Properties

Label 819.2.o.h.757.3
Level $819$
Weight $2$
Character 819.757
Analytic conductor $6.540$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [819,2,Mod(568,819)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("819.568"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(819, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 819 = 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 819.o (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-1,0,-5,14,0,4,12,0,11,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.53974792554\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.59066497296.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + 7x^{6} + 38x^{4} - 16x^{3} + 15x^{2} + 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 91)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 757.3
Root \(-0.115680 - 0.200364i\) of defining polynomial
Character \(\chi\) \(=\) 819.757
Dual form 819.2.o.h.568.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.115680 + 0.200364i) q^{2} +(0.973236 - 1.68569i) q^{4} +2.23136 q^{5} +(0.500000 - 0.866025i) q^{7} +0.913059 q^{8} +(0.258125 + 0.447085i) q^{10} +(1.66113 + 2.87716i) q^{11} +(3.40300 - 1.19146i) q^{13} +0.231361 q^{14} +(-1.84085 - 3.18844i) q^{16} +(-0.687890 + 1.19146i) q^{17} +(-1.61766 + 2.80186i) q^{19} +(2.17164 - 3.76139i) q^{20} +(-0.384320 + 0.665661i) q^{22} +(0.419251 + 0.726164i) q^{23} -0.0210289 q^{25} +(0.632387 + 0.544012i) q^{26} +(-0.973236 - 1.68569i) q^{28} +(-0.303571 - 0.525800i) q^{29} +1.71511 q^{31} +(1.33896 - 2.31915i) q^{32} -0.318302 q^{34} +(1.11568 - 1.93242i) q^{35} +(-0.776807 - 1.34547i) q^{37} -0.748524 q^{38} +2.03736 q^{40} +(-4.58892 - 7.94824i) q^{41} +(-0.615680 + 1.06639i) q^{43} +6.46667 q^{44} +(-0.0969983 + 0.168006i) q^{46} +1.62817 q^{47} +(-0.500000 - 0.866025i) q^{49} +(-0.00243263 - 0.00421343i) q^{50} +(1.30348 - 6.89599i) q^{52} -8.39607 q^{53} +(3.70657 + 6.41997i) q^{55} +(0.456530 - 0.790732i) q^{56} +(0.0702344 - 0.121650i) q^{58} +(4.41117 - 7.64037i) q^{59} +(-2.73334 + 4.73428i) q^{61} +(0.198405 + 0.343647i) q^{62} -6.74383 q^{64} +(7.59332 - 2.65858i) q^{65} +(5.09287 + 8.82111i) q^{67} +(1.33896 + 2.31915i) q^{68} +0.516249 q^{70} +(-2.60714 + 4.51570i) q^{71} -3.96355 q^{73} +(0.179723 - 0.311289i) q^{74} +(3.14872 + 5.45375i) q^{76} +3.32225 q^{77} +6.45051 q^{79} +(-4.10760 - 7.11457i) q^{80} +(1.06170 - 1.83891i) q^{82} +4.64055 q^{83} +(-1.53493 + 2.65858i) q^{85} -0.284889 q^{86} +(1.51671 + 2.62701i) q^{88} +(4.56413 + 7.90530i) q^{89} +(0.669665 - 3.54282i) q^{91} +1.63212 q^{92} +(0.188347 + 0.326227i) q^{94} +(-3.60957 + 6.25197i) q^{95} +(7.67944 - 13.3012i) q^{97} +(0.115680 - 0.200364i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - q^{2} - 5 q^{4} + 14 q^{5} + 4 q^{7} + 12 q^{8} + 11 q^{10} - q^{11} + 4 q^{13} - 2 q^{14} - 19 q^{16} - 4 q^{17} - q^{19} - 2 q^{20} - 5 q^{22} - 2 q^{23} + 10 q^{25} - 12 q^{26} + 5 q^{28} + q^{29}+ \cdots - q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/819\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(379\) \(703\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.115680 + 0.200364i 0.0817984 + 0.141679i 0.904022 0.427485i \(-0.140600\pi\)
−0.822224 + 0.569164i \(0.807267\pi\)
\(3\) 0 0
\(4\) 0.973236 1.68569i 0.486618 0.842847i
\(5\) 2.23136 0.997895 0.498947 0.866632i \(-0.333720\pi\)
0.498947 + 0.866632i \(0.333720\pi\)
\(6\) 0 0
\(7\) 0.500000 0.866025i 0.188982 0.327327i
\(8\) 0.913059 0.322815
\(9\) 0 0
\(10\) 0.258125 + 0.447085i 0.0816262 + 0.141381i
\(11\) 1.66113 + 2.87716i 0.500848 + 0.867495i 1.00000 0.000980003i \(0.000311945\pi\)
−0.499151 + 0.866515i \(0.666355\pi\)
\(12\) 0 0
\(13\) 3.40300 1.19146i 0.943823 0.330452i
\(14\) 0.231361 0.0618338
\(15\) 0 0
\(16\) −1.84085 3.18844i −0.460212 0.797111i
\(17\) −0.687890 + 1.19146i −0.166838 + 0.288972i −0.937306 0.348506i \(-0.886689\pi\)
0.770469 + 0.637478i \(0.220022\pi\)
\(18\) 0 0
\(19\) −1.61766 + 2.80186i −0.371116 + 0.642791i −0.989737 0.142898i \(-0.954358\pi\)
0.618622 + 0.785689i \(0.287691\pi\)
\(20\) 2.17164 3.76139i 0.485594 0.841073i
\(21\) 0 0
\(22\) −0.384320 + 0.665661i −0.0819372 + 0.141919i
\(23\) 0.419251 + 0.726164i 0.0874199 + 0.151416i 0.906420 0.422378i \(-0.138804\pi\)
−0.819000 + 0.573794i \(0.805471\pi\)
\(24\) 0 0
\(25\) −0.0210289 −0.00420577
\(26\) 0.632387 + 0.544012i 0.124021 + 0.106689i
\(27\) 0 0
\(28\) −0.973236 1.68569i −0.183924 0.318566i
\(29\) −0.303571 0.525800i −0.0563717 0.0976386i 0.836462 0.548024i \(-0.184620\pi\)
−0.892834 + 0.450386i \(0.851287\pi\)
\(30\) 0 0
\(31\) 1.71511 0.308043 0.154022 0.988067i \(-0.450777\pi\)
0.154022 + 0.988067i \(0.450777\pi\)
\(32\) 1.33896 2.31915i 0.236697 0.409971i
\(33\) 0 0
\(34\) −0.318302 −0.0545883
\(35\) 1.11568 1.93242i 0.188584 0.326638i
\(36\) 0 0
\(37\) −0.776807 1.34547i −0.127706 0.221194i 0.795081 0.606503i \(-0.207428\pi\)
−0.922788 + 0.385309i \(0.874095\pi\)
\(38\) −0.748524 −0.121427
\(39\) 0 0
\(40\) 2.03736 0.322136
\(41\) −4.58892 7.94824i −0.716668 1.24131i −0.962313 0.271946i \(-0.912333\pi\)
0.245644 0.969360i \(-0.421001\pi\)
\(42\) 0 0
\(43\) −0.615680 + 1.06639i −0.0938904 + 0.162623i −0.909145 0.416480i \(-0.863264\pi\)
0.815255 + 0.579103i \(0.196597\pi\)
\(44\) 6.46667 0.974888
\(45\) 0 0
\(46\) −0.0969983 + 0.168006i −0.0143016 + 0.0247711i
\(47\) 1.62817 0.237493 0.118747 0.992925i \(-0.462112\pi\)
0.118747 + 0.992925i \(0.462112\pi\)
\(48\) 0 0
\(49\) −0.500000 0.866025i −0.0714286 0.123718i
\(50\) −0.00243263 0.00421343i −0.000344025 0.000595870i
\(51\) 0 0
\(52\) 1.30348 6.89599i 0.180761 0.956302i
\(53\) −8.39607 −1.15329 −0.576644 0.816995i \(-0.695638\pi\)
−0.576644 + 0.816995i \(0.695638\pi\)
\(54\) 0 0
\(55\) 3.70657 + 6.41997i 0.499794 + 0.865669i
\(56\) 0.456530 0.790732i 0.0610063 0.105666i
\(57\) 0 0
\(58\) 0.0702344 0.121650i 0.00922223 0.0159734i
\(59\) 4.41117 7.64037i 0.574285 0.994691i −0.421834 0.906673i \(-0.638613\pi\)
0.996119 0.0880181i \(-0.0280533\pi\)
\(60\) 0 0
\(61\) −2.73334 + 4.73428i −0.349968 + 0.606162i −0.986243 0.165300i \(-0.947141\pi\)
