Properties

Label 819.2.j.j
Level $819$
Weight $2$
Character orbit 819.j
Analytic conductor $6.540$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [819,2,Mod(235,819)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(819, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("819.235");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 819 = 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 819.j (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.53974792554\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 18 x^{18} + 214 x^{16} + 1450 x^{14} + 7087 x^{12} + 20465 x^{10} + 42361 x^{8} + 50535 x^{6} + \cdots + 3969 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{19}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{4} q^{2} + ( - \beta_{14} - 2 \beta_{3} - 2) q^{4} - \beta_{10} q^{5} - \beta_{7} q^{7} + ( - \beta_{19} + \beta_{17} + \cdots - 2 \beta_1) q^{8} + (\beta_{14} - \beta_{13} + \cdots - \beta_{7}) q^{10}+ \cdots + ( - 2 \beta_{19} + 2 \beta_{18} + \cdots - 2 \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 16 q^{4} - 4 q^{7} + 4 q^{10} + 20 q^{13} - 32 q^{16} - 6 q^{19} + 20 q^{22} - 24 q^{25} + 8 q^{28} - 12 q^{31} + 68 q^{34} - 26 q^{37} + 70 q^{40} + 80 q^{43} + 6 q^{46} - 28 q^{49} - 16 q^{52}+ \cdots + 36 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{20} + 18 x^{18} + 214 x^{16} + 1450 x^{14} + 7087 x^{12} + 20465 x^{10} + 42361 x^{8} + 50535 x^{6} + \cdots + 3969 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 63483510895 \nu^{18} - 1071726339501 \nu^{16} - 12404989720237 \nu^{14} + \cdots + 41\!\cdots\!09 ) / 11\!\cdots\!33 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 972440103969 \nu^{18} + 17059537295177 \nu^{16} + 200600097872859 \nu^{14} + \cdots + 40\!\cdots\!22 ) / 81\!\cdots\!31 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 972440103969 \nu^{19} - 17059537295177 \nu^{17} - 200600097872859 \nu^{15} + \cdots - 12\!\cdots\!53 \nu ) / 81\!\cdots\!31 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 15906241212796 \nu^{19} + 183416141110176 \nu^{17} + \cdots - 39\!\cdots\!72 \nu ) / 12\!\cdots\!65 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 34329053073829 \nu^{19} - 643881681068694 \nu^{17} + \cdots - 67\!\cdots\!57 \nu ) / 24\!\cdots\!30 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 36362255678023 \nu^{18} + 518705271356931 \nu^{16} + \cdots - 10\!\cdots\!74 ) / 24\!\cdots\!30 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 14981283821149 \nu^{18} + 228809603427294 \nu^{16} + \cdots - 20\!\cdots\!63 ) / 81\!\cdots\!10 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 45939561634201 \nu^{18} + 742171850598621 \nu^{16} + \cdots - 95\!\cdots\!12 ) / 24\!\cdots\!30 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 23730211055842 \nu^{19} - 481739104565112 \nu^{17} + \cdots - 69\!\cdots\!06 \nu ) / 12\!\cdots\!65 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 7070517816554 \nu^{19} + 119757399916923 \nu^{17} + \cdots - 44\!\cdots\!17 \nu ) / 34\!\cdots\!90 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( 4167081224956 \nu^{18} + 71907524691147 \nu^{16} + 832313317051339 \nu^{14} + \cdots + 80\!\cdots\!17 ) / 11\!