Properties

Label 819.2.dz
Level $819$
Weight $2$
Character orbit 819.dz
Rep. character $\chi_{819}(614,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $216$
Newform subspaces $1$
Sturm bound $224$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 819 = 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 819.dz (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 819 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(224\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(819, [\chi])\).

Total New Old
Modular forms 232 232 0
Cusp forms 216 216 0
Eisenstein series 16 16 0

Trace form

\( 216 q - 3 q^{2} - 3 q^{3} + 103 q^{4} - 12 q^{5} - q^{7} - q^{9} - 6 q^{10} - 9 q^{11} - 6 q^{12} + 3 q^{13} - 6 q^{14} - 18 q^{15} - 95 q^{16} + 14 q^{18} - 6 q^{19} - 12 q^{20} - 2 q^{21} - 20 q^{22}+ \cdots - 29 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(819, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
819.2.dz.a 819.dz 819.cz $216$ $6.540$ None 819.2.bn.a \(-3\) \(-3\) \(-12\) \(-1\) $\mathrm{SU}(2)[C_{6}]$