0.636276 + 0.771462i \(0.280474\pi\)
\(62\) 0.198405 + 0.343647i 0.0251974 + 0.0436432i
\(63\) 0 0
\(64\) −6.74383 −0.842979
\(65\) 7.59332 2.65858i 0.941836 0.329756i
\(66\) 0 0
\(67\) 5.09287 + 8.82111i 0.622193 + 1.07767i 0.989077 + 0.147403i \(0.0470913\pi\)
−0.366884 + 0.930267i \(0.619575\pi\)
\(68\) 1.33896 + 2.31915i 0.162373 + 0.281238i
\(69\) 0 0
\(70\) 0.516249 0.0617036
\(71\) −2.60714 + 4.51570i −0.309411 + 0.535915i −0.978234 0.207507i \(-0.933465\pi\)
0.668823 + 0.743422i \(0.266798\pi\)
\(72\) 0 0
\(73\) −3.96355 −0.463898 −0.231949 0.972728i \(-0.574510\pi\)
−0.231949 + 0.972728i \(0.574510\pi\)
\(74\) 0.179723 0.311289i 0.0208923 0.0361866i
\(75\) 0 0
\(76\) 3.14872 + 5.45375i 0.361183 + 0.625588i
\(77\) 3.32225 0.378606
\(78\) 0 0
\(79\) 6.45051 0.725739 0.362869 0.931840i \(-0.381797\pi\)
0.362869 + 0.931840i \(0.381797\pi\)
\(80\) −4.10760 7.11457i −0.459243 0.795433i
\(81\) 0 0
\(82\) 1.06170 1.83891i 0.117245 0.203074i
\(83\) 4.64055 0.509367 0.254684 0.967024i \(-0.418029\pi\)
0.254684 + 0.967024i \(0.418029\pi\)
\(84\) 0 0
\(85\) −1.53493 + 2.65858i −0.166487 + 0.288363i
\(86\) −0.284889 −0.0307203
\(87\) 0 0
\(88\) 1.51671 + 2.62701i 0.161681 + 0.280041i
\(89\) 4.56413 + 7.90530i 0.483797 + 0.837960i 0.999827 0.0186101i \(-0.00592411\pi\)
−0.516030 + 0.856570i \(0.672591\pi\)
\(90\) 0 0
\(91\) 0.669665 3.54282i 0.0702000 0.371388i
\(92\) 1.63212 0.170160
\(93\) 0 0
\(94\) 0.188347 + 0.326227i 0.0194266 + 0.0336478i
\(95\) −3.60957 + 6.25197i −0.370334 + 0.641438i
\(96\) 0 0
\(97\) 7.67944 13.3012i 0.779729 1.35053i −0.152369 0.988324i \(-0.548690\pi\)
0.932098 0.362206i \(-0.117976\pi\)
\(98\) 0.115680 0.200364i 0.0116855 0.0202399i
\(99\) 0 0
\(100\) −0.0204660 + 0.0354482i −0.00204660 + 0.00354482i
\(101\) −3.97521 6.88527i −0.395548 0.685110i 0.597623 0.801777i \(-0.296112\pi\)
−0.993171 + 0.116668i \(0.962779\pi\)
\(102\) 0 0
\(103\) 0.694825 0.0684631 0.0342316 0.999414i \(-0.489102\pi\)
0.0342316 + 0.999414i \(0.489102\pi\)
\(104\) 3.10714 1.08787i 0.304680 0.106675i
\(105\) 0 0
\(106\) −0.971261 1.68227i −0.0943372 0.163397i
\(107\) 4.47324 + 7.74787i 0.432444 + 0.749015i 0.997083 0.0763228i \(-0.0243180\pi\)
−0.564639 + 0.825338i \(0.690985\pi\)
\(108\) 0 0
\(109\) −2.27268 −0.217683 −0.108841 0.994059i \(-0.534714\pi\)
−0.108841 + 0.994059i \(0.534714\pi\)
\(110\) −0.857556 + 1.48533i −0.0817647 + 0.141621i
\(111\) 0 0
\(112\) −3.68170 −0.347888
\(113\) −4.75239 + 8.23138i −0.447067 + 0.774343i −0.998194 0.0600786i \(-0.980865\pi\)
0.551126 + 0.834422i \(0.314198\pi\)
\(114\) 0 0
\(115\) 0.935501 + 1.62033i 0.0872359 + 0.151097i
\(116\) −1.18178 −0.109726
\(117\) 0 0
\(118\) 2.04114 0.187902
\(119\) 0.687890 + 1.19146i 0.0630588 + 0.109221i
\(120\) 0 0
\(121\) −0.0186821 + 0.0323584i −0.00169837 + 0.00294167i
\(122\) −1.26477 −0.114507
\(123\) 0 0
\(124\) 1.66921 2.89115i 0.149899 0.259633i
\(125\) −11.2037 −1.00209
\(126\) 0 0
\(127\) −9.21672 15.9638i −0.817851 1.41656i −0.907262 0.420565i \(-0.861832\pi\)
0.0894111 0.995995i \(-0.471502\pi\)
\(128\) −3.45805 5.98951i −0.305651 0.529403i
\(129\) 0 0
\(130\) 1.41108 + 1.21389i 0.123760 + 0.106465i
\(131\) 1.74835 0.152754 0.0763771 0.997079i \(-0.475665\pi\)
0.0763771 + 0.997079i \(0.475665\pi\)
\(132\) 0 0
\(133\) 1.61766 + 2.80186i 0.140269 + 0.242952i
\(134\) −1.17829 + 2.04086i −0.101789 + 0.176303i
\(135\) 0 0
\(136\) −0.628085 + 1.08787i −0.0538578 + 0.0932845i
\(137\) −9.00160 + 15.5912i −0.769059 + 1.33205i 0.169015 + 0.985614i \(0.445941\pi\)
−0.938074 + 0.346436i \(0.887392\pi\)
\(138\) 0 0
\(139\) −6.95896 + 12.0533i −0.590251 + 1.02235i 0.403947 + 0.914782i \(0.367638\pi\)
−0.994198 + 0.107563i \(0.965695\pi\)
\(140\) −2.17164 3.76139i −0.183537 0.317896i
\(141\) 0 0
\(142\) −1.20638 −0.101237
\(143\) 9.08083 + 7.81180i 0.759378 + 0.653255i
\(144\) 0 0
\(145\) −0.677376 1.17325i −0.0562530 0.0974331i
\(146\) −0.458505 0.794154i −0.0379462 0.0657247i
\(147\) 0 0
\(148\) −3.02407 −0.248577
\(149\) −7.96515 + 13.7961i −0.652531 + 1.13022i 0.329976 + 0.943989i \(0.392959\pi\)
−0.982507 + 0.186227i \(0.940374\pi\)
\(150\) 0 0
\(151\) −13.9497 −1.13521 −0.567604 0.823301i \(-0.692130\pi\)
−0.567604 + 0.823301i \(0.692130\pi\)
\(152\) −1.47702 + 2.55827i −0.119802 + 0.207503i
\(153\) 0 0
\(154\) 0.384320 + 0.665661i 0.0309694 + 0.0536405i
\(155\) 3.82703 0.307395
\(156\) 0 0
\(157\) −12.9747 −1.03549 −0.517745 0.855535i \(-0.673229\pi\)
−0.517745 + 0.855535i \(0.673229\pi\)
\(158\) 0.746198 + 1.29245i 0.0593643 + 0.102822i
\(159\) 0 0
\(160\) 2.98770 5.17485i 0.236199 0.409108i
\(161\) 0.838502 0.0660832
\(162\) 0 0
\(163\) −9.20423 + 15.9422i −0.720931 + 1.24869i 0.239697 + 0.970848i \(0.422952\pi\)
−0.960627 + 0.277841i \(0.910381\pi\)
\(164\) −17.8644 −1.39498
\(165\) 0 0
\(166\) 0.536821 + 0.929802i 0.0416654 + 0.0721666i
\(167\) −9.24967 16.0209i −0.715761 1.23973i −0.962665 0.270695i \(-0.912747\pi\)
0.246904 0.969040i \(-0.420587\pi\)
\(168\) 0 0
\(169\) 10.1608 8.10909i 0.781603 0.623776i
\(170\) −0.710246 −0.0544734
\(171\) 0 0
\(172\) 1.19840 + 2.07570i 0.0913775 + 0.158270i
\(173\) −8.59906 + 14.8940i −0.653774 + 1.13237i 0.328425 + 0.944530i \(0.393482\pi\)
−0.982200 + 0.187840i \(0.939851\pi\)
\(174\) 0 0
\(175\) −0.0105144 + 0.0182115i −0.000794816 + 0.00137666i
\(176\) 6.11577 10.5928i 0.460993 0.798464i
\(177\) 0 0
\(178\) −1.05596 + 1.82898i −0.0791476 + 0.137088i
\(179\) 7.24431 + 12.5475i 0.541465 + 0.937845i 0.998820 + 0.0485608i \(0.0154635\pi\)
−0.457355 + 0.889284i \(0.651203\pi\)
\(180\) 0 0
\(181\) 6.85484 0.509516 0.254758 0.967005i \(-0.418004\pi\)
0.254758 + 0.967005i \(0.418004\pi\)
\(182\) 0.787321 0.275657i 0.0583601 0.0204331i
\(183\) 0 0
\(184\) 0.382801 + 0.663031i 0.0282205 + 0.0488793i
\(185\) −1.73334 3.00223i −0.127437 0.220728i
\(186\) 0 0
\(187\) −4.57069 −0.334242
\(188\) 1.58459 2.74460i 0.115568 0.200170i
\(189\) 0 0
\(190\) −1.67023 −0.121171
\(191\) −1.42581 + 2.46958i −0.103168 + 0.178693i −0.912988 0.407986i \(-0.866231\pi\)
0.809820 + 0.586678i \(0.199565\pi\)
\(192\) 0 0
