Properties

Label 819.2.o.b.568.1
Level $819$
Weight $2$
Character 819.568
Analytic conductor $6.540$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [819,2,Mod(568,819)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(819, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("819.568");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 819 = 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 819.o (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.53974792554\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 91)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 568.1
Root \(0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 819.568
Dual form 819.2.o.b.757.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 + 1.50000i) q^{2} +(-0.500000 - 0.866025i) q^{4} +1.73205 q^{5} +(-0.500000 - 0.866025i) q^{7} -1.73205 q^{8} +O(q^{10})\) \(q+(-0.866025 + 1.50000i) q^{2} +(-0.500000 - 0.866025i) q^{4} +1.73205 q^{5} +(-0.500000 - 0.866025i) q^{7} -1.73205 q^{8} +(-1.50000 + 2.59808i) q^{10} +(2.36603 - 4.09808i) q^{11} +(-1.59808 - 3.23205i) q^{13} +1.73205 q^{14} +(2.50000 - 4.33013i) q^{16} +(-2.13397 - 3.69615i) q^{17} +(-1.00000 - 1.73205i) q^{19} +(-0.866025 - 1.50000i) q^{20} +(4.09808 + 7.09808i) q^{22} +(0.633975 - 1.09808i) q^{23} -2.00000 q^{25} +(6.23205 + 0.401924i) q^{26} +(-0.500000 + 0.866025i) q^{28} +(-1.50000 + 2.59808i) q^{29} -6.19615 q^{31} +(2.59808 + 4.50000i) q^{32} +7.39230 q^{34} +(-0.866025 - 1.50000i) q^{35} +(3.50000 - 6.06218i) q^{37} +3.46410 q^{38} -3.00000 q^{40} +(2.59808 - 4.50000i) q^{41} +(-5.09808 - 8.83013i) q^{43} -4.73205 q^{44} +(1.09808 + 1.90192i) q^{46} +0.928203 q^{47} +(-0.500000 + 0.866025i) q^{49} +(1.73205 - 3.00000i) q^{50} +(-2.00000 + 3.00000i) q^{52} -3.92820 q^{53} +(4.09808 - 7.09808i) q^{55} +(0.866025 + 1.50000i) q^{56} +(-2.59808 - 4.50000i) q^{58} +(5.36603 + 9.29423i) q^{59} +(7.59808 + 13.1603i) q^{61} +(5.36603 - 9.29423i) q^{62} +1.00000 q^{64} +(-2.76795 - 5.59808i) q^{65} +(-2.09808 + 3.63397i) q^{67} +(-2.13397 + 3.69615i) q^{68} +3.00000 q^{70} +(3.00000 + 5.19615i) q^{71} +7.19615 q^{73} +(6.06218 + 10.5000i) q^{74} +(-1.00000 + 1.73205i) q^{76} -4.73205 q^{77} +5.80385 q^{79} +(4.33013 - 7.50000i) q^{80} +(4.50000 + 7.79423i) q^{82} -8.19615 q^{83} +(-3.69615 - 6.40192i) q^{85} +17.6603 q^{86} +(-4.09808 + 7.09808i) q^{88} +(-0.464102 + 0.803848i) q^{89} +(-2.00000 + 3.00000i) q^{91} -1.26795 q^{92} +(-0.803848 + 1.39230i) q^{94} +(-1.73205 - 3.00000i) q^{95} +(7.19615 + 12.4641i) q^{97} +(-0.866025 - 1.50000i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{4} - 2 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 2 q^{4} - 2 q^{7} - 6 q^{10} + 6 q^{11} + 4 q^{13} + 10 q^{16} - 12 q^{17} - 4 q^{19} + 6 q^{22} + 6 q^{23} - 8 q^{25} + 18 q^{26} - 2 q^{28} - 6 q^{29} - 4 q^{31} - 12 q^{34} + 14 q^{37} - 12 q^{40} - 10 q^{43} - 12 q^{44} - 6 q^{46} - 24 q^{47} - 2 q^{49} - 8 q^{52} + 12 q^{53} + 6 q^{55} + 18 q^{59} + 20 q^{61} + 18 q^{62} + 4 q^{64} - 18 q^{65} + 2 q^{67} - 12 q^{68} + 12 q^{70} + 12 q^{71} + 8 q^{73} - 4 q^{76} - 12 q^{77} + 44 q^{79} + 18 q^{82} - 12 q^{83} + 6 q^{85} + 36 q^{86} - 6 q^{88} + 12 q^{89} - 8 q^{91} - 12 q^{92} - 24 q^{94} + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/819\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(379\) \(703\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 + 1.50000i −0.612372 + 1.06066i 0.378467 + 0.925615i \(0.376451\pi\)
−0.990839 + 0.135045i \(0.956882\pi\)
\(3\) 0 0
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 1.73205 0.774597 0.387298 0.921954i \(-0.373408\pi\)
0.387298 + 0.921954i \(0.373408\pi\)
\(6\) 0 0
\(7\) −0.500000 0.866025i −0.188982 0.327327i
\(8\) −1.73205 −0.612372
\(9\) 0 0
\(10\) −1.50000 + 2.59808i −0.474342 + 0.821584i
\(11\) 2.36603 4.09808i 0.713384 1.23562i −0.250196 0.968195i \(-0.580495\pi\)
0.963580 0.267421i \(-0.0861715\pi\)
\(12\) 0 0
\(13\) −1.59808 3.23205i −0.443227 0.896410i
\(14\) 1.73205 0.462910
\(15\) 0 0
\(16\) 2.50000 4.33013i 0.625000 1.08253i
\(17\) −2.13397 3.69615i −0.517565 0.896449i −0.999792 0.0204023i \(-0.993505\pi\)
0.482227 0.876046i \(-0.339828\pi\)
\(18\) 0 0
\(19\) −1.00000 1.73205i −0.229416 0.397360i 0.728219 0.685344i \(-0.240348\pi\)
−0.957635 + 0.287984i \(0.907015\pi\)
\(20\) −0.866025 1.50000i −0.193649 0.335410i
\(21\) 0 0
\(22\) 4.09808 + 7.09808i 0.873713 + 1.51331i
\(23\) 0.633975 1.09808i 0.132193 0.228965i −0.792329 0.610094i \(-0.791132\pi\)
0.924522 + 0.381130i \(0.124465\pi\)
\(24\) 0 0
\(25\) −2.00000 −0.400000
\(26\) 6.23205 + 0.401924i 1.22221 + 0.0788237i
\(27\) 0 0
\(28\) −0.500000 + 0.866025i −0.0944911 + 0.163663i
\(29\) −1.50000 + 2.59808i −0.278543 + 0.482451i −0.971023 0.238987i \(-0.923185\pi\)
