333631 + 0.942704i \(0.608274\pi\)
\(450\) 0 0
\(451\) 8.43409i 0.397146i
\(452\) 3.09785i 0.145711i
\(453\) 0 0
\(454\) 8.01703 0.376258
\(455\) −5.64234 + 6.04597i −0.264517 + 0.283440i
\(456\) 0 0
\(457\) 6.96687 6.96687i 0.325896 0.325896i −0.525127 0.851024i \(-0.675982\pi\)
0.851024 + 0.525127i \(0.175982\pi\)
\(458\) 0.452519i 0.0211448i
\(459\) 0 0
\(460\) −2.15179 2.15179i −0.100328 0.100328i
\(461\) 7.20809 + 7.20809i 0.335714 + 0.335714i 0.854752 0.519037i \(-0.173709\pi\)
−0.519037 + 0.854752i \(0.673709\pi\)
\(462\) 0 0
\(463\) −4.06084 4.06084i −0.188723 0.188723i 0.606421 0.795144i \(-0.292605\pi\)
−0.795144 + 0.606421i \(0.792605\pi\)
\(464\) 9.96493 0.462610
\(465\) 0 0
\(466\) 5.26705 + 5.26705i 0.243991 + 0.243991i
\(467\) −17.3673 −0.803665 −0.401832 0.915713i \(-0.631627\pi\)
−0.401832 + 0.915713i \(0.631627\pi\)
\(468\) 0 0
\(469\) 2.76099 2.79208i 0.127491 0.128926i
\(470\) 5.46606 5.46606i 0.252131 0.252131i
\(471\) 0 0
\(472\) 39.7184 1.82819
\(473\) 5.90409 5.90409i 0.271470 0.271470i
\(474\) 0 0
\(475\) −0.442957 + 0.442957i −0.0203243 + 0.0203243i
\(476\) 0.0243372 + 4.34703i 0.00111550 + 0.199246i
\(477\) 0 0
\(478\) 9.62475i 0.440226i
\(479\) 9.88634 9.88634i 0.451719 0.451719i −0.444206 0.895925i \(-0.646514\pi\)
0.895925 + 0.444206i \(0.146514\pi\)
\(480\) 0 0
\(481\) 7.08609 7.50830i 0.323098 0.342349i
\(482\) 1.90101i 0.0865887i
\(483\) 0 0
\(484\) 2.22180 0.100991
\(485\) 5.44748i 0.247357i
\(486\) 0 0
\(487\) −12.6092 + 12.6092i −0.571375 + 0.571375i −0.932513 0.361137i \(-0.882389\pi\)
0.361137 + 0.932513i \(0.382389\pi\)
\(488\) −19.9812 + 19.9812i −0.904507 + 0.904507i
\(489\) 0 0
\(490\) 7.33403 0.0821230i 0.331318 0.00370994i
\(491\) 1.72487i 0.0778425i 0.999242 + 0.0389212i \(0.0123921\pi\)
−0.999242 + 0.0389212i \(0.987608\pi\)
\(492\) 0 0
\(493\) −11.5420 −0.519824
\(494\) 0.0185811 + 0.642291i 0.000836003 + 0.0288980i
\(495\) 0 0
\(496\) −17.8199 17.8199i −0.800135 0.800135i
\(497\) −10.7948 + 10.9164i −0.484215 + 0.489667i
\(498\) 0 0
\(499\) −27.5555 + 27.5555i −1.23355 + 1.23355i −0.270964 + 0.962589i \(0.587343\pi\)
−0.962589 + 0.270964i \(0.912657\pi\)
\(500\) −3.05682 3.05682i −0.136705 0.136705i
\(501\) 0 0
\(502\) −10.3470 + 10.3470i −0.461811 + 0.461811i
\(503\) 20.8862i 0.931272i −0.884976 0.465636i \(-0.845826\pi\)
0.884976 0.465636i \(-0.154174\pi\)
\(504\) 0 0