\(193\) 5.02525 + 8.70398i 0.361725 + 0.626526i 0.988245 0.152879i \(-0.0488546\pi\)
−0.626520 + 0.779406i \(0.715521\pi\)
\(194\) 3.55344 0.255122
\(195\) 0 0
\(196\) −1.94647 −0.139034
\(197\) −12.7085 22.0119i −0.905447 1.56828i −0.820317 0.571910i \(-0.806203\pi\)
−0.0851299 0.996370i \(-0.527131\pi\)
\(198\) 0 0
\(199\) 6.22328 10.7790i 0.441157 0.764106i −0.556619 0.830768i \(-0.687902\pi\)
0.997776 + 0.0666623i \(0.0212350\pi\)
\(200\) −0.0192006 −0.00135769
\(201\) 0 0
\(202\) 0.919708 1.59298i 0.0647104 0.112082i
\(203\) −0.607142 −0.0426130
\(204\) 0 0
\(205\) −10.2395 17.7354i −0.715160 1.23869i
\(206\) 0.0803776 + 0.139218i 0.00560017 + 0.00969979i
\(207\) 0 0
\(208\) −10.0633 8.65698i −0.697766 0.600254i
\(209\) −10.7485 −0.743491
\(210\) 0 0
\(211\) 12.1961 + 21.1243i 0.839617 + 1.45426i 0.890215 + 0.455540i \(0.150554\pi\)
−0.0505979 + 0.998719i \(0.516113\pi\)
\(212\) −8.17136 + 14.1532i −0.561211 + 0.972046i
\(213\) 0 0
\(214\) −1.03493 + 1.79255i −0.0707465 + 0.122536i
\(215\) −1.37381 + 2.37950i −0.0936927 + 0.162281i
\(216\) 0 0
\(217\) 0.857556 1.48533i 0.0582147 0.100831i
\(218\) −0.262904 0.455363i −0.0178061 0.0308411i
\(219\) 0 0
\(220\) 14.4295 0.972835
\(221\) −0.921313 + 4.87414i −0.0619742 + 0.327870i
\(222\) 0 0
\(223\) −11.3247 19.6149i −0.758357 1.31351i −0.943688 0.330837i \(-0.892669\pi\)
0.185331 0.982676i \(-0.440664\pi\)
\(224\) −1.33896 2.31915i −0.0894630 0.154954i
\(225\) 0 0
\(226\) −2.19903 −0.146278
\(227\) 0.642530 1.11289i 0.0426462 0.0738654i −0.843914 0.536478i \(-0.819754\pi\)
0.886561 + 0.462612i \(0.153088\pi\)
\(228\) 0 0
\(229\) −4.64451 −0.306918 −0.153459 0.988155i \(-0.549041\pi\)
−0.153459 + 0.988155i \(0.549041\pi\)
\(230\) −0.216438 + 0.374882i −0.0142715 + 0.0247190i
\(231\) 0 0
\(232\) −0.277178 0.480086i −0.0181976 0.0315192i
\(233\) −11.8877 −0.778790 −0.389395 0.921071i \(-0.627316\pi\)
−0.389395 + 0.921071i \(0.627316\pi\)
\(234\) 0 0
\(235\) 3.63304 0.236993
\(236\) −8.58622 14.8718i −0.558915 0.968070i
\(237\) 0 0
\(238\) −0.159151 + 0.275657i −0.0103162 + 0.0178682i
\(239\) 4.17783 0.270242 0.135121 0.990829i \(-0.456858\pi\)
0.135121 + 0.990829i \(0.456858\pi\)
\(240\) 0 0
\(241\) −2.01671 + 3.49304i −0.129907 + 0.225006i −0.923641 0.383260i \(-0.874801\pi\)
0.793733 + 0.608266i \(0.208135\pi\)
\(242\) −0.00864462 −0.000555697
\(243\) 0 0
\(244\) 5.32036 + 9.21514i 0.340601 + 0.589939i
\(245\) −1.11568 1.93242i −0.0712782 0.123457i
\(246\) 0 0
\(247\) −2.16658 + 11.4621i −0.137856 + 0.729317i
\(248\) 1.56600 0.0994410
\(249\) 0 0
\(250\) −1.29605 2.24483i −0.0819695 0.141975i
\(251\) 13.9343 24.1348i 0.879523 1.52338i 0.0276571 0.999617i \(-0.491195\pi\)
0.851866 0.523760i \(-0.175471\pi\)
\(252\) 0 0
\(253\) −1.39286 + 2.41250i −0.0875683 + 0.151673i
\(254\) 2.13239 3.69340i 0.133798 0.231745i
\(255\) 0 0
\(256\) −5.94377 + 10.2949i −0.371486 + 0.643432i
\(257\) −3.57032 6.18398i −0.222710 0.385746i 0.732920 0.680315i \(-0.238157\pi\)
−0.955630 + 0.294569i \(0.904824\pi\)
\(258\) 0 0
\(259\) −1.55361 −0.0965369
\(260\) 2.90855 15.3874i 0.180380 0.954289i
\(261\) 0 0
\(262\) 0.202250 + 0.350308i 0.0124951 + 0.0216421i
\(263\) 10.6596 + 18.4630i 0.657300 + 1.13848i 0.981312 + 0.192423i \(0.0616347\pi\)
−0.324012 + 0.946053i \(0.605032\pi\)
\(264\) 0 0
\(265\) −18.7347 −1.15086
\(266\) −0.374262 + 0.648241i −0.0229475 + 0.0397462i
\(267\) 0 0
\(268\) 19.8263 1.21108
\(269\) 1.39438 2.41513i 0.0850167 0.147253i −0.820382 0.571816i \(-0.806239\pi\)
0.905398 + 0.424563i \(0.139572\pi\)
\(270\) 0 0
\(271\) 7.73737 + 13.4015i 0.470012 + 0.814085i 0.999412 0.0342877i \(-0.0109163\pi\)
−0.529400 + 0.848372i \(0.677583\pi\)
\(272\) 5.06521 0.307123
\(273\) 0 0
\(274\) −4.16524 −0.251631
\(275\) −0.0349316 0.0605033i −0.00210645 0.00364849i
\(276\) 0 0
\(277\) −2.76477 + 4.78873i −0.166119 + 0.287727i −0.937052 0.349189i \(-0.886457\pi\)
0.770933 + 0.636916i \(0.219790\pi\)
\(278\) −3.22006 −0.193127
\(279\) 0 0
\(280\) 1.01868 1.76441i 0.0608779 0.105444i
\(281\) 31.4871 1.87836 0.939182 0.343419i \(-0.111585\pi\)
0.939182 + 0.343419i \(0.111585\pi\)
\(282\) 0 0
\(283\) 3.67559 + 6.36631i 0.218491 + 0.378438i 0.954347 0.298700i \(-0.0965531\pi\)
−0.735856 + 0.677138i \(0.763220\pi\)
\(284\) 5.07473 + 8.78969i 0.301130 + 0.521572i
\(285\) 0 0
\(286\) −0.514731 + 2.72315i −0.0304367 + 0.161023i
\(287\) −9.17783 −0.541750
\(288\) 0 0
\(289\) 7.55361 + 13.0832i 0.444330 + 0.769603i
\(290\) 0.156718 0.271444i 0.00920281 0.0159397i
\(291\) 0 0
\(292\) −3.85747 + 6.68133i −0.225741 + 0.390995i
\(293\) −6.76675 + 11.7204i −0.395318 + 0.684710i −0.993142 0.116917i \(-0.962699\pi\)
0.597824 + 0.801627i \(0.296032\pi\)
\(294\) 0 0
\(295\) 9.84291 17.0484i 0.573076 0.992597i
\(296\) −0.709271 1.22849i −0.0412255 0.0714047i
\(297\) 0 0
\(298\) −3.68565 −0.213504
\(299\) 2.29191 + 1.97162i 0.132545 + 0.114022i
\(300\) 0 0
\(301\) 0.615680 + 1.06639i 0.0354872 + 0.0614657i
\(302\) −1.61370 2.79502i −0.0928583 0.160835i
\(303\) 0 0
\(304\) 11.9114 0.683168
\(305\) −6.09906 + 10.5639i −0.349231 + 0.604886i
\(306\) 0 0
\(307\) −3.30609 −0.188688 −0.0943442 0.995540i \(-0.530075\pi\)
−0.0943442 + 0.995540i \(0.530075\pi\)
\(308\) 3.23334 5.60030i 0.184236 0.319107i
\(309\) 0 0
\(310\) 0.442713 + 0.766801i 0.0251444 + 0.0435514i
\(311\) 34.3063 1.94533 0.972665 0.232214i \(-0.0745969\pi\)
0.972665 + 0.232214i \(0.0745969\pi\)
\(312\) 0 0
\(313\) 7.21428 0.407775 0.203888 0.978994i \(-0.434642\pi\)
0.203888 + 0.978994i \(0.434642\pi\)
\(314\) −1.50091 2.59966i −0.0847015 0.146707i
\(315\) 0 0
\(316\) 6.27787 10.8736i 0.353158 0.611687i
\(317\) 8.04040 0.451594 0.225797 0.974174i \(-0.427501\pi\)
0.225797 + 0.974174i \(0.427501\pi\)
\(318\) 0 0
\(319\) 1.00854 1.74684i 0.0564673 0.0978043i
\(320\) −15.0479 −0.841204
\(321\) 0 0
\(322\) 0.0969983 + 0.168006i 0.00540550 + 0.00936261i
\(323\) −2.22554 3.85475i −0.123832 0.214484i
\(324\) 0 0
\(325\) −0.0715613 + 0.0250551i −0.00396950 + 0.00138981i
\(326\) −4.25899 −0.235884
\(327\) 0 0
\(328\) −4.18995 7.25721i −0.231351 0.400712i
\(329\) 0.814085 1.41004i 0.0448820 0.0777379i
\(330\) 0 0