\cdots\!30 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( - 96954046827562 \nu^{18} + \cdots - 10\!\cdots\!93 ) / 24\!\cdots\!30 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( - 3445375839611 \nu^{18} - 60736064804201 \nu^{16} - 715565463449777 \nu^{14} + \cdots - 44\!\cdots\!51 ) / 81\!\cdots\!31 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( - 127729036819714 \nu^{18} + \cdots - 11\!\cdots\!57 ) / 24\!\cdots\!30 \) Copy content Toggle raw display
\(\beta_{16}\)\(=\) \( ( 9268731387422 \nu^{19} + 158882523648984 \nu^{17} + \cdots - 42\!\cdots\!41 \nu ) / 17\!\cdots\!95 \) Copy content Toggle raw display
\(\beta_{17}\)\(=\) \( ( - 10220984050847 \nu^{19} - 174958418741499 \nu^{17} + \cdots + 13\!\cdots\!66 \nu ) / 17\!\cdots\!95 \) Copy content Toggle raw display
\(\beta_{18}\)\(=\) \( ( 11984094316579 \nu^{19} + 206865110727243 \nu^{17} + \cdots - 80\!\cdots\!57 \nu ) / 17\!\cdots\!95 \) Copy content Toggle raw display
\(\beta_{19}\)\(=\) \( ( 104584051769077 \nu^{19} + \cdots + 17\!\cdots\!61 \nu ) / 12\!\cdots\!65 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{14} + 4\beta_{3} + \beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{19} + \beta_{17} + \beta_{16} - \beta_{10} - 6\beta_{4} - 6\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{15} - 8\beta_{14} + \beta_{9} - \beta_{8} - 24\beta_{3} - 24 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 8\beta_{19} + 10\beta_{10} - \beta_{5} + 40\beta_{4} \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( \beta_{15} + 9\beta_{13} + 12\beta_{12} - 10\beta_{9} - 10\beta_{7} - 58\beta_{2} + 159 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 12\beta_{18} - 58\beta_{17} - 81\beta_{16} + 4\beta_{11} + 275\beta_1 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( - 81 \beta_{15} + 414 \beta_{14} - 81 \beta_{13} - 109 \beta_{12} + 19 \beta_{9} + 109 \beta_{8} + \cdots + 414 \beta_{2} \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( - 414 \beta_{19} - 109 \beta_{18} + 414 \beta_{17} + 623 \beta_{16} - 66 \beta_{11} - 623 \beta_{10} + \cdots - 1912 \beta_1 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( 391\beta_{15} - 2949\beta_{14} + 232\beta_{13} + 391\beta_{9} - 907\beta_{8} + 232\beta_{7} - 7473\beta_{3} - 7473 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( 2949\beta_{19} + 4711\beta_{10} - 748\beta_{6} - 907\beta_{5} + 13371\beta_{4} \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( 2351\beta_{15} + 2360\beta_{13} + 7273\beta_{12} - 4711\beta_{9} - 4711\beta_{7} - 21031\beta_{2} + 51829 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( 7273\beta_{18} - 21031\beta_{17} - 35366\beta_{16} + 7264\beta_{11} + 93891\beta_1 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( - 35366 \beta_{15} + 150288 \beta_{14} - 35366 \beta_{13} - 57176 \beta_{12} + 21590 \beta_{9} + \cdots + 150288 \beta_{2} \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( - 150288 \beta_{19} - 57176 \beta_{18} + 150288 \beta_{17} + 264420 \beta_{16} - 64990 \beta_{11} + \cdots - 661603 \beta_1 \) Copy content Toggle raw display
\(\nu^{16}\)\(=\) \( 77484 \beta_{15} - 1076311 \beta_{14} + 186936 \beta_{13} + 77484 \beta_{9} - 443762 \beta_{8} + \cdots - 2524246 \) Copy content Toggle raw display