\(505\) −0.711213 0.711213i −0.0316486 0.0316486i
\(506\) 20.6381i 0.917475i
\(507\) 0 0
\(508\) 3.97721 0.176460
\(509\) 15.2473 + 15.2473i 0.675823 + 0.675823i 0.959052 0.283229i \(-0.0914057\pi\)
−0.283229 + 0.959052i \(0.591406\pi\)
\(510\) 0 0
\(511\) 18.2206 18.4257i 0.806031 0.815107i
\(512\) 16.9216 16.9216i 0.747837 0.747837i
\(513\) 0 0
\(514\) −15.0210 + 15.0210i −0.662548 + 0.662548i
\(515\) −3.26180 3.26180i −0.143732 0.143732i
\(516\) 0 0
\(517\) 19.3505 0.851033
\(518\) −9.15630 + 0.0512623i −0.402305 + 0.00225234i
\(519\) 0 0
\(520\) −9.58864 + 0.277394i −0.420490 + 0.0121645i
\(521\) 20.1543i 0.882975i −0.897268 0.441487i \(-0.854451\pi\)
0.897268 0.441487i \(-0.145549\pi\)
\(522\) 0 0
\(523\) 11.3031i 0.494251i 0.968983 + 0.247126i \(0.0794861\pi\)
−0.968983 + 0.247126i \(0.920514\pi\)
\(524\) −6.45095 −0.281811
\(525\) 0 0
\(526\) −12.4143 + 12.4143i −0.541291 + 0.541291i
\(527\) 20.6400 + 20.6400i 0.899094 + 0.899094i
\(528\) 0 0
\(529\) −19.3835 −0.842760
\(530\) −3.59587 −0.156195
\(531\) 0 0
\(532\) −0.147902 + 0.149568i −0.00641237 + 0.00648458i
\(533\) 7.95774 8.43188i 0.344688 0.365225i
\(534\) 0 0
\(535\) 6.28230 + 6.28230i 0.271607 + 0.271607i
\(536\) 4.55479 0.196737
\(537\) 0 0
\(538\) −20.0115 20.0115i −0.862758 0.862758i
\(539\) 13.1270 + 12.8363i 0.565420 + 0.552898i
\(540\) 0 0
\(541\) −9.28879 9.28879i −0.399356 0.399356i 0.478650 0.878006i \(-0.341126\pi\)
−0.878006 + 0.478650i \(0.841126\pi\)
\(542\) 4.13051i 0.177421i
\(543\) 0 0
\(544\) −6.37398 + 6.37398i −0.273282 + 0.273282i
\(545\) 7.17778 0.307462
\(546\) 0 0
\(547\) 12.8999 0.551559 0.275780 0.961221i \(-0.411064\pi\)
0.275780 + 0.961221i \(0.411064\pi\)
\(548\) 1.01560 1.01560i 0.0433842 0.0433842i
\(549\) 0 0
\(550\) 13.4680i 0.574277i
\(551\) −0.394912 0.394912i −0.0168238 0.0168238i
\(552\) 0 0
\(553\) −46.5534 + 0.260633i −1.97965 + 0.0110833i
\(554\) −24.8462 24.8462i −1.05562 1.05562i
\(555\) 0 0
\(556\) −3.43400 −0.145634
\(557\) 16.6153 + 16.6153i 0.704013 + 0.704013i 0.965269 0.261257i \(-0.0841369\pi\)
−0.261257 + 0.965269i \(0.584137\pi\)
\(558\) 0 0
\(559\) 11.4732 0.331912i 0.485264 0.0140384i
\(560\) 4.29072 + 4.24295i 0.181316 + 0.179297i
\(561\) 0 0
\(562\) 16.5536 0.698270
\(563\) −21.6761 −0.913538 −0.456769 0.889585i \(-0.650993\pi\)
−0.456769 + 0.889585i \(0.650993\pi\)
\(564\) 0 0
\(565\) 3.52192 + 3.52192i 0.148168 + 0.148168i