\(331\) −0.446843 + 0.773955i −0.0245607 + 0.0425404i −0.878045 0.478579i \(-0.841152\pi\)
0.853484 + 0.521119i \(0.174485\pi\)
\(332\) 4.51636 7.82256i 0.247867 0.429319i
\(333\) 0 0
\(334\) 2.14001 3.70661i 0.117096 0.202817i
\(335\) 11.3640 + 19.6831i 0.620883 + 1.07540i
\(336\) 0 0
\(337\) 15.0717 0.821007 0.410504 0.911859i \(-0.365353\pi\)
0.410504 + 0.911859i \(0.365353\pi\)
\(338\) 2.80018 + 1.09781i 0.152310 + 0.0597129i
\(339\) 0 0
\(340\) 2.98770 + 5.17485i 0.162031 + 0.280646i
\(341\) 2.84902 + 4.93464i 0.154283 + 0.267226i
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) −0.562153 + 0.973677i −0.0303092 + 0.0524971i
\(345\) 0 0
\(346\) −3.97897 −0.213911
\(347\) −8.20818 + 14.2170i −0.440638 + 0.763207i −0.997737 0.0672387i \(-0.978581\pi\)
0.557099 + 0.830446i \(0.311914\pi\)
\(348\) 0 0
\(349\) −17.1861 29.7672i −0.919950 1.59340i −0.799488 0.600682i \(-0.794896\pi\)
−0.120462 0.992718i \(-0.538438\pi\)
\(350\) −0.00486525 −0.000260059
\(351\) 0 0
\(352\) 8.89672 0.474197
\(353\) −11.9581 20.7121i −0.636467 1.10239i −0.986202 0.165545i \(-0.947062\pi\)
0.349735 0.936849i \(-0.386272\pi\)
\(354\) 0 0
\(355\) −5.81747 + 10.0762i −0.308759 + 0.534787i
\(356\) 17.7679 0.941697
\(357\) 0 0
\(358\) −1.67605 + 2.90300i −0.0885819 + 0.153428i
\(359\) 6.17875 0.326102 0.163051 0.986618i \(-0.447867\pi\)
0.163051 + 0.986618i \(0.447867\pi\)
\(360\) 0 0
\(361\) 4.26638 + 7.38958i 0.224546 + 0.388925i
\(362\) 0.792970 + 1.37347i 0.0416776 + 0.0721877i
\(363\) 0 0
\(364\) −5.32036 4.57685i −0.278863 0.239892i
\(365\) −8.84411 −0.462922
\(366\) 0 0
\(367\) −9.92798 17.1958i −0.518236 0.897612i −0.999776 0.0211872i \(-0.993255\pi\)
0.481539 0.876425i \(-0.340078\pi\)
\(368\) 1.54356 2.67352i 0.0804634 0.139367i
\(369\) 0 0
\(370\) 0.401026 0.694598i 0.0208484 0.0361104i
\(371\) −4.19803 + 7.27121i −0.217951 + 0.377502i
\(372\) 0 0
\(373\) −15.0975 + 26.1497i −0.781721 + 1.35398i 0.149217 + 0.988804i \(0.452325\pi\)
−0.930938 + 0.365176i \(0.881009\pi\)
\(374\) −0.528739 0.915804i −0.0273405 0.0473551i
\(375\) 0 0
\(376\) 1.48662 0.0766664
\(377\) −1.65952 1.42761i −0.0854697 0.0735254i
\(378\) 0 0
\(379\) 2.16121 + 3.74333i 0.111014 + 0.192282i 0.916179 0.400768i \(-0.131257\pi\)
−0.805165 + 0.593050i \(0.797923\pi\)
\(380\) 7.02594 + 12.1693i 0.360423 + 0.624271i
\(381\) 0 0
\(382\) −0.659755 −0.0337560
\(383\) −8.67407 + 15.0239i −0.443224 + 0.767687i −0.997927 0.0643617i \(-0.979499\pi\)
0.554702 + 0.832049i \(0.312832\pi\)
\(384\) 0 0
\(385\) 7.41314 0.377809
\(386\) −1.16264 + 2.01376i −0.0591771 + 0.102498i
\(387\) 0 0
\(388\) −14.9478 25.8904i −0.758860 1.31438i
\(389\) 25.3474 1.28516 0.642582 0.766217i \(-0.277863\pi\)
0.642582 + 0.766217i \(0.277863\pi\)
\(390\) 0 0
\(391\) −1.15360 −0.0583398
\(392\) −0.456530 0.790732i −0.0230582 0.0399380i
\(393\) 0 0
\(394\) 2.94026 5.09268i 0.148128 0.256566i
\(395\) 14.3934 0.724211
\(396\) 0 0
\(397\) 13.5375 23.4476i 0.679425 1.17680i −0.295729 0.955272i \(-0.595563\pi\)
0.975154 0.221527i \(-0.0711041\pi\)
\(398\) 2.87965 0.144344
\(399\) 0 0
\(400\) 0.0387110 + 0.0670494i 0.00193555 + 0.00335247i
\(401\) −14.6429 25.3622i −0.731232 1.26653i −0.956357 0.292201i \(-0.905613\pi\)
0.225125 0.974330i \(-0.427721\pi\)
\(402\) 0 0
\(403\) 5.83653 2.04349i 0.290738 0.101793i
\(404\) −15.4753 −0.769924
\(405\) 0 0
\(406\) −0.0702344 0.121650i −0.00348567 0.00603736i
\(407\) 2.58075 4.46999i 0.127923 0.221569i
\(408\) 0 0
\(409\) −11.6856 + 20.2401i −0.577817 + 1.00081i 0.417912 + 0.908487i \(0.362762\pi\)
−0.995729 + 0.0923213i \(0.970571\pi\)
\(410\) 2.36903 4.10327i 0.116998 0.202646i
\(411\) 0 0
\(412\) 0.676229 1.17126i 0.0333154 0.0577040i
\(413\) −4.41117 7.64037i −0.217059 0.375958i
\(414\) 0 0
\(415\) 10.3548 0.508295
\(416\) 1.79331 9.48738i 0.0879242 0.465157i
\(417\) 0 0
\(418\) −1.24339 2.15362i −0.0608164 0.105337i
\(419\) 7.30320 + 12.6495i 0.356785 + 0.617969i 0.987422 0.158109i \(-0.0505397\pi\)
−0.630637 + 0.776078i \(0.717206\pi\)
\(420\) 0 0
\(421\) 10.2728 0.500668 0.250334 0.968160i \(-0.419460\pi\)
0.250334 + 0.968160i \(0.419460\pi\)
\(422\) −2.82171 + 4.88734i −0.137359 + 0.237912i
\(423\) 0 0
\(424\) −7.66611 −0.372299
\(425\) 0.0144656 0.0250551i 0.000701682 0.00121535i
\(426\) 0 0
\(427\) 2.73334 + 4.73428i 0.132275 + 0.229108i
\(428\) 17.4141 0.841740
\(429\) 0 0
\(430\) −0.635689 −0.0306557
\(431\) −6.25087 10.8268i −0.301094 0.521510i 0.675290 0.737552i \(-0.264018\pi\)
−0.976384 + 0.216042i \(0.930685\pi\)
\(432\) 0 0
\(433\) 5.47361 9.48057i 0.263045 0.455607i −0.704005 0.710195i \(-0.748607\pi\)
0.967050 + 0.254588i \(0.0819400\pi\)
\(434\) 0.396810 0.0190475
\(435\) 0 0
\(436\) −2.21185 + 3.83104i −0.105928 + 0.183473i
\(437\) −2.71282 −0.129772
\(438\) 0 0
\(439\) 8.95896 + 15.5174i 0.427588 + 0.740604i 0.996658 0.0816849i \(-0.0260301\pi\)
−0.569070 + 0.822289i \(0.692697\pi\)
\(440\) 3.38432 + 5.86181i 0.161341 + 0.279451i
\(441\) 0 0
\(442\) −1.08318 + 0.379244i −0.0515217 + 0.0180388i
\(443\) −27.7194 −1.31699 −0.658494 0.752586i \(-0.728806\pi\)
−0.658494 + 0.752586i \(0.728806\pi\)
\(444\) 0 0
\(445\) 10.1842 + 17.6396i 0.482778 + 0.836196i
\(446\) 2.62009 4.53813i 0.124065 0.214887i
\(447\) 0 0
\(448\) −3.37192 + 5.84033i −0.159308 + 0.275930i
\(449\) −0.0829898 + 0.143743i −0.00391653 + 0.00678363i −0.867977 0.496604i \(-0.834580\pi\)
0.864060 + 0.503388i \(0.167913\pi\)
\(450\) 0 0
\(451\) 15.2455 26.4061i 0.717884 1.24341i
\(452\) 9.25039 + 16.0222i 0.435102 + 0.753619i
\(453\) 0 0
\(454\) 0.297313 0.0139536
\(455\) 1.49426 7.90530i 0.0700522 0.370606i
\(456\) 0 0
\(457\) −15.8677 27.4837i −0.742260 1.28563i −0.951464 0.307760i \(-0.900421\pi\)
0.209205 0.977872i \(-0.432913\pi\)
\(458\) −0.537278 0.930593i −0.0251054 0.0434838i
\(459\) 0 0
\(460\) 3.64185 0.169802
\(461\) 14.5328 25.1715i 0.676859 1.17235i −0.299063 0.954233i \(-0.596674\pi\)
0.975922 0.218121i \(-0.0699926\pi\)
\(462\) 0 0
\(463\) 6.31904 0.293671 0.146835 0.989161i \(-0.453091\pi\)
0.146835 + 0.989161i \(0.453091\pi\)
\(464\) −1.11766 + 1.93584i −0.0518859 + 0.0898690i
\(465\) 0 0