0.692480 + 0.721437i \(0.256518\pi\)
\(30\) 0 0
\(31\) −6.19615 −1.11286 −0.556431 0.830894i \(-0.687830\pi\)
−0.556431 + 0.830894i \(0.687830\pi\)
\(32\) 2.59808 + 4.50000i 0.459279 + 0.795495i
\(33\) 0 0
\(34\) 7.39230 1.26777
\(35\) −0.866025 1.50000i −0.146385 0.253546i
\(36\) 0 0
\(37\) 3.50000 6.06218i 0.575396 0.996616i −0.420602 0.907245i \(-0.638181\pi\)
0.995998 0.0893706i \(-0.0284856\pi\)
\(38\) 3.46410 0.561951
\(39\) 0 0
\(40\) −3.00000 −0.474342
\(41\) 2.59808 4.50000i 0.405751 0.702782i −0.588657 0.808383i \(-0.700343\pi\)
0.994409 + 0.105601i \(0.0336766\pi\)
\(42\) 0 0
\(43\) −5.09808 8.83013i −0.777449 1.34658i −0.933408 0.358818i \(-0.883180\pi\)
0.155958 0.987764i \(-0.450153\pi\)
\(44\) −4.73205 −0.713384
\(45\) 0 0
\(46\) 1.09808 + 1.90192i 0.161903 + 0.280423i
\(47\) 0.928203 0.135392 0.0676962 0.997706i \(-0.478435\pi\)
0.0676962 + 0.997706i \(0.478435\pi\)
\(48\) 0 0
\(49\) −0.500000 + 0.866025i −0.0714286 + 0.123718i
\(50\) 1.73205 3.00000i 0.244949 0.424264i
\(51\) 0 0
\(52\) −2.00000 + 3.00000i −0.277350 + 0.416025i
\(53\) −3.92820 −0.539580 −0.269790 0.962919i \(-0.586954\pi\)
−0.269790 + 0.962919i \(0.586954\pi\)
\(54\) 0 0
\(55\) 4.09808 7.09808i 0.552584 0.957104i
\(56\) 0.866025 + 1.50000i 0.115728 + 0.200446i
\(57\) 0 0
\(58\) −2.59808 4.50000i −0.341144 0.590879i
\(59\) 5.36603 + 9.29423i 0.698597 + 1.21001i 0.968953 + 0.247245i \(0.0795253\pi\)
−0.270356 + 0.962760i \(0.587141\pi\)
\(60\) 0 0
\(61\) 7.59808 + 13.1603i 0.972834 + 1.68500i 0.686905 + 0.726747i \(0.258969\pi\)
0.285929 + 0.958251i \(0.407698\pi\)
\(62\) 5.36603 9.29423i 0.681486 1.18037i
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −2.76795 5.59808i −0.343322 0.694356i
\(66\) 0 0
\(67\) −2.09808 + 3.63397i −0.256321 + 0.443961i −0.965253 0.261316i \(-0.915844\pi\)
0.708933 + 0.705276i \(0.249177\pi\)
\(68\) −2.13397 + 3.69615i −0.258782 + 0.448224i
\(69\) 0 0
\(70\) 3.00000 0.358569
\(71\) 3.00000 + 5.19615i 0.356034 + 0.616670i 0.987294 0.158901i \(-0.0507952\pi\)
−0.631260 + 0.775571i \(0.717462\pi\)
\(72\) 0 0
\(73\) 7.19615 0.842246 0.421123 0.907004i \(-0.361636\pi\)
0.421123 + 0.907004i \(0.361636\pi\)
\(74\) 6.06218 + 10.5000i 0.704714 + 1.22060i
\(75\) 0 0
\(76\) −1.00000 + 1.73205i −0.114708 + 0.198680i
\(77\) −4.73205 −0.539267
\(78\) 0 0
\(79\) 5.80385 0.652984 0.326492 0.945200i \(-0.394133\pi\)
0.326492 + 0.945200i \(0.394133\pi\)
\(80\) 4.33013 7.50000i 0.484123 0.838525i
\(81\) 0 0
\(82\) 4.50000 + 7.79423i 0.496942 + 0.860729i
\(83\) −8.19615 −0.899645 −0.449822 0.893118i \(-0.648513\pi\)
−0.449822 + 0.893118i \(0.648513\pi\)
\(84\) 0 0
\(85\) −3.69615 6.40192i −0.400904 0.694386i
\(86\) 17.6603 1.90435
\(87\) 0 0
\(88\) −4.09808 + 7.09808i −0.436856 + 0.756657i
\(89\) −0.464102 + 0.803848i −0.0491947 + 0.0852077i −0.889574 0.456791i \(-0.848999\pi\)
0.840379 + 0.541998i \(0.182332\pi\)
\(90\) 0 0
\(91\) −2.00000 + 3.00000i −0.209657 + 0.314485i
\(92\) −1.26795 −0.132193
\(93\) 0 0
\(94\) −0.803848 + 1.39230i −0.0829105 + 0.143605i
\(95\) −1.73205 3.00000i −0.177705 0.307794i
\(96\) 0 0
\(97\) 7.19615 + 12.4641i 0.730659 + 1.26554i 0.956602 + 0.291397i \(0.0941202\pi\)
−0.225944 + 0.974140i \(0.572546\pi\)
\(98\) −0.866025 1.50000i −0.0874818 0.151523i
\(99\) 0 0
\(100\) 1.00000 + 1.73205i 0.100000 + 0.173205i
\(101\) −2.13397 + 3.69615i −0.212338 + 0.367781i −0.952446 0.304708i \(-0.901441\pi\)
0.740108 + 0.672489i \(0.234775\pi\)
\(102\) 0 0
\(103\) 6.39230 0.629853 0.314926 0.949116i \(-0.398020\pi\)
0.314926 + 0.949116i \(0.398020\pi\)
\(104\) 2.76795 + 5.59808i 0.271420 + 0.548937i
\(105\) 0 0
\(106\) 3.40192 5.89230i 0.330424 0.572311i
\(107\) 9.92820 17.1962i 0.959796 1.66241i 0.236805 0.971557i \(-0.423900\pi\)
0.722991 0.690858i \(-0.242767\pi\)
\(108\) 0 0
\(109\) 12.3923 1.18697 0.593484 0.804846i \(-0.297752\pi\)
0.593484 + 0.804846i \(0.297752\pi\)
\(110\) 7.09808 + 12.2942i 0.676775 + 1.17221i
\(111\) 0 0
\(112\) −5.00000 −0.472456
\(113\) −3.69615 6.40192i −0.347705 0.602242i 0.638137 0.769923i \(-0.279706\pi\)
−0.985841 + 0.167681i \(0.946372\pi\)
\(114\) 0 0
\(115\) 1.09808 1.90192i 0.102396 0.177355i
\(116\) 3.00000 0.278543
\(117\) 0 0
\(118\) −18.5885 −1.71121
\(119\) −2.13397 + 3.69615i −0.195621 + 0.338826i
\(120\) 0 0
\(121\) −5.69615 9.86603i −0.517832 0.896911i
\(122\) −26.3205 −2.38295
\(123\) 0 0
\(124\) 3.09808 + 5.36603i 0.278215 + 0.481883i
\(125\) −12.1244 −1.08444
\(126\) 0 0
\(127\) 1.19615 2.07180i 0.106141 0.183842i −0.808063 0.589097i \(-0.799484\pi\)
0.914204 + 0.405254i \(0.132817\pi\)
\(128\) −6.06218 + 10.5000i −0.535826 + 0.928078i
\(129\) 0 0
\(130\) 10.7942 + 0.696152i 0.946716 + 0.0610566i