\(566\) −3.67799 + 3.67799i −0.154598 + 0.154598i
\(567\) 0 0
\(568\) −17.8082 −0.747214
\(569\) 18.0738i 0.757695i −0.925459 0.378847i \(-0.876321\pi\)
0.925459 0.378847i \(-0.123679\pi\)
\(570\) 0 0
\(571\) 8.53692i 0.357259i −0.983916 0.178630i \(-0.942834\pi\)
0.983916 0.178630i \(-0.0571664\pi\)
\(572\) −3.70831 3.49978i −0.155052 0.146333i
\(573\) 0 0
\(574\) −10.2826 + 0.0575680i −0.429188 + 0.00240284i
\(575\) −27.6586 −1.15344
\(576\) 0 0
\(577\) 8.56564 + 8.56564i 0.356592 + 0.356592i 0.862555 0.505963i \(-0.168863\pi\)
−0.505963 + 0.862555i \(0.668863\pi\)
\(578\) 6.59284 6.59284i 0.274226 0.274226i
\(579\) 0 0
\(580\) 1.25190 1.25190i 0.0519825 0.0519825i
\(581\) 28.0616 + 27.7491i 1.16419 + 1.15123i
\(582\) 0 0
\(583\) −6.36490 6.36490i −0.263607 0.263607i
\(584\) 30.0583 1.24382
\(585\) 0 0
\(586\) 6.10849i 0.252339i
\(587\) −0.308382 0.308382i −0.0127283 0.0127283i 0.700714 0.713442i \(-0.252865\pi\)
−0.713442 + 0.700714i \(0.752865\pi\)
\(588\) 0 0
\(589\) 1.41241i 0.0581972i
\(590\) −9.58864 + 9.58864i −0.394758 + 0.394758i
\(591\) 0 0
\(592\) −5.32684 5.32684i −0.218932 0.218932i
\(593\) −4.95204 + 4.95204i −0.203356 + 0.203356i −0.801436 0.598080i \(-0.795930\pi\)
0.598080 + 0.801436i \(0.295930\pi\)
\(594\) 0 0
\(595\) −4.96977 4.91443i −0.203741 0.201472i
\(596\) −7.19061 7.19061i −0.294539 0.294539i
\(597\) 0 0
\(598\) −19.4725 + 20.6327i −0.796289 + 0.843734i
\(599\) 17.6309 0.720379 0.360189 0.932879i \(-0.382712\pi\)
0.360189 + 0.932879i \(0.382712\pi\)
\(600\) 0 0
\(601\) 7.14746i 0.291551i 0.989318 + 0.145776i \(0.0465677\pi\)
−0.989318 + 0.145776i \(0.953432\pi\)
\(602\) −7.23840 7.15780i −0.295015 0.291730i
\(603\) 0 0
\(604\) −4.12064 + 4.12064i −0.167666 + 0.167666i
\(605\) −2.52595 + 2.52595i −0.102694 + 0.102694i
\(606\) 0 0
\(607\) 29.8550i 1.21178i −0.795550 0.605888i \(-0.792818\pi\)
0.795550 0.605888i \(-0.207182\pi\)
\(608\) −0.436175 −0.0176892
\(609\) 0 0
\(610\) 9.64754i 0.390618i
\(611\) 19.3454 + 18.2576i 0.782632 + 0.738623i
\(612\) 0 0
\(613\) −6.43907 + 6.43907i −0.260072 + 0.260072i −0.825083 0.565011i \(-0.808872\pi\)
0.565011 + 0.825083i \(0.308872\pi\)
\(614\) 14.6905i 0.592859i
\(615\) 0 0
\(616\) 0.119230 + 21.2965i 0.00480393 + 0.858061i
\(617\) −16.4908 + 16.4908i −0.663894 + 0.663894i −0.956296 0.292402i \(-0.905546\pi\)
0.292402 + 0.956296i \(0.405546\pi\)