\(466\) −1.37518 2.38188i −0.0637038 0.110338i
\(467\) 34.6409 1.60299 0.801495 0.598002i \(-0.204038\pi\)
0.801495 + 0.598002i \(0.204038\pi\)
\(468\) 0 0
\(469\) 10.1857 0.470334
\(470\) 0.420271 + 0.727931i 0.0193857 + 0.0335769i
\(471\) 0 0
\(472\) 4.02766 6.97611i 0.185388 0.321101i
\(473\) −4.09089 −0.188099
\(474\) 0 0
\(475\) 0.0340175 0.0589200i 0.00156083 0.00270343i
\(476\) 2.67792 0.122742
\(477\) 0 0
\(478\) 0.483293 + 0.837089i 0.0221053 + 0.0382876i
\(479\) −3.57115 6.18541i −0.163170 0.282619i 0.772834 0.634608i \(-0.218839\pi\)
−0.936004 + 0.351990i \(0.885505\pi\)
\(480\) 0 0
\(481\) −4.24655 3.65310i −0.193626 0.166567i
\(482\) −0.933174 −0.0425049
\(483\) 0 0
\(484\) 0.0363642 + 0.0629847i 0.00165292 + 0.00286294i
\(485\) 17.1356 29.6797i 0.778087 1.34769i
\(486\) 0 0
\(487\) 9.25013 16.0217i 0.419163 0.726012i −0.576692 0.816962i \(-0.695657\pi\)
0.995856 + 0.0909493i \(0.0289901\pi\)
\(488\) −2.49570 + 4.32267i −0.112975 + 0.195678i
\(489\) 0 0
\(490\) 0.258125 0.447085i 0.0116609 0.0201972i
\(491\) −7.63904 13.2312i −0.344745 0.597116i 0.640563 0.767906i \(-0.278701\pi\)
−0.985307 + 0.170790i \(0.945368\pi\)
\(492\) 0 0
\(493\) 0.835294 0.0376197
\(494\) −2.54723 + 0.891838i −0.114605 + 0.0401257i
\(495\) 0 0
\(496\) −3.15726 5.46854i −0.141765 0.245545i
\(497\) 2.60714 + 4.51570i 0.116946 + 0.202557i
\(498\) 0 0
\(499\) 12.4783 0.558606 0.279303 0.960203i \(-0.409897\pi\)
0.279303 + 0.960203i \(0.409897\pi\)
\(500\) −10.9039 + 18.8861i −0.487636 + 0.844610i
\(501\) 0 0
\(502\) 6.44768 0.287774
\(503\) −1.29004 + 2.23441i −0.0575200 + 0.0996276i −0.893352 0.449358i \(-0.851653\pi\)
0.835832 + 0.548986i \(0.184986\pi\)
\(504\) 0 0
\(505\) −8.87013 15.3635i −0.394716 0.683668i
\(506\) −0.644506 −0.0286518
\(507\) 0 0
\(508\) −35.8802 −1.59192
\(509\) 17.8404 + 30.9005i 0.790761 + 1.36964i 0.925496 + 0.378757i \(0.123648\pi\)
−0.134735 + 0.990882i \(0.543018\pi\)
\(510\) 0 0
\(511\) −1.98177 + 3.43253i −0.0876686 + 0.151846i
\(512\) −16.5825 −0.732850
\(513\) 0 0
\(514\) 0.826032 1.43073i 0.0364347 0.0631068i
\(515\) 1.55040 0.0683190
\(516\) 0 0
\(517\) 2.70460 + 4.68450i 0.118948 + 0.206024i
\(518\) −0.179723 0.311289i −0.00789656 0.0136772i
\(519\) 0 0
\(520\) 6.93315 2.42744i 0.304039 0.106450i
\(521\) 20.9637 0.918437 0.459219 0.888323i \(-0.348129\pi\)
0.459219 + 0.888323i \(0.348129\pi\)
\(522\) 0 0
\(523\) 11.4131 + 19.7681i 0.499062 + 0.864401i 0.999999 0.00108279i \(-0.000344663\pi\)
−0.500937 + 0.865484i \(0.667011\pi\)
\(524\) 1.70156 2.94719i 0.0743330 0.128749i
\(525\) 0 0
\(526\) −2.46622 + 4.27161i −0.107532 + 0.186251i
\(527\) −1.17981 + 2.04349i −0.0513933 + 0.0890158i
\(528\) 0 0
\(529\) 11.1485 19.3097i 0.484716 0.839552i
\(530\) −2.16723 3.75376i −0.0941386 0.163053i
\(531\) 0 0
\(532\) 6.29744 0.273029
\(533\) −25.0861 21.5803i −1.08660 0.934749i
\(534\) 0 0
\(535\) 9.98140 + 17.2883i 0.431534 + 0.747438i
\(536\) 4.65009 + 8.05419i 0.200853 + 0.347888i
\(537\) 0 0
\(538\) 0.645208 0.0278169
\(539\) 1.66113 2.87716i 0.0715498 0.123928i
\(540\) 0 0
\(541\) 30.2191 1.29922 0.649611 0.760266i \(-0.274932\pi\)
0.649611 + 0.760266i \(0.274932\pi\)
\(542\) −1.79013 + 3.10059i −0.0768925 + 0.133182i
\(543\) 0 0
\(544\) 1.84211 + 3.19064i 0.0789800 + 0.136797i
\(545\) −5.07116 −0.217225
\(546\) 0 0
\(547\) −16.8223 −0.719271 −0.359636 0.933093i \(-0.617099\pi\)
−0.359636 + 0.933093i \(0.617099\pi\)
\(548\) 17.5214 + 30.3479i 0.748476 + 1.29640i
\(549\) 0 0
\(550\) 0.00808180 0.0139981i 0.000344609 0.000596881i
\(551\) 1.96429 0.0836817
\(552\) 0 0
\(553\) 3.22525 5.58630i 0.137152 0.237554i
\(554\) −1.27932 −0.0543531
\(555\) 0 0
\(556\) 13.5454 + 23.4614i 0.574454 + 0.994984i
\(557\) −5.24591 9.08619i −0.222276 0.384994i 0.733222 0.679989i \(-0.238015\pi\)
−0.955499 + 0.294995i \(0.904682\pi\)
\(558\) 0 0
\(559\) −0.824600 + 4.36249i −0.0348768 + 0.184513i
\(560\) −8.21520 −0.347155
\(561\) 0 0
\(562\) 3.64244 + 6.30890i 0.153647 + 0.266125i
\(563\) 15.4737 26.8012i 0.652138 1.12954i −0.330465 0.943818i \(-0.607205\pi\)
0.982603 0.185718i \(-0.0594612\pi\)
\(564\) 0 0
\(565\) −10.6043 + 18.3672i −0.446126 + 0.772713i
\(566\) −0.850388 + 1.47292i −0.0357445 + 0.0619112i
\(567\) 0 0
\(568\) −2.38047 + 4.12310i −0.0998825 + 0.173002i
\(569\) −18.4545 31.9641i −0.773651 1.34000i −0.935549 0.353196i \(-0.885095\pi\)
0.161898 0.986807i \(-0.448238\pi\)
\(570\) 0 0
\(571\) −1.77093 −0.0741113 −0.0370556 0.999313i \(-0.511798\pi\)
−0.0370556 + 0.999313i \(0.511798\pi\)
\(572\) 22.0061 7.70479i 0.920121 0.322153i
\(573\) 0 0
\(574\) −1.06170 1.83891i −0.0443143 0.0767546i
\(575\) −0.00881638 0.0152704i −0.000367668 0.000636820i
\(576\) 0 0
\(577\) −9.83999 −0.409644 −0.204822 0.978799i \(-0.565662\pi\)
−0.204822 + 0.978799i \(0.565662\pi\)
\(578\) −1.74761 + 3.02695i −0.0726910 + 0.125905i
\(579\) 0 0
\(580\) −2.63699 −0.109495
\(581\) 2.32028 4.01884i 0.0962613 0.166730i
\(582\) 0 0
\(583\) −13.9469 24.1568i −0.577623 1.00047i
\(584\) −3.61896 −0.149753
\(585\) 0 0
\(586\) −3.13112 −0.129345
\(587\) −7.56917 13.1102i −0.312413 0.541116i 0.666471 0.745531i \(-0.267804\pi\)
−0.978884 + 0.204415i \(0.934471\pi\)
\(588\) 0 0
\(589\) −2.77446 + 4.80551i −0.114320 + 0.198007i
\(590\) 4.55453 0.187507
\(591\) 0 0
\(592\) −2.85997 + 4.95361i −0.117544 + 0.203592i
\(593\) −9.17148 −0.376628 −0.188314 0.982109i \(-0.560302\pi\)
−0.188314 + 0.982109i \(0.560302\pi\)
\(594\) 0 0
\(595\) 1.53493 + 2.65858i 0.0629261 + 0.108991i
\(596\) 15.5040 + 26.8536i 0.635067 + 1.09997i
\(597\) 0 0
\(598\) −0.129913 + 0.687294i −0.00531253 + 0.0281056i
\(599\) 18.5811 0.759202 0.379601 0.925150i \(-0.376061\pi\)
0.379601 + 0.925150i \(0.376061\pi\)
\(600\) 0 0
\(601\) 6.70179 + 11.6078i 0.273372 + 0.473494i 0.969723 0.244207i \(-0.0785277\pi\)
−0.696351 + 0.717701i \(0.745194\pi\)
\(602\) −0.142444 + 0.246721i −0.00580560 + 0.0100556i
\(603\) 0 0
\(604\) −13.5763 + 23.5149i −0.552413 + 0.956808i
\(605\) −0.0416865 + 0.0722032i −0.00169480 + 0.00293548i
\(606\) 0 0
\(607\) −6.31812 + 10.9433i −0.256445 + 0.444175i −0.965287 0.261192i \(-0.915884\pi\)