\(131\) −3.46410 −0.302660 −0.151330 0.988483i \(-0.548356\pi\)
−0.151330 + 0.988483i \(0.548356\pi\)
\(132\) 0 0
\(133\) −1.00000 + 1.73205i −0.0867110 + 0.150188i
\(134\) −3.63397 6.29423i −0.313928 0.543739i
\(135\) 0 0
\(136\) 3.69615 + 6.40192i 0.316942 + 0.548960i
\(137\) 10.9641 + 18.9904i 0.936726 + 1.62246i 0.771526 + 0.636198i \(0.219494\pi\)
0.165200 + 0.986260i \(0.447173\pi\)
\(138\) 0 0
\(139\) −10.2942 17.8301i −0.873145 1.51233i −0.858726 0.512436i \(-0.828743\pi\)
−0.0144194 0.999896i \(-0.504590\pi\)
\(140\) −0.866025 + 1.50000i −0.0731925 + 0.126773i
\(141\) 0 0
\(142\) −10.3923 −0.872103
\(143\) −17.0263 1.09808i −1.42381 0.0918257i
\(144\) 0 0
\(145\) −2.59808 + 4.50000i −0.215758 + 0.373705i
\(146\) −6.23205 + 10.7942i −0.515768 + 0.893337i
\(147\) 0 0
\(148\) −7.00000 −0.575396
\(149\) 0.232051 + 0.401924i 0.0190103 + 0.0329269i 0.875374 0.483446i \(-0.160615\pi\)
−0.856364 + 0.516373i \(0.827282\pi\)
\(150\) 0 0
\(151\) 2.00000 0.162758 0.0813788 0.996683i \(-0.474068\pi\)
0.0813788 + 0.996683i \(0.474068\pi\)
\(152\) 1.73205 + 3.00000i 0.140488 + 0.243332i
\(153\) 0 0
\(154\) 4.09808 7.09808i 0.330232 0.571979i
\(155\) −10.7321 −0.862019
\(156\) 0 0
\(157\) −9.19615 −0.733933 −0.366966 0.930234i \(-0.619604\pi\)
−0.366966 + 0.930234i \(0.619604\pi\)
\(158\) −5.02628 + 8.70577i −0.399869 + 0.692594i
\(159\) 0 0
\(160\) 4.50000 + 7.79423i 0.355756 + 0.616188i
\(161\) −1.26795 −0.0999284
\(162\) 0 0
\(163\) −2.90192 5.02628i −0.227296 0.393689i 0.729710 0.683757i \(-0.239655\pi\)
−0.957006 + 0.290069i \(0.906322\pi\)
\(164\) −5.19615 −0.405751
\(165\) 0 0
\(166\) 7.09808 12.2942i 0.550918 0.954217i
\(167\) 12.2942 21.2942i 0.951356 1.64780i 0.208861 0.977945i \(-0.433024\pi\)
0.742495 0.669852i \(-0.233642\pi\)
\(168\) 0 0
\(169\) −7.89230 + 10.3301i −0.607100 + 0.794625i
\(170\) 12.8038 0.982010
\(171\) 0 0
\(172\) −5.09808 + 8.83013i −0.388725 + 0.673291i
\(173\) 7.73205 + 13.3923i 0.587857 + 1.01820i 0.994513 + 0.104617i \(0.0333615\pi\)
−0.406656 + 0.913581i \(0.633305\pi\)
\(174\) 0 0
\(175\) 1.00000 + 1.73205i 0.0755929 + 0.130931i
\(176\) −11.8301 20.4904i −0.891729 1.54452i
\(177\) 0 0
\(178\) −0.803848 1.39230i −0.0602509 0.104358i
\(179\) 3.46410 6.00000i 0.258919 0.448461i −0.707034 0.707180i \(-0.749967\pi\)
0.965953 + 0.258719i \(0.0833004\pi\)
\(180\) 0 0
\(181\) −25.5885 −1.90198 −0.950988 0.309229i \(-0.899929\pi\)
−0.950988 + 0.309229i \(0.899929\pi\)
\(182\) −2.76795 5.59808i −0.205174 0.414957i
\(183\) 0 0
\(184\) −1.09808 + 1.90192i −0.0809513 + 0.140212i
\(185\) 6.06218 10.5000i 0.445700 0.771975i
\(186\) 0 0
\(187\) −20.1962 −1.47689
\(188\) −0.464102 0.803848i −0.0338481 0.0586266i
\(189\) 0 0
\(190\) 6.00000 0.435286
\(191\) 0.633975 + 1.09808i 0.0458728 + 0.0794540i 0.888050 0.459747i \(-0.152060\pi\)
−0.842177 + 0.539201i \(0.818726\pi\)
\(192\) 0 0
\(193\) −2.50000 + 4.33013i −0.179954 + 0.311689i −0.941865 0.335993i \(-0.890928\pi\)
0.761911 + 0.647682i \(0.224262\pi\)
\(194\) −24.9282 −1.78974
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) 6.00000 10.3923i 0.427482 0.740421i −0.569166 0.822222i \(-0.692734\pi\)
0.996649 + 0.0818013i \(0.0260673\pi\)
\(198\) 0 0
\(199\) −1.00000 1.73205i −0.0708881 0.122782i 0.828403 0.560133i \(-0.189250\pi\)
−0.899291 + 0.437351i \(0.855917\pi\)
\(200\) 3.46410 0.244949
\(201\) 0 0
\(202\) −3.69615 6.40192i −0.260060 0.450438i
\(203\) 3.00000 0.210559
\(204\) 0 0
\(205\) 4.50000 7.79423i 0.314294 0.544373i
\(206\) −5.53590 + 9.58846i −0.385704 + 0.668059i
\(207\) 0 0
\(208\) −17.9904 1.16025i −1.24741 0.0804491i
\(209\) −9.46410 −0.654646
\(210\) 0 0
\(211\) 6.09808 10.5622i 0.419809 0.727130i −0.576111 0.817371i \(-0.695430\pi\)
0.995920 + 0.0902411i \(0.0287638\pi\)
\(212\) 1.96410 + 3.40192i 0.134895 + 0.233645i
\(213\) 0 0
\(214\) 17.1962 + 29.7846i 1.17550 + 2.03603i
\(215\) −8.83013 15.2942i −0.602210 1.04306i
\(216\) 0 0
\(217\) 3.09808 + 5.36603i 0.210311 + 0.364270i
\(218\) −10.7321 + 18.5885i −0.726866 + 1.25897i
\(219\) 0 0
\(220\) −8.19615 −0.552584
\(221\) −8.53590 + 12.8038i −0.574187 + 0.861280i
\(222\) 0 0
\(223\) 5.00000 8.66025i 0.334825 0.579934i −0.648626 0.761107i \(-0.724656\pi\)
0.983451 + 0.181173i \(0.0579895\pi\)
\(224\) 2.59808 4.50000i 0.173591 0.300669i
\(225\) 0 0
\(226\) 12.8038 0.851699
\(227\) −5.83013 10.0981i −0.386959 0.670233i 0.605080 0.796165i \(-0.293141\pi\)
−0.992039 + 0.125932i \(0.959808\pi\)
\(228\) 0 0
\(229\) 6.39230 0.422415 0.211208 0.977441i \(-0.432260\pi\)
0.211208 + 0.977441i \(0.432260\pi\)
\(230\) 1.90192 + 3.29423i 0.125409 + 0.217215i
\(231\) 0 0
\(232\) 2.59808 4.50000i 0.170572 0.295439i
\(233\) −25.8564 −1.69391 −0.846955 0.531665i \(-0.821567\pi\)
−0.846955 + 0.531665i \(0.821567\pi\)