\(618\) 0 0
\(619\) 22.3208 22.3208i 0.897148 0.897148i −0.0980353 0.995183i \(-0.531256\pi\)
0.995183 + 0.0980353i \(0.0312558\pi\)
\(620\) −4.47745 −0.179819
\(621\) 0 0
\(622\) 19.2639 19.2639i 0.772414 0.772414i
\(623\) −8.93326 + 9.03385i −0.357903 + 0.361934i
\(624\) 0 0
\(625\) −14.2918 −0.571671
\(626\) 3.68240 + 3.68240i 0.147178 + 0.147178i
\(627\) 0 0
\(628\) −11.3386 −0.452459
\(629\) 6.16986 + 6.16986i 0.246009 + 0.246009i
\(630\) 0 0
\(631\) 3.75154 + 3.75154i 0.149346 + 0.149346i 0.777826 0.628480i \(-0.216322\pi\)
−0.628480 + 0.777826i \(0.716322\pi\)
\(632\) −38.1845 38.1845i −1.51890 1.51890i
\(633\) 0 0
\(634\) 6.78765i 0.269572i
\(635\) −4.52166 + 4.52166i −0.179437 + 0.179437i
\(636\) 0 0
\(637\) 1.01227 + 25.2186i 0.0401076 + 0.999195i
\(638\) −12.0072 −0.475369
\(639\) 0 0
\(640\) 4.13051i 0.163273i
\(641\) 25.6947i 1.01488i 0.861687 + 0.507440i \(0.169408\pi\)
−0.861687 + 0.507440i \(0.830592\pi\)
\(642\) 0 0
\(643\) −22.1537 22.1537i −0.873658 0.873658i 0.119211 0.992869i \(-0.461964\pi\)
−0.992869 + 0.119211i \(0.961964\pi\)
\(644\) −9.28713 + 0.0519948i −0.365964 + 0.00204888i
\(645\) 0 0
\(646\) −0.543065 −0.0213666
\(647\) 32.4446 1.27553 0.637764 0.770232i \(-0.279860\pi\)
0.637764 + 0.770232i \(0.279860\pi\)
\(648\) 0 0
\(649\) −33.9449 −1.33245
\(650\) −12.7073 + 13.4645i −0.498423 + 0.528120i
\(651\) 0 0
\(652\) 3.79380 3.79380i 0.148577 0.148577i
\(653\) −31.6514 −1.23862 −0.619308 0.785148i \(-0.712587\pi\)
−0.619308 + 0.785148i \(0.712587\pi\)
\(654\) 0 0
\(655\) 7.33403 7.33403i 0.286564 0.286564i
\(656\) −5.98209 5.98209i −0.233561 0.233561i
\(657\) 0 0
\(658\) −0.132079 23.5916i −0.00514899 0.919695i
\(659\) −30.5330 −1.18940 −0.594699 0.803948i \(-0.702729\pi\)
−0.594699 + 0.803948i \(0.702729\pi\)
\(660\) 0 0
\(661\) −9.20895 + 9.20895i −0.358187 + 0.358187i −0.863144 0.504957i \(-0.831508\pi\)
0.504957 + 0.863144i \(0.331508\pi\)
\(662\) 2.92162i 0.113552i
\(663\) 0 0
\(664\) 45.7775i 1.77651i
\(665\) −0.00189339 0.338191i −7.34225e−5 0.0131145i
\(666\) 0 0
\(667\) 24.6586i 0.954785i
\(668\) 6.50717 + 6.50717i 0.251770 + 0.251770i
\(669\) 0 0
\(670\) −1.09960 + 1.09960i −0.0424811 + 0.0424811i
\(671\) 17.0767 17.0767i 0.659239 0.659239i
\(672\) 0 0
\(673\) 22.6319i 0.872397i 0.899850 + 0.436199i \(0.143675\pi\)
−0.899850 + 0.436199i \(0.856325\pi\)
\(674\) −19.7701 19.7701i −0.761516 0.761516i