0.708842 + 0.705367i \(0.249218\pi\)
\(608\) 4.33195 + 7.50316i 0.175684 + 0.304293i
\(609\) 0 0
\(610\) −2.82217 −0.114266
\(611\) 5.54067 1.93990i 0.224151 0.0784800i
\(612\) 0 0
\(613\) −12.8540 22.2637i −0.519167 0.899223i −0.999752 0.0222753i \(-0.992909\pi\)
0.480585 0.876948i \(-0.340424\pi\)
\(614\) −0.382450 0.662422i −0.0154344 0.0267332i
\(615\) 0 0
\(616\) 3.03341 0.122220
\(617\) −3.29810 + 5.71248i −0.132777 + 0.229976i −0.924746 0.380585i \(-0.875723\pi\)
0.791969 + 0.610561i \(0.209056\pi\)
\(618\) 0 0
\(619\) −21.0124 −0.844559 −0.422280 0.906466i \(-0.638770\pi\)
−0.422280 + 0.906466i \(0.638770\pi\)
\(620\) 3.72461 6.45121i 0.149584 0.259087i
\(621\) 0 0
\(622\) 3.96856 + 6.87375i 0.159125 + 0.275612i
\(623\) 9.12826 0.365716
\(624\) 0 0
\(625\) −24.8944 −0.995777
\(626\) 0.834551 + 1.44549i 0.0333554 + 0.0577732i
\(627\) 0 0
\(628\) −12.6274 + 21.8713i −0.503888 + 0.872760i
\(629\) 2.13743 0.0852250
\(630\) 0 0
\(631\) −13.0105 + 22.5349i −0.517940 + 0.897099i 0.481842 + 0.876258i \(0.339968\pi\)
−0.999783 + 0.0208412i \(0.993366\pi\)
\(632\) 5.88970 0.234280
\(633\) 0 0
\(634\) 0.930117 + 1.61101i 0.0369397 + 0.0639814i
\(635\) −20.5658 35.6210i −0.816130 1.41358i
\(636\) 0 0
\(637\) −2.73334 2.35136i −0.108299 0.0931641i
\(638\) 0.466673 0.0184758
\(639\) 0 0
\(640\) −7.71615 13.3648i −0.305008 0.528289i
\(641\) 9.26694 16.0508i 0.366022 0.633969i −0.622917 0.782288i \(-0.714053\pi\)
0.988940 + 0.148319i \(0.0473861\pi\)
\(642\) 0 0
\(643\) 7.22328 12.5111i 0.284858 0.493389i −0.687716 0.725979i \(-0.741387\pi\)
0.972575 + 0.232590i \(0.0747201\pi\)
\(644\) 0.816061 1.41346i 0.0321573 0.0556981i
\(645\) 0 0
\(646\) 0.514903 0.891838i 0.0202586 0.0350889i
\(647\) 14.6438 + 25.3637i 0.575706 + 0.997152i 0.995965 + 0.0897473i \(0.0286059\pi\)
−0.420259 + 0.907404i \(0.638061\pi\)
\(648\) 0 0
\(649\) 29.3100 1.15052
\(650\) −0.0132984 0.0114399i −0.000521605 0.000448711i
\(651\) 0 0
\(652\) 17.9158 + 31.0310i 0.701636 + 1.21527i
\(653\) −15.4807 26.8134i −0.605808 1.04929i −0.991923 0.126840i \(-0.959516\pi\)
0.386115 0.922451i \(-0.373817\pi\)
\(654\) 0 0
\(655\) 3.90121 0.152433
\(656\) −16.8950 + 29.2630i −0.659639 + 1.14253i
\(657\) 0 0
\(658\) 0.376695 0.0146851
\(659\) −18.5414 + 32.1146i −0.722270 + 1.25101i 0.237817 + 0.971310i \(0.423568\pi\)
−0.960088 + 0.279699i \(0.909765\pi\)
\(660\) 0 0
\(661\) 10.2009 + 17.6685i 0.396770 + 0.687226i 0.993325 0.115346i \(-0.0367977\pi\)
−0.596555 + 0.802572i \(0.703464\pi\)
\(662\) −0.206764 −0.00803611
\(663\) 0 0
\(664\) 4.23710 0.164431
\(665\) 3.60957 + 6.25197i 0.139973 + 0.242441i
\(666\) 0 0
\(667\) 0.254545 0.440885i 0.00985601 0.0170711i
\(668\) −36.0085 −1.39321
\(669\) 0 0
\(670\) −2.62919 + 4.55389i −0.101574 + 0.175932i
\(671\) −18.1617 −0.701123
\(672\) 0 0
\(673\) −7.25551 12.5669i −0.279679 0.484419i 0.691626 0.722256i \(-0.256895\pi\)
−0.971305 + 0.237837i \(0.923562\pi\)
\(674\) 1.74350 + 3.01983i 0.0671571 + 0.116319i
\(675\) 0 0
\(676\) −3.78055 25.0201i −0.145406 0.962313i
\(677\) 3.51476 0.135083 0.0675417 0.997716i \(-0.478484\pi\)
0.0675417 + 0.997716i \(0.478484\pi\)
\(678\) 0 0
\(679\) −7.67944 13.3012i −0.294710 0.510452i
\(680\) −1.40148 + 2.42744i −0.0537444 + 0.0930881i
\(681\) 0 0
\(682\) −0.659151 + 1.14168i −0.0252402 + 0.0437173i
\(683\) −13.5376 + 23.4479i −0.518003 + 0.897208i 0.481778 + 0.876293i \(0.339991\pi\)
−0.999781 + 0.0209144i \(0.993342\pi\)
\(684\) 0 0
\(685\) −20.0858 + 34.7897i −0.767440 + 1.32925i
\(686\) −0.115680 0.200364i −0.00441670 0.00764995i
\(687\) 0 0
\(688\) 4.53350 0.172838
\(689\) −28.5718 + 10.0036i −1.08850 + 0.381106i
\(690\) 0 0
\(691\) −14.8702 25.7560i −0.565690 0.979803i −0.996985 0.0775926i \(-0.975277\pi\)
0.431295 0.902211i \(-0.358057\pi\)
\(692\) 16.7378 + 28.9908i 0.636277 + 1.10206i
\(693\) 0 0
\(694\) −3.79810 −0.144174
\(695\) −15.5280 + 26.8952i −0.589009 + 1.02019i
\(696\) 0 0
\(697\) 12.6267 0.478270
\(698\) 3.97619 6.88696i 0.150501 0.260675i
\(699\) 0 0
\(700\) 0.0204660 + 0.0354482i 0.000773544 + 0.00133982i
\(701\) −18.2888 −0.690760 −0.345380 0.938463i \(-0.612250\pi\)
−0.345380 + 0.938463i \(0.612250\pi\)
\(702\) 0 0
\(703\) 5.02642 0.189575
\(704\) −11.2024 19.4030i −0.422205 0.731280i
\(705\) 0 0
\(706\) 2.76664 4.79197i 0.104124 0.180348i
\(707\) −7.95042 −0.299006
\(708\) 0 0
\(709\) 14.3402 24.8379i 0.538557 0.932808i −0.460425 0.887699i \(-0.652303\pi\)
0.998982 0.0451098i \(-0.0143638\pi\)
\(710\) −2.69187 −0.101024
\(711\) 0 0
\(712\) 4.16732 + 7.21801i 0.156177 + 0.270506i
\(713\) 0.719062 + 1.24545i 0.0269291 + 0.0466426i
\(714\) 0 0
\(715\) 20.2626 + 17.4309i 0.757779 + 0.651880i
\(716\) 28.2017 1.05395
\(717\) 0 0
\(718\) 0.714760 + 1.23800i 0.0266746 + 0.0462018i
\(719\) 12.7381 22.0631i 0.475052 0.822813i −0.524540 0.851386i \(-0.675763\pi\)
0.999592 + 0.0285723i \(0.00909607\pi\)
\(720\) 0 0
\(721\) 0.347412 0.601736i 0.0129383 0.0224098i
\(722\) −0.987073 + 1.70966i −0.0367350 + 0.0636270i
\(723\) 0 0
\(724\) 6.67138 11.5552i 0.247940 0.429444i
\(725\) 0.00638375 + 0.0110570i 0.000237086 + 0.000410646i
\(726\) 0 0
\(727\) −9.02572 −0.334746 −0.167373 0.985894i \(-0.553528\pi\)
−0.167373 + 0.985894i \(0.553528\pi\)
\(728\) 0.611444 3.23480i 0.0226616 0.119890i
\(729\) 0 0
\(730\) −1.02309 1.77204i −0.0378663 0.0655863i
\(731\) −0.847041 1.46712i −0.0313290 0.0542633i
\(732\) 0 0
\(733\) −7.57069 −0.279630 −0.139815 0.990178i \(-0.544651\pi\)
−0.139815 + 0.990178i \(0.544651\pi\)
\(734\) 2.29695 3.97843i 0.0847818 0.146846i
\(735\) 0 0
\(736\) 2.24544 0.0827681
\(737\) −16.9198 + 29.3059i −0.623249 + 1.07950i
\(738\) 0 0
\(739\) 3.18648 + 5.51914i 0.117216 + 0.203025i 0.918664 0.395041i \(-0.129270\pi\)
−0.801447 + 0.598066i \(0.795936\pi\)
\(740\) −6.74778 −0.248053
\(741\) 0 0
\(742\) −1.94252 −0.0713122
\(743\) −11.4148 19.7711i −0.418770 0.725330i 0.577046 0.816711i \(-0.304205\pi\)
−0.995816 + 0.0913811i \(0.970872\pi\)
\(744\) 0 0
\(745\) −17.7731 + 30.7840i −0.651157 + 1.12784i
\(746\) −6.98596 −0.255774
\(747\) 0 0
\(748\) −4.44836 + 7.70479i −0.162648 + 0.281715i