\(234\) 0 0
\(235\) 1.60770 0.104874
\(236\) 5.36603 9.29423i 0.349299 0.605003i
\(237\) 0 0
\(238\) −3.69615 6.40192i −0.239586 0.414975i
\(239\) 26.1962 1.69449 0.847244 0.531204i \(-0.178260\pi\)
0.847244 + 0.531204i \(0.178260\pi\)
\(240\) 0 0
\(241\) 5.40192 + 9.35641i 0.347969 + 0.602699i 0.985888 0.167404i \(-0.0535383\pi\)
−0.637920 + 0.770103i \(0.720205\pi\)
\(242\) 19.7321 1.26842
\(243\) 0 0
\(244\) 7.59808 13.1603i 0.486417 0.842499i
\(245\) −0.866025 + 1.50000i −0.0553283 + 0.0958315i
\(246\) 0 0
\(247\) −4.00000 + 6.00000i −0.254514 + 0.381771i
\(248\) 10.7321 0.681486
\(249\) 0 0
\(250\) 10.5000 18.1865i 0.664078 1.15022i
\(251\) −11.1962 19.3923i −0.706695 1.22403i −0.966076 0.258256i \(-0.916852\pi\)
0.259382 0.965775i \(-0.416481\pi\)
\(252\) 0 0
\(253\) −3.00000 5.19615i −0.188608 0.326679i
\(254\) 2.07180 + 3.58846i 0.129996 + 0.225160i
\(255\) 0 0
\(256\) −9.50000 16.4545i −0.593750 1.02841i
\(257\) −9.06218 + 15.6962i −0.565283 + 0.979099i 0.431740 + 0.901998i \(0.357900\pi\)
−0.997023 + 0.0771011i \(0.975434\pi\)
\(258\) 0 0
\(259\) −7.00000 −0.434959
\(260\) −3.46410 + 5.19615i −0.214834 + 0.322252i
\(261\) 0 0
\(262\) 3.00000 5.19615i 0.185341 0.321019i
\(263\) 2.36603 4.09808i 0.145895 0.252698i −0.783811 0.620999i \(-0.786727\pi\)
0.929707 + 0.368301i \(0.120060\pi\)
\(264\) 0 0
\(265\) −6.80385 −0.417957
\(266\) −1.73205 3.00000i −0.106199 0.183942i
\(267\) 0 0
\(268\) 4.19615 0.256321
\(269\) 9.46410 + 16.3923i 0.577036 + 0.999456i 0.995817 + 0.0913690i \(0.0291243\pi\)
−0.418781 + 0.908087i \(0.637542\pi\)
\(270\) 0 0
\(271\) −8.09808 + 14.0263i −0.491923 + 0.852036i −0.999957 0.00930143i \(-0.997039\pi\)
0.508034 + 0.861337i \(0.330373\pi\)
\(272\) −21.3397 −1.29391
\(273\) 0 0
\(274\) −37.9808 −2.29450
\(275\) −4.73205 + 8.19615i −0.285353 + 0.494247i
\(276\) 0 0
\(277\) −8.50000 14.7224i −0.510716 0.884585i −0.999923 0.0124177i \(-0.996047\pi\)
0.489207 0.872167i \(-0.337286\pi\)
\(278\) 35.6603 2.13876
\(279\) 0 0
\(280\) 1.50000 + 2.59808i 0.0896421 + 0.155265i
\(281\) 7.39230 0.440988 0.220494 0.975388i \(-0.429233\pi\)
0.220494 + 0.975388i \(0.429233\pi\)
\(282\) 0 0
\(283\) 0.0980762 0.169873i 0.00583003 0.0100979i −0.863096 0.505040i \(-0.831478\pi\)
0.868926 + 0.494943i \(0.164811\pi\)
\(284\) 3.00000 5.19615i 0.178017 0.308335i
\(285\) 0 0
\(286\) 16.3923 24.5885i 0.969297 1.45395i
\(287\) −5.19615 −0.306719
\(288\) 0 0
\(289\) −0.607695 + 1.05256i −0.0357468 + 0.0619152i
\(290\) −4.50000 7.79423i −0.264249 0.457693i
\(291\) 0 0
\(292\) −3.59808 6.23205i −0.210561 0.364703i
\(293\) −5.59808 9.69615i −0.327043 0.566455i 0.654881 0.755732i \(-0.272719\pi\)
−0.981924 + 0.189277i \(0.939386\pi\)
\(294\) 0 0
\(295\) 9.29423 + 16.0981i 0.541131 + 0.937266i
\(296\) −6.06218 + 10.5000i −0.352357 + 0.610300i
\(297\) 0 0
\(298\) −0.803848 −0.0465656
\(299\) −4.56218 0.294229i −0.263838 0.0170157i
\(300\) 0 0
\(301\) −5.09808 + 8.83013i −0.293848 + 0.508960i
\(302\) −1.73205 + 3.00000i −0.0996683 + 0.172631i
\(303\) 0 0
\(304\) −10.0000 −0.573539
\(305\) 13.1603 + 22.7942i 0.753554 + 1.30519i
\(306\) 0 0
\(307\) 26.5885 1.51748 0.758742 0.651392i \(-0.225814\pi\)
0.758742 + 0.651392i \(0.225814\pi\)
\(308\) 2.36603 + 4.09808i 0.134817 + 0.233510i
\(309\) 0 0
\(310\) 9.29423 16.0981i 0.527877 0.914309i
\(311\) −4.73205 −0.268330 −0.134165 0.990959i \(-0.542835\pi\)
−0.134165 + 0.990959i \(0.542835\pi\)
\(312\) 0 0
\(313\) −12.7846 −0.722629 −0.361314 0.932444i \(-0.617672\pi\)
−0.361314 + 0.932444i \(0.617672\pi\)
\(314\) 7.96410 13.7942i 0.449440 0.778453i
\(315\) 0 0
\(316\) −2.90192 5.02628i −0.163246 0.282750i
\(317\) −0.464102 −0.0260665 −0.0130333 0.999915i \(-0.504149\pi\)
−0.0130333 + 0.999915i \(0.504149\pi\)
\(318\) 0 0
\(319\) 7.09808 + 12.2942i 0.397416 + 0.688345i
\(320\) 1.73205 0.0968246
\(321\) 0 0
\(322\) 1.09808 1.90192i 0.0611934 0.105990i
\(323\) −4.26795 + 7.39230i −0.237475 + 0.411319i
\(324\) 0 0
\(325\) 3.19615 + 6.46410i 0.177291 + 0.358564i
\(326\) 10.0526 0.556760
\(327\) 0 0
\(328\) −4.50000 + 7.79423i −0.248471 + 0.430364i
\(329\) −0.464102 0.803848i −0.0255868 0.0443176i
\(330\) 0 0
\(331\) 13.4904 + 23.3660i 0.741498 + 1.28431i 0.951813 + 0.306679i \(0.0992179\pi\)
−0.210315 + 0.977634i \(0.567449\pi\)
\(332\) 4.09808 + 7.09808i 0.224911 + 0.389558i
\(333\) 0 0
\(334\) 21.2942 + 36.8827i 1.16517 + 2.01813i
\(335\) −3.63397 + 6.29423i −0.198545 + 0.343890i
\(336\) 0 0
\(337\) 11.0000 0.599208 0.299604 0.954064i \(-0.403145\pi\)
0.299604 + 0.954064i \(0.403145\pi\)
\(338\) −8.66025 20.7846i −0.471056 1.13053i
\(339\) 0 0
\(340\) −3.69615 + 6.40192i −0.200452 + 0.347193i
\(341\) −14.6603 + 25.3923i −0.793897 + 1.37507i