\(\nu^{17}\)\(=\) \( 1076311\beta_{19} + 1971429\beta_{10} - 553214\beta_{6} - 443762\beta_{5} + 4676868\beta_{4} \) Copy content Toggle raw display
\(\nu^{18}\)\(=\) \( 1557784 \beta_{15} + 413645 \beta_{13} + 3412167 \beta_{12} - 1971429 \beta_{9} - 1971429 \beta_{7} + \cdots + 17710496 \) Copy content Toggle raw display
\(\nu^{19}\)\(=\) \( 3412167\beta_{18} - 7724608\beta_{17} - 14665988\beta_{16} + 4556306\beta_{11} + 33159712\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/819\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(379\) \(703\)
\(\chi(n)\) \(1\) \(1\) \(\beta_{3}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
235.1
−1.35395 + 2.34511i
−1.27547 + 2.20918i
−0.785666 + 1.36081i
−0.563413 + 0.975859i
−0.324476 + 0.562008i
0.324476 0.562008i
0.563413 0.975859i
0.785666 1.36081i
1.27547 2.20918i
1.35395 2.34511i
−1.35395 2.34511i
−1.27547 2.20918i
−0.785666 1.36081i
−0.563413 0.975859i
−0.324476 0.562008i
0.324476 + 0.562008i
0.563413 + 0.975859i
0.785666 + 1.36081i
1.27547 + 2.20918i
1.35395 + 2.34511i
−1.35395 2.34511i 0 −2.66636 + 4.61827i 2.03914 + 3.53190i 0 −0.0214054 2.64566i 9.02468 0 5.52180 9.56403i
235.2 −1.27547 2.20918i 0 −2.25366 + 3.90345i −0.856194 1.48297i 0 0.787089 + 2.52596i 6.39604 0 −2.18410 + 3.78298i
235.3 −0.785666 1.36081i 0 −0.234542 + 0.406239i −0.670183 1.16079i 0 −1.91002 1.83080i −2.40558 0 −1.05308 + 1.82399i
235.4 −0.563413 0.975859i 0 0.365133 0.632428i −1.71089 2.96335i 0 −2.13253 + 1.56598i −3.07653 0 −1.92787 + 3.33917i
235.5 −0.324476 0.562008i 0 0.789431 1.36733i 0.991232 + 1.71686i 0 2.27687 1.34754i −2.32251 0 0.643261 1.11416i
235.6 0.324476 + 0.562008i 0 0.789431 1.36733i −0.991232 1.71686i 0 2.27687 1.34754i 2.32251 0 0.643261 1.11416i
235.7 0.563413 + 0.975859i 0 0.365133 0.632428i 1.71089 + 2.96335i 0 −2.13253 + 1.56598i 3.07653 0 −1.92787 + 3.33917i
235.8 0.785666 + 1.36081i 0 −0.234542 + 0.406239i 0.670183 + 1.16079i 0 −1.91002 1.83080i 2.40558 0 −1.05308 + 1.82399i
235.9 1.27547 + 2.20918i 0 −2.25366 + 3.90345i 0.856194 + 1.48297i 0 0.787089 + 2.52596i −6.39604 0 −2.18410 + 3.78298i
235.10 1.35395 + 2.34511i 0 −2.66636 + 4.61827i −2.03914 3.53190i 0 −0.0214054 2.64566i −9.02468 0 5.52180 9.56403i
352.1 −1.35395 + 2.34511i 0 −2.66636 4.61827i 2.03914 3.53190i 0 −0.0214054 + 2.64566i 9.02468 0 5.52180 + 9.56403i
352.2 −1.27547 + 2.20918i 0 −2.25366 3.90345i −0.856194 + 1.48297i 0 0.787089 2.52596i 6.39604 0 −2.18410 3.78298i
352.3 −0.785666 + 1.36081i 0 −0.234542 0.406239i −0.670183 + 1.16079i 0 −1.91002 + 1.83080i −2.40558 0 −1.05308 1.82399i
352.4 −0.563413 + 0.975859i 0 0.365133 + 0.632428i −1.71089 + 2.96335i 0 −2.13253 1.56598i −3.07653 0 −1.92787 3.33917i
352.5 −0.324476 + 0.562008i 0 0.789431 + 1.36733i 0.991232 1.71686i 0 2.27687 + 1.34754i −2.32251 0 0.643261 + 1.11416i
352.6 0.324476 0.562008i 0 0.789431 + 1.36733i −0.991232 + 1.71686i 0 2.27687 + 1.34754i 2.32251 0 0.643261 + 1.11416i
352.7 0.563413 0.975859i 0 0.365133 + 0.632428i 1.71089 2.96335i 0 −2.13253 1.56598i 3.07653 0 −1.92787 3.33917i
352.8 0.785666 1.36081i 0 −0.234542 0.406239i 0.670183 1.16079i 0 −1.91002 + 1.83080i 2.40558 0 −1.05308 1.82399i