\(749\) 8.94647 0.326897
\(750\) 0 0
\(751\) −19.6848 34.0950i −0.718307 1.24414i −0.961670 0.274209i \(-0.911584\pi\)
0.243363 0.969935i \(-0.421749\pi\)
\(752\) −2.99722 5.19133i −0.109297 0.189308i
\(753\) 0 0
\(754\) 0.0940671 0.497655i 0.00342572 0.0181235i
\(755\) −31.1268 −1.13282
\(756\) 0 0
\(757\) −4.36357 7.55792i −0.158597 0.274697i 0.775766 0.631020i \(-0.217364\pi\)
−0.934363 + 0.356323i \(0.884030\pi\)
\(758\) −0.500020 + 0.866060i −0.0181615 + 0.0314567i
\(759\) 0 0
\(760\) −3.29575 + 5.70841i −0.119550 + 0.207066i
\(761\) −11.4195 + 19.7792i −0.413958 + 0.716996i −0.995318 0.0966503i \(-0.969187\pi\)
0.581361 + 0.813646i \(0.302520\pi\)
\(762\) 0 0
\(763\) −1.13634 + 1.96820i −0.0411382 + 0.0712535i
\(764\) 2.77531 + 4.80697i 0.100407 + 0.173910i
\(765\) 0 0
\(766\) −4.01368 −0.145020
\(767\) 5.90801 31.2559i 0.213326 1.12859i
\(768\) 0 0
\(769\) −17.4174 30.1679i −0.628089 1.08788i −0.987935 0.154871i \(-0.950504\pi\)
0.359846 0.933012i \(-0.382829\pi\)
\(770\) 0.857556 + 1.48533i 0.0309042 + 0.0535276i
\(771\) 0 0
\(772\) 19.5630 0.704088
\(773\) −16.6372 + 28.8164i −0.598397 + 1.03645i 0.394661 + 0.918827i \(0.370862\pi\)
−0.993058 + 0.117627i \(0.962471\pi\)
\(774\) 0 0
\(775\) −0.0360668 −0.00129556
\(776\) 7.01178 12.1448i 0.251708 0.435971i
\(777\) 0 0
\(778\) 2.93220 + 5.07872i 0.105124 + 0.182081i
\(779\) 29.6932 1.06387
\(780\) 0 0
\(781\) −17.3232 −0.619872
\(782\) −0.133448 0.231139i −0.00477210 0.00826553i
\(783\) 0 0
\(784\) −1.84085 + 3.18844i −0.0657446 + 0.113873i
\(785\) −28.9512 −1.03331
\(786\) 0 0
\(787\) 13.9079 24.0891i 0.495762 0.858685i −0.504226 0.863572i \(-0.668222\pi\)
0.999988 + 0.00488682i \(0.00155553\pi\)
\(788\) −49.4737 −1.76243
\(789\) 0 0
\(790\) 1.66504 + 2.88393i 0.0592393 + 0.102606i
\(791\) 4.75239 + 8.23138i 0.168976 + 0.292674i
\(792\) 0 0
\(793\) −3.66084 + 19.3674i −0.130000 + 0.687757i
\(794\) 6.26407 0.222304
\(795\) 0 0
\(796\) −12.1134 20.9811i −0.429349 0.743655i
\(797\) 17.9343 31.0630i 0.635264 1.10031i −0.351195 0.936302i \(-0.614225\pi\)
0.986459 0.164007i \(-0.0524421\pi\)
\(798\) 0 0
\(799\) −1.12000 + 1.93990i −0.0396228 + 0.0686288i
\(800\) −0.0281568 + 0.0487690i −0.000995493 + 0.00172424i
\(801\) 0 0
\(802\) 3.38779 5.86783i 0.119627 0.207200i
\(803\) −6.58396 11.4037i −0.232343 0.402430i
\(804\) 0 0
\(805\) 1.87100 0.0659441
\(806\) 1.08461 + 0.933040i 0.0382039 + 0.0328649i
\(807\) 0 0
\(808\) −3.62960 6.28666i −0.127689 0.221164i
\(809\) −8.91223 15.4364i −0.313337 0.542716i 0.665745 0.746179i \(-0.268114\pi\)
−0.979083 + 0.203463i \(0.934780\pi\)
\(810\) 0 0
\(811\) 25.2152 0.885425 0.442713 0.896664i \(-0.354016\pi\)
0.442713 + 0.896664i \(0.354016\pi\)
\(812\) −0.590892 + 1.02346i −0.0207362 + 0.0359162i
\(813\) 0 0
\(814\) 1.19417 0.0418556
\(815\) −20.5379 + 35.5728i −0.719413 + 1.24606i
\(816\) 0 0
\(817\) −1.99192 3.45010i −0.0696884 0.120704i
\(818\) −5.40719 −0.189058
\(819\) 0 0
\(820\) −39.8619 −1.39204
\(821\) −5.22797 9.05511i −0.182457 0.316026i 0.760259 0.649620i \(-0.225072\pi\)
−0.942717 + 0.333594i \(0.891739\pi\)
\(822\) 0 0
\(823\) 16.6203 28.7871i 0.579346 1.00346i −0.416209 0.909269i \(-0.636641\pi\)
0.995554 0.0941873i \(-0.0300253\pi\)
\(824\) 0.634416 0.0221009
\(825\) 0 0
\(826\) 1.02057 1.76768i 0.0355102 0.0615055i
\(827\) 37.9927 1.32113 0.660567 0.750767i \(-0.270316\pi\)
0.660567 + 0.750767i \(0.270316\pi\)
\(828\) 0 0
\(829\) −8.34721 14.4578i −0.289911 0.502140i 0.683877 0.729597i \(-0.260292\pi\)
−0.973788 + 0.227457i \(0.926959\pi\)
\(830\) 1.19784 + 2.07472i 0.0415777 + 0.0720147i
\(831\) 0 0
\(832\) −22.9493 + 8.03501i −0.795623 + 0.278564i
\(833\) 1.37578 0.0476680
\(834\) 0 0
\(835\) −20.6394 35.7484i −0.714254 1.23712i
\(836\) −10.4609 + 18.1187i −0.361796 + 0.626649i
\(837\) 0 0
\(838\) −1.68967 + 2.92660i −0.0583688 + 0.101098i
\(839\) −23.3206 + 40.3924i −0.805115 + 1.39450i 0.111098 + 0.993809i \(0.464563\pi\)
−0.916213 + 0.400691i \(0.868770\pi\)
\(840\) 0 0
\(841\) 14.3157 24.7955i 0.493644 0.855017i
\(842\) 1.18837 + 2.05831i 0.0409538 + 0.0709341i
\(843\) 0 0
\(844\) 47.4789 1.63429
\(845\) 22.6725 18.0943i 0.779958 0.622463i
\(846\) 0 0
\(847\) 0.0186821 + 0.0323584i 0.000641925 + 0.00111185i
\(848\) 15.4559 + 26.7704i 0.530758 + 0.919299i
\(849\) 0 0
\(850\) 0.00669352 0.000229586
\(851\) 0.651354 1.12818i 0.0223281 0.0386735i
\(852\) 0 0
\(853\) 39.5640 1.35464 0.677322 0.735686i \(-0.263140\pi\)
0.677322 + 0.735686i \(0.263140\pi\)
\(854\) −0.632387 + 1.09533i −0.0216398 + 0.0374813i
\(855\) 0 0
\(856\) 4.08433 + 7.07426i 0.139599 + 0.241793i
\(857\) 19.5613 0.668201 0.334101 0.942537i \(-0.391567\pi\)
0.334101 + 0.942537i \(0.391567\pi\)
\(858\) 0 0
\(859\) −10.1632 −0.346762 −0.173381 0.984855i \(-0.555469\pi\)
−0.173381 + 0.984855i \(0.555469\pi\)
\(860\) 2.67407 + 4.63163i 0.0911851 + 0.157937i
\(861\) 0 0
\(862\) 1.44621 2.50490i 0.0492580 0.0853174i
\(863\) −26.8903 −0.915356 −0.457678 0.889118i \(-0.651319\pi\)
−0.457678 + 0.889118i \(0.651319\pi\)
\(864\) 0 0
\(865\) −19.1876 + 33.2339i −0.652398 + 1.12999i
\(866\) 2.53276 0.0860666
\(867\) 0 0
\(868\) −1.66921 2.89115i −0.0566566 0.0981321i
\(869\) 10.7151 + 18.5591i 0.363485 + 0.629575i
\(870\) 0 0
\(871\) 27.8410 + 23.9503i 0.943358 + 0.811524i
\(872\) −2.07509 −0.0702713
\(873\) 0 0
\(874\) −0.313820 0.543552i −0.0106151 0.0183859i
\(875\) −5.60186 + 9.70271i −0.189378 + 0.328012i
\(876\) 0 0
\(877\) 0.850801 1.47363i 0.0287295 0.0497610i −0.851303 0.524674i \(-0.824187\pi\)
0.880033 + 0.474913i \(0.157521\pi\)
\(878\) −2.07275 + 3.59011i −0.0699520 + 0.121160i
\(879\) 0 0
\(880\) 13.6465 23.6364i 0.460023 0.796783i
\(881\) −5.65448 9.79384i −0.190504 0.329963i 0.754913 0.655825i \(-0.227679\pi\)
−0.945417 + 0.325862i \(0.894346\pi\)
\(882\) 0 0
\(883\) −46.9068 −1.57854 −0.789270 0.614047i \(-0.789541\pi\)
−0.789270 + 0.614047i \(0.789541\pi\)
\(884\) 7.31965 + 6.29674i 0.246187 + 0.211782i
\(885\) 0 0
\(886\) −3.20659 5.55398i −0.107728 0.186590i
\(887\) −1.22346 2.11909i −0.0410797 0.0711522i 0.844755 0.535154i \(-0.179746\pi\)
−0.885834 + 0.464002i \(0.846413\pi\)