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 8.83013 + 15.2942i 0.476089 + 0.824610i
\(345\) 0 0
\(346\) −26.7846 −1.43995
\(347\) 5.36603 + 9.29423i 0.288063 + 0.498940i 0.973347 0.229336i \(-0.0736553\pi\)
−0.685284 + 0.728276i \(0.740322\pi\)
\(348\) 0 0
\(349\) −8.39230 + 14.5359i −0.449230 + 0.778089i −0.998336 0.0576637i \(-0.981635\pi\)
0.549106 + 0.835753i \(0.314968\pi\)
\(350\) −3.46410 −0.185164
\(351\) 0 0
\(352\) 24.5885 1.31057
\(353\) 1.66987 2.89230i 0.0888784 0.153942i −0.818159 0.574992i \(-0.805005\pi\)
0.907037 + 0.421050i \(0.138338\pi\)
\(354\) 0 0
\(355\) 5.19615 + 9.00000i 0.275783 + 0.477670i
\(356\) 0.928203 0.0491947
\(357\) 0 0
\(358\) 6.00000 + 10.3923i 0.317110 + 0.549250i
\(359\) −5.07180 −0.267679 −0.133840 0.991003i \(-0.542731\pi\)
−0.133840 + 0.991003i \(0.542731\pi\)
\(360\) 0 0
\(361\) 7.50000 12.9904i 0.394737 0.683704i
\(362\) 22.1603 38.3827i 1.16472 2.01735i
\(363\) 0 0
\(364\) 3.59808 + 0.232051i 0.188590 + 0.0121628i
\(365\) 12.4641 0.652401
\(366\) 0 0
\(367\) 3.09808 5.36603i 0.161718 0.280104i −0.773767 0.633471i \(-0.781630\pi\)
0.935485 + 0.353366i \(0.114963\pi\)
\(368\) −3.16987 5.49038i −0.165241 0.286206i
\(369\) 0 0
\(370\) 10.5000 + 18.1865i 0.545869 + 0.945473i
\(371\) 1.96410 + 3.40192i 0.101971 + 0.176619i
\(372\) 0 0
\(373\) −4.69615 8.13397i −0.243158 0.421161i 0.718454 0.695574i \(-0.244850\pi\)
−0.961612 + 0.274413i \(0.911517\pi\)
\(374\) 17.4904 30.2942i 0.904406 1.56648i
\(375\) 0 0
\(376\) −1.60770 −0.0829105
\(377\) 10.7942 + 0.696152i 0.555931 + 0.0358537i
\(378\) 0 0
\(379\) 2.29423 3.97372i 0.117847 0.204116i −0.801067 0.598574i \(-0.795734\pi\)
0.918914 + 0.394458i \(0.129068\pi\)
\(380\) −1.73205 + 3.00000i −0.0888523 + 0.153897i
\(381\) 0 0
\(382\) −2.19615 −0.112365
\(383\) 2.83013 + 4.90192i 0.144613 + 0.250477i 0.929228 0.369506i \(-0.120473\pi\)
−0.784616 + 0.619982i \(0.787140\pi\)
\(384\) 0 0
\(385\) −8.19615 −0.417715
\(386\) −4.33013 7.50000i −0.220398 0.381740i
\(387\) 0 0
\(388\) 7.19615 12.4641i 0.365329 0.632769i
\(389\) 30.4641 1.54459 0.772296 0.635263i \(-0.219108\pi\)
0.772296 + 0.635263i \(0.219108\pi\)
\(390\) 0 0
\(391\) −5.41154 −0.273673
\(392\) 0.866025 1.50000i 0.0437409 0.0757614i
\(393\) 0 0
\(394\) 10.3923 + 18.0000i 0.523557 + 0.906827i
\(395\) 10.0526 0.505799
\(396\) 0 0
\(397\) −11.3923 19.7321i −0.571763 0.990323i −0.996385 0.0849523i \(-0.972926\pi\)
0.424622 0.905371i \(-0.360407\pi\)
\(398\) 3.46410 0.173640
\(399\) 0 0
\(400\) −5.00000 + 8.66025i −0.250000 + 0.433013i
\(401\) 8.42820 14.5981i 0.420884 0.728993i −0.575142 0.818054i \(-0.695053\pi\)
0.996026 + 0.0890606i \(0.0283865\pi\)
\(402\) 0 0
\(403\) 9.90192 + 20.0263i 0.493250 + 0.997580i
\(404\) 4.26795 0.212338
\(405\) 0 0
\(406\) −2.59808 + 4.50000i −0.128940 + 0.223331i
\(407\) −16.5622 28.6865i −0.820957 1.42194i
\(408\) 0 0
\(409\) 13.5981 + 23.5526i 0.672382 + 1.16460i 0.977227 + 0.212197i \(0.0680619\pi\)
−0.304845 + 0.952402i \(0.598605\pi\)
\(410\) 7.79423 + 13.5000i 0.384930 + 0.666717i
\(411\) 0 0
\(412\) −3.19615 5.53590i −0.157463 0.272734i
\(413\) 5.36603 9.29423i 0.264045 0.457339i
\(414\) 0 0
\(415\) −14.1962 −0.696862
\(416\) 10.3923 15.5885i 0.509525 0.764287i
\(417\) 0 0
\(418\) 8.19615 14.1962i 0.400887 0.694357i
\(419\) −10.9019 + 18.8827i −0.532594 + 0.922480i 0.466682 + 0.884425i \(0.345449\pi\)
−0.999276 + 0.0380543i \(0.987884\pi\)
\(420\) 0 0
\(421\) 30.1769 1.47073 0.735366 0.677670i \(-0.237010\pi\)
0.735366 + 0.677670i \(0.237010\pi\)
\(422\) 10.5622 + 18.2942i 0.514159 + 0.890549i
\(423\) 0 0
\(424\) 6.80385 0.330424
\(425\) 4.26795 + 7.39230i 0.207026 + 0.358579i
\(426\) 0 0
\(427\) 7.59808 13.1603i 0.367697 0.636869i
\(428\) −19.8564 −0.959796
\(429\) 0 0
\(430\) 30.5885 1.47511
\(431\) 17.6603 30.5885i 0.850665 1.47339i −0.0299451 0.999552i \(-0.509533\pi\)
0.880610 0.473843i \(-0.157133\pi\)
\(432\) 0 0
\(433\) −8.79423 15.2321i −0.422624 0.732006i 0.573572 0.819155i \(-0.305557\pi\)
−0.996195 + 0.0871498i \(0.972224\pi\)
\(434\) −10.7321 −0.515155
\(435\) 0 0
\(436\) −6.19615 10.7321i −0.296742 0.513972i
\(437\) −2.53590 −0.121308
\(438\) 0 0
\(439\) 8.29423 14.3660i 0.395862 0.685653i −0.597349 0.801982i \(-0.703779\pi\)
0.993211 + 0.116329i \(0.0371125\pi\)
\(440\) −7.09808 + 12.2942i −0.338388 + 0.586104i
\(441\) 0 0
\(442\) −11.8135 23.8923i −0.561909 1.13644i
\(443\) 11.3205 0.537854 0.268927 0.963161i \(-0.413331\pi\)
0.268927 + 0.963161i \(0.413331\pi\)
\(444\) 0 0
\(445\) −0.803848 + 1.39230i −0.0381060 + 0.0660016i
\(446\) 8.66025 + 15.0000i 0.410075 + 0.710271i
\(447\) 0 0
\(448\) −0.500000 0.866025i −0.0236228 0.0409159i
\(449\) −6.00000 10.3923i −0.283158 0.490443i 0.689003 0.724758i \(-0.258049\pi\)
−0.972161 + 0.234315i \(0.924715\pi\)