352.9 1.27547 2.20918i 0 −2.25366 3.90345i 0.856194 1.48297i 0 0.787089 2.52596i −6.39604 0 −2.18410 3.78298i
352.10 1.35395 2.34511i 0 −2.66636 4.61827i −2.03914 + 3.53190i 0 −0.0214054 + 2.64566i −9.02468 0 5.52180 + 9.56403i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 235.10
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
7.c even 3 1 inner
21.h odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 819.2.j.j 20
3.b odd 2 1 inner 819.2.j.j 20
7.c even 3 1 inner 819.2.j.j 20
7.c even 3 1 5733.2.a.by 10
7.d odd 6 1 5733.2.a.bz 10
21.g even 6 1 5733.2.a.bz 10
21.h odd 6 1 inner 819.2.j.j 20
21.h odd 6 1 5733.2.a.by 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
819.2.j.j 20 1.a even 1 1 trivial
819.2.j.j 20 3.b odd 2 1 inner
819.2.j.j 20 7.c even 3 1 inner
819.2.j.j 20 21.h odd 6 1 inner
5733.2.a.by 10 7.c even 3 1
5733.2.a.by 10 21.h odd 6 1
5733.2.a.bz 10 7.d odd 6 1
5733.2.a.bz 10 21.g even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{20} + 18 T_{2}^{18} + 214 T_{2}^{16} + 1450 T_{2}^{14} + 7087 T_{2}^{12} + 20465 T_{2}^{10} + \cdots + 3969 \) acting on \(S_{2}^{\mathrm{new}}(819, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{20} + 18 T^{18} + \cdots + 3969 \) Copy content Toggle raw display
$3$ \( T^{20} \) Copy content Toggle raw display
$5$ \( T^{20} + 37 T^{18} + \cdots + 16257024 \) Copy content Toggle raw display
$7$ \( (T^{10} + 2 T^{9} + \cdots + 16807)^{2} \) Copy content Toggle raw display
$11$ \( T^{20} + 79 T^{18} + \cdots + 3969 \) Copy content Toggle raw display
$13$ \( (T - 1)^{20} \) Copy content Toggle raw display
$17$ \( T^{20} + 81 T^{18} + \cdots + 3969 \) Copy content Toggle raw display
$19$ \( (T^{10} + 3 T^{9} + \cdots + 2401)^{2} \) Copy content Toggle raw display
$23$ \( T^{20} + \cdots + 69676549173504 \) Copy content Toggle raw display
$29$ \( (T^{10} - 146 T^{8} + \cdots - 642663)^{2} \) Copy content Toggle raw display
$31$ \( (T^{10} + 6 T^{9} + \cdots + 784)^{2} \) Copy content Toggle raw display
$37$ \( (T^{10} + 13 T^{9} + \cdots + 64)^{2} \) Copy content Toggle raw display
$41$ \( (T^{10} - 228 T^{8} + \cdots - 197568)^{2} \) Copy content Toggle raw display
$43$ \( (T^{5} - 20 T^{4} + \cdots + 3748)^{4} \) Copy content Toggle raw display
$47$ \( T^{20} + \cdots + 10160640000 \) Copy content Toggle raw display
$53$ \( T^{20} + 167 T^{18} + \cdots + 9529569 \) Copy content Toggle raw display
$59$ \( T^{20} + \cdots + 21\!\cdots\!09 \) Copy content Toggle raw display
$61$ \( (T^{10} - 11 T^{9} + \cdots + 82369)^{2} \) Copy content Toggle raw display
$67$ \( (T^{10} + 13 T^{9} + \cdots + 218951209)^{2} \) Copy content Toggle raw display
$71$ \( (T^{10} - 215 T^{8} + \cdots - 22743)^{2} \) Copy content Toggle raw display
$73$ \( (T^{10} + 12 T^{9} + \cdots + 132496)^{2} \) Copy content Toggle raw display
$79$ \( (T^{10} + 14 T^{9} + \cdots + 13104400)^{2} \) Copy content Toggle raw display
$83$ \( (T^{10} - 368 T^{8} + \cdots - 326592)^{2} \) Copy content Toggle raw display
$89$ \( T^{20} + \cdots + 45\!\cdots\!64 \) Copy content Toggle raw display
$97$ \( (T^{5} - 9 T^{4} + \cdots - 178556)^{4} \) Copy content Toggle raw display
show more
show less