\(675\) 0 0
\(676\) −0.405220 6.99773i −0.0155854 0.269144i
\(677\) 10.7242i 0.412165i −0.978535 0.206082i \(-0.933928\pi\)
0.978535 0.206082i \(-0.0660715\pi\)
\(678\) 0 0
\(679\) 11.8215 + 11.6899i 0.453668 + 0.448616i
\(680\) 8.10731i 0.310901i
\(681\) 0 0
\(682\) 21.4720 + 21.4720i 0.822204 + 0.822204i
\(683\) 3.70701 + 3.70701i 0.141845 + 0.141845i 0.774463 0.632619i \(-0.218020\pi\)
−0.632619 + 0.774463i \(0.718020\pi\)
\(684\) 0 0
\(685\) 2.30925i 0.0882319i
\(686\) 15.5600 16.0917i 0.594085 0.614384i
\(687\) 0 0
\(688\) 8.37525i 0.319303i
\(689\) −0.357818 12.3687i −0.0136318 0.471208i
\(690\) 0 0
\(691\) 0.266133 + 0.266133i 0.0101242 + 0.0101242i 0.712151 0.702027i \(-0.247721\pi\)
−0.702027 + 0.712151i \(0.747721\pi\)
\(692\) 4.03442i 0.153366i
\(693\) 0 0
\(694\) −7.35350 + 7.35350i −0.279135 + 0.279135i
\(695\) 3.90409 3.90409i 0.148090 0.148090i
\(696\) 0 0
\(697\) 6.92881 + 6.92881i 0.262447 + 0.262447i
\(698\) 32.5925i 1.23364i
\(699\) 0 0
\(700\) −6.06059 + 0.0339307i −0.229069 + 0.00128246i
\(701\) 34.0349i 1.28548i 0.766084 + 0.642740i \(0.222202\pi\)
−0.766084 + 0.642740i \(0.777798\pi\)
\(702\) 0 0
\(703\) 0.422207i 0.0159238i
\(704\) −16.3896 + 16.3896i −0.617707 + 0.617707i
\(705\) 0 0
\(706\) 8.22556 0.309573
\(707\) −3.06960 + 0.0171854i −0.115444 + 0.000646325i
\(708\) 0 0
\(709\) 11.4989 + 11.4989i 0.431849 + 0.431849i 0.889257 0.457408i \(-0.151222\pi\)
−0.457408 + 0.889257i \(0.651222\pi\)
\(710\) 4.29917 4.29917i 0.161345 0.161345i
\(711\) 0 0
\(712\) −14.7371 −0.552297
\(713\) −44.0960 + 44.0960i −1.65141 + 1.65141i
\(714\) 0 0
\(715\) 8.19481 0.237071i 0.306469 0.00886596i
\(716\) 12.2401 0.457432
\(717\) 0 0
\(718\) −21.4524 −0.800596
\(719\) 35.0445 1.30694 0.653469 0.756953i \(-0.273313\pi\)
0.653469 + 0.756953i \(0.273313\pi\)
\(720\) 0 0
\(721\) −14.0779 + 0.0788166i −0.524290 + 0.00293528i
\(722\) 16.2195 + 16.2195i 0.603629 + 0.603629i
\(723\) 0 0
\(724\) 1.03382i 0.0384215i
\(725\) 16.0917i 0.597631i
\(726\) 0 0
\(727\) −15.0936 −0.559789 −0.279895 0.960031i \(-0.590300\pi\)
−0.279895 + 0.960031i \(0.590300\pi\)
\(728\) −19.9745 + 21.4034i −0.740305 + 0.793264i
\(729\) 0 0
\(730\) −7.25655 + 7.25655i −0.268577 + 0.268577i
\(731\) 9.70071i 0.358794i
\(732\) 0 0
\(733\) 14.8155 + 14.8155i 0.547223 + 0.547223i 0.925637 0.378414i \(-0.123530\pi\)
−0.378414 + 0.925637i \(0.623530\pi\)