\(450\) 0 0
\(451\) −12.2942 21.2942i −0.578913 1.00271i
\(452\) −3.69615 + 6.40192i −0.173852 + 0.301121i
\(453\) 0 0
\(454\) 20.1962 0.947852
\(455\) −3.46410 + 5.19615i −0.162400 + 0.243599i
\(456\) 0 0
\(457\) −5.50000 + 9.52628i −0.257279 + 0.445621i −0.965512 0.260358i \(-0.916159\pi\)
0.708233 + 0.705979i \(0.249493\pi\)
\(458\) −5.53590 + 9.58846i −0.258676 + 0.448039i
\(459\) 0 0
\(460\) −2.19615 −0.102396
\(461\) 7.79423 + 13.5000i 0.363013 + 0.628758i 0.988455 0.151513i \(-0.0484146\pi\)
−0.625442 + 0.780271i \(0.715081\pi\)
\(462\) 0 0
\(463\) 26.5885 1.23567 0.617835 0.786308i \(-0.288010\pi\)
0.617835 + 0.786308i \(0.288010\pi\)
\(464\) 7.50000 + 12.9904i 0.348179 + 0.603063i
\(465\) 0 0
\(466\) 22.3923 38.7846i 1.03730 1.79666i
\(467\) 19.5167 0.903123 0.451562 0.892240i \(-0.350867\pi\)
0.451562 + 0.892240i \(0.350867\pi\)
\(468\) 0 0
\(469\) 4.19615 0.193760
\(470\) −1.39230 + 2.41154i −0.0642222 + 0.111236i
\(471\) 0 0
\(472\) −9.29423 16.0981i −0.427802 0.740974i
\(473\) −48.2487 −2.21848
\(474\) 0 0
\(475\) 2.00000 + 3.46410i 0.0917663 + 0.158944i
\(476\) 4.26795 0.195621
\(477\) 0 0
\(478\) −22.6865 + 39.2942i −1.03766 + 1.79728i
\(479\) 2.36603 4.09808i 0.108106 0.187246i −0.806897 0.590693i \(-0.798855\pi\)
0.915003 + 0.403447i \(0.132188\pi\)
\(480\) 0 0
\(481\) −25.1865 1.62436i −1.14841 0.0740642i
\(482\) −18.7128 −0.852345
\(483\) 0 0
\(484\) −5.69615 + 9.86603i −0.258916 + 0.448456i
\(485\) 12.4641 + 21.5885i 0.565966 + 0.980281i
\(486\) 0 0
\(487\) 0.392305 + 0.679492i 0.0177770 + 0.0307907i 0.874777 0.484526i \(-0.161008\pi\)
−0.857000 + 0.515316i \(0.827674\pi\)
\(488\) −13.1603 22.7942i −0.595737 1.03185i
\(489\) 0 0
\(490\) −1.50000 2.59808i −0.0677631 0.117369i
\(491\) 14.1962 24.5885i 0.640663 1.10966i −0.344622 0.938742i \(-0.611993\pi\)
0.985285 0.170920i \(-0.0546739\pi\)
\(492\) 0 0
\(493\) 12.8038 0.576656
\(494\) −5.53590 11.1962i −0.249072 0.503739i
\(495\) 0 0
\(496\) −15.4904 + 26.8301i −0.695539 + 1.20471i
\(497\) 3.00000 5.19615i 0.134568 0.233079i
\(498\) 0 0
\(499\) 12.9808 0.581099 0.290549 0.956860i \(-0.406162\pi\)
0.290549 + 0.956860i \(0.406162\pi\)
\(500\) 6.06218 + 10.5000i 0.271109 + 0.469574i
\(501\) 0 0
\(502\) 38.7846 1.73104
\(503\) 6.29423 + 10.9019i 0.280646 + 0.486093i 0.971544 0.236859i \(-0.0761181\pi\)
−0.690898 + 0.722952i \(0.742785\pi\)
\(504\) 0 0
\(505\) −3.69615 + 6.40192i −0.164477 + 0.284882i
\(506\) 10.3923 0.461994
\(507\) 0 0
\(508\) −2.39230 −0.106141
\(509\) 5.13397 8.89230i 0.227559 0.394144i −0.729525 0.683954i \(-0.760259\pi\)
0.957084 + 0.289810i \(0.0935921\pi\)
\(510\) 0 0
\(511\) −3.59808 6.23205i −0.159170 0.275690i
\(512\) 8.66025 0.382733
\(513\) 0 0
\(514\) −15.6962 27.1865i −0.692328 1.19915i
\(515\) 11.0718 0.487882
\(516\) 0 0
\(517\) 2.19615 3.80385i 0.0965867 0.167293i
\(518\) 6.06218 10.5000i 0.266357 0.461344i
\(519\) 0 0
\(520\) 4.79423 + 9.69615i 0.210241 + 0.425204i
\(521\) −0.124356 −0.00544812 −0.00272406 0.999996i \(-0.500867\pi\)
−0.00272406 + 0.999996i \(0.500867\pi\)
\(522\) 0 0
\(523\) −16.5885 + 28.7321i −0.725363 + 1.25636i 0.233462 + 0.972366i \(0.424995\pi\)
−0.958825 + 0.283999i \(0.908339\pi\)
\(524\) 1.73205 + 3.00000i 0.0756650 + 0.131056i
\(525\) 0 0
\(526\) 4.09808 + 7.09808i 0.178685 + 0.309491i
\(527\) 13.2224 + 22.9019i 0.575978 + 0.997623i
\(528\) 0 0
\(529\) 10.6962 + 18.5263i 0.465050 + 0.805490i
\(530\) 5.89230 10.2058i 0.255945 0.443310i
\(531\) 0 0
\(532\) 2.00000 0.0867110
\(533\) −18.6962 1.20577i −0.809820 0.0522278i
\(534\) 0 0
\(535\) 17.1962 29.7846i 0.743455 1.28770i
\(536\) 3.63397 6.29423i 0.156964 0.271869i
\(537\) 0 0
\(538\) −32.7846 −1.41344
\(539\) 2.36603 + 4.09808i 0.101912 + 0.176517i
\(540\) 0 0
\(541\) −35.3923 −1.52163 −0.760817 0.648966i \(-0.775202\pi\)
−0.760817 + 0.648966i \(0.775202\pi\)
\(542\) −14.0263 24.2942i −0.602480 1.04353i
\(543\) 0 0
\(544\) 11.0885 19.2058i 0.475414 0.823441i
\(545\) 21.4641 0.919421
\(546\) 0 0
\(547\) 28.1962 1.20558 0.602790 0.797900i \(-0.294056\pi\)
0.602790 + 0.797900i \(0.294056\pi\)
\(548\) 10.9641 18.9904i 0.468363 0.811229i
\(549\) 0 0
\(550\) −8.19615 14.1962i −0.349485 0.605326i
\(551\) 6.00000 0.255609
\(552\) 0 0
\(553\) −2.90192 5.02628i −0.123402 0.213739i
\(554\) 29.4449 1.25099
\(555\) 0 0
\(556\) −10.2942 + 17.8301i −0.436573 + 0.756166i
\(557\) −12.8205 + 22.2058i −0.543222 + 0.940889i 0.455494 + 0.890239i \(0.349463\pi\)
−0.998716 + 0.0506499i \(0.983871\pi\)
\(558\) 0 0
\(559\) −20.3923 + 30.5885i −0.862503 + 1.29375i
\(560\) −8.66025 −0.365963
\(561\) 0 0
\(562\) −6.40192 + 11.0885i −0.270049 + 0.467738i
\(563\) −5.02628 8.70577i −0.211832 0.366905i 0.740456 0.672105i \(-0.234610\pi\)
−0.952288 + 0.305201i \(0.901276\pi\)