\(888\) 0 0
\(889\) −18.4334 −0.618237
\(890\) −2.35623 + 4.08111i −0.0789810 + 0.136799i
\(891\) 0 0
\(892\) −44.0864 −1.47612
\(893\) −2.63382 + 4.56191i −0.0881374 + 0.152658i
\(894\) 0 0
\(895\) 16.1647 + 27.9980i 0.540325 + 0.935871i
\(896\) −6.91610 −0.231051
\(897\) 0 0
\(898\) −0.0384012 −0.00128146
\(899\) −0.520658 0.901806i −0.0173649 0.0300769i
\(900\) 0 0
\(901\) 5.77557 10.0036i 0.192412 0.333268i
\(902\) 7.05444 0.234887
\(903\) 0 0
\(904\) −4.33921 + 7.51574i −0.144320 + 0.249970i
\(905\) 15.2956 0.508443
\(906\) 0 0
\(907\) 20.7083 + 35.8678i 0.687607 + 1.19097i 0.972610 + 0.232443i \(0.0746719\pi\)
−0.285003 + 0.958526i \(0.591995\pi\)
\(908\) −1.25067 2.16622i −0.0415048 0.0718885i
\(909\) 0 0
\(910\) 1.75680 0.615091i 0.0582373 0.0203901i
\(911\) 11.9951 0.397416 0.198708 0.980059i \(-0.436325\pi\)
0.198708 + 0.980059i \(0.436325\pi\)
\(912\) 0 0
\(913\) 7.70855 + 13.3516i 0.255116 + 0.441873i
\(914\) 3.67116 6.35864i 0.121431 0.210325i
\(915\) 0 0
\(916\) −4.52020 + 7.82922i −0.149352 + 0.258685i
\(917\) 0.874176 1.51412i 0.0288678 0.0500006i
\(918\) 0 0
\(919\) −22.4708 + 38.9206i −0.741243 + 1.28387i 0.210686 + 0.977554i \(0.432430\pi\)
−0.951930 + 0.306317i \(0.900903\pi\)
\(920\) 0.854167 + 1.47946i 0.0281611 + 0.0487764i
\(921\) 0 0
\(922\) 6.72463 0.221464
\(923\) −3.49182 + 18.4732i −0.114935 + 0.608054i
\(924\) 0 0
\(925\) 0.0163354 + 0.0282937i 0.000537103 + 0.000930290i
\(926\) 0.730990 + 1.26611i 0.0240218 + 0.0416070i
\(927\) 0 0
\(928\) −1.62588 −0.0533720
\(929\) 14.1298 24.4735i 0.463582 0.802948i −0.535554 0.844501i \(-0.679897\pi\)
0.999136 + 0.0415530i \(0.0132305\pi\)
\(930\) 0 0
\(931\) 3.23531 0.106033
\(932\) −11.5696 + 20.0391i −0.378973 + 0.656401i
\(933\) 0 0
\(934\) 4.00727 + 6.94080i 0.131122 + 0.227110i
\(935\) −10.1989 −0.333538
\(936\) 0 0
\(937\) 32.4601 1.06042 0.530212 0.847865i \(-0.322112\pi\)
0.530212 + 0.847865i \(0.322112\pi\)
\(938\) 1.17829 + 2.04086i 0.0384725 + 0.0666364i
\(939\) 0 0
\(940\) 3.53580 6.12419i 0.115325 0.199749i
\(941\) 12.6051 0.410913 0.205457 0.978666i \(-0.434132\pi\)
0.205457 + 0.978666i \(0.434132\pi\)
\(942\) 0 0
\(943\) 3.84782 6.66462i 0.125302 0.217030i
\(944\) −32.4812 −1.05717
\(945\) 0 0
\(946\) −0.473236 0.819669i −0.0153862 0.0266497i
\(947\) −6.64010 11.5010i −0.215774 0.373732i 0.737738 0.675088i \(-0.235894\pi\)
−0.953512 + 0.301356i \(0.902561\pi\)
\(948\) 0 0
\(949\) −13.4880 + 4.72242i −0.437838 + 0.153296i
\(950\) 0.0157406 0.000510693
\(951\) 0 0
\(952\) 0.628085 + 1.08787i 0.0203563 + 0.0352582i
\(953\) −29.2159 + 50.6035i −0.946397 + 1.63921i −0.193467 + 0.981107i \(0.561973\pi\)
−0.752930 + 0.658101i \(0.771360\pi\)
\(954\) 0 0
\(955\) −3.18151 + 5.51053i −0.102951 + 0.178317i
\(956\) 4.06602 7.04255i 0.131504 0.227772i
\(957\) 0 0
\(958\) 0.826224 1.43106i 0.0266941 0.0462355i
\(959\) 9.00160 + 15.5912i 0.290677 + 0.503467i
\(960\) 0 0
\(961\) −28.0584 −0.905109
\(962\) 0.240708 1.27345i 0.00776074 0.0410576i
\(963\) 0 0
\(964\) 3.92546 + 6.79910i 0.126431 + 0.218984i
\(965\) 11.2131 + 19.4217i 0.360964 + 0.625207i
\(966\) 0 0
\(967\) 33.2182 1.06823 0.534113 0.845413i \(-0.320646\pi\)
0.534113 + 0.845413i \(0.320646\pi\)
\(968\) −0.0170579 + 0.0295451i −0.000548261 + 0.000949616i
\(969\) 0 0
\(970\) 7.92901 0.254585
\(971\) 8.38890 14.5300i 0.269213 0.466290i −0.699446 0.714685i \(-0.746570\pi\)
0.968659 + 0.248395i \(0.0799032\pi\)
\(972\) 0 0
\(973\) 6.95896 + 12.0533i 0.223094 + 0.386410i
\(974\) 4.28023 0.137148
\(975\) 0 0
\(976\) 20.1266 0.644238
\(977\) −25.0211 43.3378i −0.800496 1.38650i −0.919290 0.393581i \(-0.871236\pi\)
0.118793 0.992919i \(-0.462097\pi\)
\(978\) 0 0
\(979\) −15.1632 + 26.2634i −0.484618 + 0.839382i
\(980\) −4.34328 −0.138741
\(981\) 0 0
\(982\) 1.76737 3.06118i 0.0563992 0.0976862i
\(983\) −16.6741 −0.531822 −0.265911 0.963998i \(-0.585673\pi\)
−0.265911 + 0.963998i \(0.585673\pi\)
\(984\) 0 0
\(985\) −28.3574 49.1164i −0.903540 1.56498i
\(986\) 0.0966271 + 0.167363i 0.00307723 + 0.00532993i
\(987\) 0 0
\(988\) 17.2130 + 14.8075i 0.547620 + 0.471090i
\(989\) −1.03250 −0.0328316
\(990\) 0 0
\(991\) −10.1642 17.6050i −0.322878 0.559241i 0.658203 0.752841i \(-0.271317\pi\)
−0.981081 + 0.193600i \(0.937984\pi\)
\(992\) 2.29646 3.97759i 0.0729128 0.126289i
\(993\) 0 0
\(994\) −0.603190 + 1.04476i −0.0191320 + 0.0331377i
\(995\) 13.8864 24.0519i 0.440228 0.762497i
\(996\) 0 0
\(997\) −3.13823 + 5.43557i −0.0993887 + 0.172146i −0.911432 0.411451i \(-0.865022\pi\)
0.812043 + 0.583597i \(0.198355\pi\)
\(998\) 1.44350 + 2.50021i 0.0456931 + 0.0791427i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 819.2.o.h.757.3 8
3.2 odd 2 91.2.f.c.29.2 yes 8
12.11 even 2 1456.2.s.q.1121.1 8
13.9 even 3 inner 819.2.o.h.568.3 8
21.2 odd 6 637.2.g.k.263.2 8
21.5 even 6 637.2.g.j.263.2 8
21.11 odd 6 637.2.h.h.471.3 8
21.17 even 6 637.2.h.i.471.3 8
21.20 even 2 637.2.f.i.393.2 8
39.2 even 12 1183.2.c.g.337.4 8
39.11 even 12 1183.2.c.g.337.5 8
39.23 odd 6 1183.2.a.l.1.2 4
39.29 odd 6 1183.2.a.k.1.3 4
39.35 odd 6 91.2.f.c.22.2 8
156.35 even 6 1456.2.s.q.113.1 8
273.62 even 6 8281.2.a.bt.1.2 4
273.74 odd 6 637.2.g.k.373.2 8
273.146 even 6 8281.2.a.bp.1.3 4
273.152 even 6 637.2.h.i.165.3 8
273.191 odd 6 637.2.h.h.165.3 8
273.230 even 6 637.2.f.i.295.2 8
273.269 even 6 637.2.g.j.373.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
91.2.f.c.22.2 8 39.35 odd 6
91.2.f.c.29.2 yes 8 3.2 odd 2
637.2.f.i.295.2 8 273.230 even 6
637.2.f.i.393.2 8 21.20 even 2
637.2.g.j.263.2 8 21.5 even 6
637.2.g.j.373.2 8 273.269 even 6
637.2.g.k.263.2 8 21.2 odd 6
637.2.g.k.373.2 8 273.74 odd 6
637.2.h.h.165.3 8 273.191 odd 6
637.2.h.h.471.3 8 21.11 odd 6
637.2.h.i.165.3 8 273.152 even 6
637.2.h.i.471.3 8 21.17 even 6
819.2.o.h.568.3 8 13.9 even 3 inner
819.2.o.h.757.3 8 1.1 even 1 trivial
1183.2.a.k.1.3 4 39.29 odd 6
1183.2.a.l.1.2 4 39.23 odd 6
1183.2.c.g.337.4 8 39.2 even 12
1183.2.c.g.337.5 8 39.11 even 12
1456.2.s.q.113.1 8 156.35 even 6
1456.2.s.q.1121.1 8 12.11 even 2
8281.2.a.bp.1.3 4 273.146 even 6
8281.2.a.bt.1.2 4 273.62 even 6