\(734\) 19.5546 + 19.5546i 0.721773 + 0.721773i
\(735\) 0 0
\(736\) −13.6176 13.6176i −0.501950 0.501950i
\(737\) −3.89269 −0.143389
\(738\) 0 0
\(739\) 16.1370 + 16.1370i 0.593607 + 0.593607i 0.938604 0.344997i \(-0.112120\pi\)
−0.344997 + 0.938604i \(0.612120\pi\)
\(740\) −1.33843 −0.0492018
\(741\) 0 0
\(742\) −7.71646 + 7.80335i −0.283280 + 0.286470i
\(743\) 24.1350 24.1350i 0.885428 0.885428i −0.108652 0.994080i \(-0.534653\pi\)
0.994080 + 0.108652i \(0.0346534\pi\)
\(744\) 0 0
\(745\) 16.3499 0.599013
\(746\) −8.97721 + 8.97721i −0.328679 + 0.328679i
\(747\) 0 0
\(748\) 3.04726 3.04726i 0.111419 0.111419i
\(749\) 27.1145 0.151803i 0.990741 0.00554675i
\(750\) 0 0
\(751\) 16.7770i 0.612201i −0.951999 0.306100i \(-0.900976\pi\)
0.951999 0.306100i \(-0.0990243\pi\)
\(752\) 13.7248 13.7248i 0.500493 0.500493i
\(753\) 0 0
\(754\) −12.0041 11.3290i −0.437162 0.412579i
\(755\) 9.36943i 0.340989i
\(756\) 0 0
\(757\) −20.7321 −0.753520 −0.376760 0.926311i \(-0.622962\pi\)
−0.376760 + 0.926311i \(0.622962\pi\)
\(758\) 6.22568i 0.226127i
\(759\) 0 0
\(760\) 0.277394 0.277394i 0.0100621 0.0100621i
\(761\) −2.11330 + 2.11330i −0.0766071 + 0.0766071i −0.744372 0.667765i \(-0.767251\pi\)
0.667765 + 0.744372i \(0.267251\pi\)
\(762\) 0 0
\(763\) 15.4030 15.5764i 0.557624 0.563903i
\(764\) 5.39576i 0.195212i
\(765\) 0 0
\(766\) 41.9782 1.51674
\(767\) −33.9360 32.0277i −1.22536 1.15645i
\(768\) 0 0
\(769\) 25.9456 + 25.9456i 0.935621 + 0.935621i 0.998049 0.0624284i \(-0.0198845\pi\)
−0.0624284 + 0.998049i \(0.519885\pi\)
\(770\) −5.17009 5.11252i −0.186317 0.184242i
\(771\) 0 0
\(772\) 5.51867 5.51867i 0.198621 0.198621i
\(773\) −0.951693 0.951693i −0.0342300 0.0342300i 0.689785 0.724015i \(-0.257705\pi\)
−0.724015 + 0.689785i \(0.757705\pi\)
\(774\) 0 0
\(775\) −28.7761 + 28.7761i −1.03367 + 1.03367i
\(776\) 19.2847i 0.692280i
\(777\) 0 0
\(778\) −5.54638 5.54638i −0.198847 0.198847i
\(779\) 0.474142i 0.0169879i
\(780\) 0 0
\(781\) 15.2195 0.544598
\(782\) −16.9547 16.9547i −0.606299 0.606299i
\(783\) 0 0
\(784\) 18.4151 0.206204i 0.657683 0.00736442i
\(785\) 12.8908 12.8908i 0.460091 0.460091i
\(786\) 0 0
\(787\) 24.8017 24.8017i 0.884085 0.884085i −0.109862 0.993947i \(-0.535041\pi\)
0.993947 + 0.109862i \(0.0350409\pi\)
\(788\) −8.23287 8.23287i −0.293284 0.293284i
\(789\) 0 0
\(790\) 18.4366 0.655946
\(791\) 15.2006