\(564\) 0 0
\(565\) −6.40192 11.0885i −0.269331 0.466495i
\(566\) 0.169873 + 0.294229i 0.00714029 + 0.0123674i
\(567\) 0 0
\(568\) −5.19615 9.00000i −0.218026 0.377632i
\(569\) 14.5359 25.1769i 0.609377 1.05547i −0.381967 0.924176i \(-0.624753\pi\)
0.991343 0.131295i \(-0.0419135\pi\)
\(570\) 0 0
\(571\) −24.7846 −1.03720 −0.518602 0.855016i \(-0.673547\pi\)
−0.518602 + 0.855016i \(0.673547\pi\)
\(572\) 7.56218 + 15.2942i 0.316191 + 0.639484i
\(573\) 0 0
\(574\) 4.50000 7.79423i 0.187826 0.325325i
\(575\) −1.26795 + 2.19615i −0.0528771 + 0.0915859i
\(576\) 0 0
\(577\) 32.8038 1.36564 0.682821 0.730586i \(-0.260753\pi\)
0.682821 + 0.730586i \(0.260753\pi\)
\(578\) −1.05256 1.82309i −0.0437807 0.0758304i
\(579\) 0 0
\(580\) 5.19615 0.215758
\(581\) 4.09808 + 7.09808i 0.170017 + 0.294478i
\(582\) 0 0
\(583\) −9.29423 + 16.0981i −0.384928 + 0.666714i
\(584\) −12.4641 −0.515768
\(585\) 0 0
\(586\) 19.3923 0.801089
\(587\) −2.19615 + 3.80385i −0.0906449 + 0.157002i −0.907783 0.419441i \(-0.862226\pi\)
0.817138 + 0.576442i \(0.195559\pi\)
\(588\) 0 0
\(589\) 6.19615 + 10.7321i 0.255308 + 0.442206i
\(590\) −32.1962 −1.32549
\(591\) 0 0
\(592\) −17.5000 30.3109i −0.719246 1.24577i
\(593\) −41.4449 −1.70194 −0.850968 0.525217i \(-0.823984\pi\)
−0.850968 + 0.525217i \(0.823984\pi\)
\(594\) 0 0
\(595\) −3.69615 + 6.40192i −0.151527 + 0.262453i
\(596\) 0.232051 0.401924i 0.00950517 0.0164634i
\(597\) 0 0
\(598\) 4.39230 6.58846i 0.179615 0.269422i
\(599\) −16.1436 −0.659609 −0.329805 0.944049i \(-0.606983\pi\)
−0.329805 + 0.944049i \(0.606983\pi\)
\(600\) 0 0
\(601\) −10.9904 + 19.0359i −0.448307 + 0.776490i −0.998276 0.0586946i \(-0.981306\pi\)
0.549969 + 0.835185i \(0.314640\pi\)
\(602\) −8.83013 15.2942i −0.359889 0.623346i
\(603\) 0 0
\(604\) −1.00000 1.73205i −0.0406894 0.0704761i
\(605\) −9.86603 17.0885i −0.401111 0.694745i
\(606\) 0 0
\(607\) −3.19615 5.53590i −0.129728 0.224695i 0.793843 0.608122i \(-0.208077\pi\)
−0.923571 + 0.383427i \(0.874744\pi\)
\(608\) 5.19615 9.00000i 0.210732 0.364998i
\(609\) 0 0
\(610\) −45.5885 −1.84582
\(611\) −1.48334 3.00000i −0.0600095 0.121367i
\(612\) 0 0
\(613\) 8.69615 15.0622i 0.351234 0.608356i −0.635232 0.772322i \(-0.719095\pi\)
0.986466 + 0.163966i \(0.0524287\pi\)
\(614\) −23.0263 + 39.8827i −0.929265 + 1.60953i
\(615\) 0 0
\(616\) 8.19615 0.330232
\(617\) 14.3038 + 24.7750i 0.575851 + 0.997404i 0.995949 + 0.0899245i \(0.0286626\pi\)
−0.420097 + 0.907479i \(0.638004\pi\)
\(618\) 0 0
\(619\) −37.3731 −1.50215 −0.751075 0.660217i \(-0.770464\pi\)
−0.751075 + 0.660217i \(0.770464\pi\)
\(620\) 5.36603 + 9.29423i 0.215505 + 0.373265i
\(621\) 0 0
\(622\) 4.09808 7.09808i 0.164318 0.284607i
\(623\) 0.928203 0.0371877
\(624\) 0 0
\(625\) −11.0000 −0.440000
\(626\) 11.0718 19.1769i 0.442518 0.766464i
\(627\) 0 0
\(628\) 4.59808 + 7.96410i 0.183483 + 0.317802i
\(629\) −29.8756 −1.19122
\(630\) 0 0
\(631\) −14.3923 24.9282i −0.572949 0.992376i −0.996261 0.0863924i \(-0.972466\pi\)
0.423313 0.905984i \(-0.360867\pi\)
\(632\) −10.0526 −0.399869
\(633\) 0 0
\(634\) 0.401924 0.696152i 0.0159624 0.0276477i
\(635\) 2.07180 3.58846i 0.0822167 0.142404i
\(636\) 0 0
\(637\) 3.59808 + 0.232051i 0.142561 + 0.00919419i
\(638\) −24.5885 −0.973466
\(639\) 0 0
\(640\) −10.5000 + 18.1865i −0.415049 + 0.718886i
\(641\) 0.571797 + 0.990381i 0.0225846 + 0.0391177i 0.877097 0.480314i \(-0.159477\pi\)
−0.854512 + 0.519431i \(0.826144\pi\)
\(642\) 0 0
\(643\) −20.3923 35.3205i −0.804194 1.39290i −0.916834 0.399269i \(-0.869264\pi\)
0.112640 0.993636i \(-0.464069\pi\)
\(644\) 0.633975 + 1.09808i 0.0249821 + 0.0432703i
\(645\) 0 0
\(646\) −7.39230 12.8038i −0.290846 0.503761i
\(647\) −22.5167 + 39.0000i −0.885221 + 1.53325i −0.0397614 + 0.999209i \(0.512660\pi\)
−0.845460 + 0.534039i \(0.820674\pi\)
\(648\) 0 0
\(649\) 50.7846 1.99347
\(650\) −12.4641 0.803848i −0.488882 0.0315295i
\(651\) 0 0
\(652\) −2.90192 + 5.02628i −0.113648 + 0.196844i
\(653\) −5.07180 + 8.78461i −0.198475 + 0.343768i −0.948034 0.318169i \(-0.896932\pi\)
0.749559 + 0.661937i \(0.230265\pi\)
\(654\) 0 0
\(655\) −6.00000 −0.234439
\(656\) −12.9904 22.5000i −0.507189 0.878477i
\(657\) 0 0
\(658\) 1.60770 0.0626745
\(659\) 3.80385 + 6.58846i 0.148177 + 0.256650i 0.930554 0.366156i \(-0.119326\pi\)
−0.782377 + 0.622805i \(0.785993\pi\)
\(660\) 0 0
\(661\) 11.4019 19.7487i 0.443483 0.768136i −0.554462 0.832209i \(-0.687076\pi\)
0.997945 + 0.0640734i \(0.0204092\pi\)
\(662\) −46.7321 −1.81629
\(663\) 0 0
\(664\) 14.1962 0.550918
\(665\) −1.73205 + 3.00000i −0.0671660 + 0.116335i
\(666\) 0 0
\(667\) 1.90192 + 3.29423i 0.0736428 + 0.127553i
\(668\) −24.5885 −0.951356
\(669\) 0 0
\(670\) −6.29423 10.9019i −0.243167 0.421178i
\(671\) 71.9090 2.77601
\(672\) 0 0
\(673\) −9.08846 + 15.7417i −0.350334 + 0.606797i −0.986308 0.164914i \(-0.947265\pi\)
0.635974 + 0.771711i \(0.280599\pi\)
\(674\) −9.52628 + 16.5000i −0.366939 + 0.635556i
\(675\) 0 0
\(676\) 12.8923 + 1.66987i 0.495858 + 0.0642259i
\(677\) 36.9282 1.41927 0.709633 0.704571i \(-0.248861\pi\)
0.709633 + 0.704571i \(0.248861\pi\)
\(678\) 0 0
\(679\) 7.19615 12.4641i 0.276163 0.478328i
\(680\) 6.40192 + 11.0885i 0.245503 + 0.425223i
\(681\) 0 0
\(682\) −25.3923 43.9808i −0.972322 1.68411i
\(683\) 4.26795 + 7.39230i 0.163309 + 0.282859i 0.936053 0.351858i \(-0.114450\pi\)
−0.772745 + 0.634717i \(0.781117\pi\)
\(684\) 0 0
\(685\) 18.9904 + 32.8923i 0.725585 + 1.25675i
\(686\) −0.866025 + 1.50000i −0.0330650 + 0.0572703i
\(687\) 0 0
\(688\) −50.9808 −1.94362
\(689\) 6.27757 + 12.6962i 0.239156 + 0.483685i
\(690\) 0 0
\(691\) 10.1962 17.6603i 0.387880 0.671828i −0.604284 0.796769i \(-0.706541\pi\)
0.992164 + 0.124941i \(0.0398742\pi\)
\(692\) 7.73205 13.3923i 0.293928 0.509099i
\(693\) 0 0
\(694\) −18.5885 −0.705608
\(695\) −17.8301 30.8827i −0.676335 1.17145i
\(696\) 0 0
\(697\) −22.1769 −0.840011
\(698\) −14.5359 25.1769i −0.550192 0.952960i
\(699\) 0 0
\(700\) 1.00000 1.73205i 0.0377964 0.0654654i
\(701\) 20.7846 0.785024 0.392512 0.919747i \(-0.371606\pi\)
0.392512 + 0.919747i \(0.371606\pi\)
\(702\) 0 0
\(703\) −14.0000 −0.528020
\(704\) 2.36603 4.09808i 0.0891729 0.154452i
\(705\) 0 0
\(706\) 2.89230 + 5.00962i 0.108853 + 0.188539i
\(707\) 4.26795 0.160513
\(708\) 0 0
\(709\) 16.0885 + 27.8660i 0.604215 + 1.04653i 0.992175 + 0.124854i \(0.0398464\pi\)
−0.387960 + 0.921676i \(0.626820\pi\)
\(710\) −18.0000 −0.675528
\(711\) 0 0
\(712\) 0.803848 1.39230i 0.0301255 0.0521788i
\(713\) −3.92820 + 6.80385i −0.147112 + 0.254806i
\(714\) 0 0
\(715\) −29.4904 1.90192i −1.10288 0.0711279i
\(716\) −6.92820 −0.258919
\(717\) 0 0
\(718\) 4.39230 7.60770i 0.163919 0.283917i
\(719\) −5.36603 9.29423i −0.200119 0.346616i 0.748448 0.663194i \(-0.230800\pi\)
−0.948567 + 0.316578i \(0.897466\pi\)
\(720\) 0 0
\(721\) −3.19615 5.53590i −0.119031 0.206168i
\(722\) 12.9904 + 22.5000i 0.483452 + 0.837363i
\(723\) 0 0
\(724\) 12.7942 + 22.1603i 0.475494 + 0.823579i
\(725\) 3.00000 5.19615i 0.111417 0.192980i
\(726\) 0 0
\(727\) 21.1769 0.785408 0.392704 0.919665i \(-0.371540\pi\)
0.392704 + 0.919665i \(0.371540\pi\)
\(728\) 3.46410 5.19615i 0.128388 0.192582i
\(729\) 0 0
\(730\) −10.7942 + 18.6962i −0.399512 + 0.691976i
\(731\) −21.7583 + 37.6865i −0.804761 + 1.39389i
\(732\) 0 0
\(733\) −7.58846 −0.280286 −0.140143 0.990131i \(-0.544756\pi\)
−0.140143 + 0.990131i \(0.544756\pi\)
\(734\) 5.36603 + 9.29423i 0.198064 + 0.343056i
\(735\) 0 0
\(736\) 6.58846 0.242854
\(737\) 9.92820 + 17.1962i 0.365710 + 0.633428i
\(738\) 0 0
\(739\) 0.392305 0.679492i 0.0144312 0.0249955i −0.858720 0.512446i \(-0.828740\pi\)
0.873151 + 0.487450i \(0.162073\pi\)
\(740\) −12.1244 −0.445700
\(741\) 0 0
\(742\) −6.80385 −0.249777
\(743\) −14.1962 + 24.5885i −0.520806 + 0.902063i 0.478901 + 0.877869i \(0.341035\pi\)
−0.999707 + 0.0241941i \(0.992298\pi\)
\(744\) 0 0
\(745\) 0.401924 + 0.696152i 0.0147253 + 0.0255051i
\(746\) 16.2679 0.595612
\(747\) 0 0
\(748\) 10.0981 + 17.4904i 0.369222 + 0.639512i
\(749\) −19.8564 −0.725537
\(750\) 0 0
\(751\) −23.0981 + 40.0070i −0.842861 + 1.45988i 0.0446053 + 0.999005i \(0.485797\pi\)
−0.887466 + 0.460873i \(0.847536\pi\)
\(752\) 2.32051 4.01924i 0.0846202 0.146567i
\(753\) 0 0
\(754\) −10.3923 + 15.5885i −0.378465 + 0.567698i
\(755\) 3.46410 0.126072
\(756\) 0 0
\(757\) 8.00000 13.8564i 0.290765 0.503620i −0.683226 0.730207i \(-0.739424\pi\)
0.973991 + 0.226587i \(0.0727569\pi\)
\(758\) 3.97372 + 6.88269i 0.144332 + 0.249990i
\(759\) 0 0
\(760\) 3.00000 + 5.19615i 0.108821 + 0.188484i
\(761\) 3.33975 + 5.78461i 0.121066 + 0.209692i 0.920188 0.391476i \(-0.128035\pi\)
−0.799123 + 0.601168i \(0.794702\pi\)
\(762\) 0 0
\(763\) −6.19615 10.7321i −0.224316 0.388526i
\(764\) 0.633975 1.09808i 0.0229364 0.0397270i
\(765\) 0 0
\(766\) −9.80385 −0.354227
\(767\) 21.4641 32.1962i 0.775024 1.16254i
\(768\) 0 0
\(769\) 23.5885 40.8564i 0.850622 1.47332i −0.0300268 0.999549i \(-0.509559\pi\)
0.880648 0.473771i \(-0.157107\pi\)
\(770\) 7.09808 12.2942i 0.255797 0.443053i
\(771\) 0 0
\(772\) 5.00000 0.179954
\(773\) 0.464102 + 0.803848i 0.0166926 + 0.0289124i 0.874251 0.485474i \(-0.161353\pi\)
−0.857558 + 0.514387i \(0.828020\pi\)
\(774\) 0 0
\(775\) 12.3923 0.445145
\(776\) −12.4641 21.5885i −0.447435 0.774980i
\(777\) 0 0
\(778\) −26.3827 + 45.6962i −0.945865 + 1.63829i
\(779\) −10.3923 −0.372343
\(780\) 0 0
\(781\) 28.3923 1.01596
\(782\) 4.68653 8.11731i 0.167590 0.290275i
\(783\) 0 0
\(784\) 2.50000 + 4.33013i 0.0892857 +