Properties

Label 819.2.do.e
Level $819$
Weight $2$
Character orbit 819.do
Analytic conductor $6.540$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 819 = 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 819.do (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.53974792554\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.2346760387617129.1
Defining polynomial: \(x^{12} - 3 x^{11} + x^{10} + 10 x^{9} - 15 x^{8} - 10 x^{7} + 45 x^{6} - 20 x^{5} - 60 x^{4} + 80 x^{3} + 16 x^{2} - 96 x + 64\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 91)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{10} q^{2} + ( \beta_{1} + \beta_{4} - \beta_{7} + \beta_{11} ) q^{4} + ( -\beta_{1} - \beta_{6} + \beta_{8} + \beta_{9} - \beta_{10} ) q^{5} + ( \beta_{2} - \beta_{3} + \beta_{4} + \beta_{6} - \beta_{7} + \beta_{8} + \beta_{11} ) q^{7} + ( \beta_{1} + \beta_{2} + \beta_{3} + \beta_{4} + \beta_{5} - \beta_{7} + \beta_{9} - \beta_{11} ) q^{8} +O(q^{10})\) \( q + \beta_{10} q^{2} + ( \beta_{1} + \beta_{4} - \beta_{7} + \beta_{11} ) q^{4} + ( -\beta_{1} - \beta_{6} + \beta_{8} + \beta_{9} - \beta_{10} ) q^{5} + ( \beta_{2} - \beta_{3} + \beta_{4} + \beta_{6} - \beta_{7} + \beta_{8} + \beta_{11} ) q^{7} + ( \beta_{1} + \beta_{2} + \beta_{3} + \beta_{4} + \beta_{5} - \beta_{7} + \beta_{9} - \beta_{11} ) q^{8} + ( -2 + \beta_{6} - \beta_{8} ) q^{10} + ( 1 - \beta_{2} + \beta_{4} - \beta_{5} + \beta_{7} - \beta_{8} + \beta_{9} + \beta_{11} ) q^{11} + ( -\beta_{2} - \beta_{3} - \beta_{4} - 2 \beta_{6} + 2 \beta_{7} + \beta_{10} - \beta_{11} ) q^{13} + ( \beta_{1} + \beta_{4} + \beta_{5} - \beta_{6} + \beta_{7} - \beta_{9} + 2 \beta_{10} ) q^{14} + ( -1 - \beta_{1} + \beta_{5} - 2 \beta_{6} - \beta_{7} + 2 \beta_{9} - \beta_{10} - \beta_{11} ) q^{16} + ( -3 - \beta_{1} - \beta_{3} - 2 \beta_{4} + \beta_{6} - \beta_{7} + \beta_{8} + \beta_{11} ) q^{17} + ( 1 + \beta_{1} - \beta_{2} + \beta_{3} + \beta_{4} - \beta_{5} + \beta_{6} + \beta_{7} - \beta_{8} + \beta_{9} + \beta_{11} ) q^{19} + ( -\beta_{2} - \beta_{3} - \beta_{4} + \beta_{7} - 2 \beta_{8} - \beta_{10} - \beta_{11} ) q^{20} + ( \beta_{1} + 3 \beta_{4} + \beta_{6} + 2 \beta_{9} - \beta_{10} ) q^{22} + ( 1 - \beta_{1} + 2 \beta_{2} + \beta_{3} + \beta_{4} - \beta_{5} - \beta_{7} + \beta_{8} + 2 \beta_{9} - \beta_{10} - \beta_{11} ) q^{23} + ( -2 - 2 \beta_{2} - 3 \beta_{3} + 2 \beta_{5} - 2 \beta_{6} + \beta_{8} ) q^{25} + ( 1 + \beta_{2} - 3 \beta_{3} + 3 \beta_{4} - \beta_{5} - \beta_{7} - 2 \beta_{9} + \beta_{10} + 3 \beta_{11} ) q^{26} + ( 4 + 2 \beta_{2} + \beta_{3} + 4 \beta_{4} - 2 \beta_{5} - 2 \beta_{7} + 2 \beta_{9} - \beta_{10} + 3 \beta_{11} ) q^{28} + ( 1 + \beta_{1} - 2 \beta_{2} + \beta_{3} - 2 \beta_{4} - 2 \beta_{5} - \beta_{6} + 3 \beta_{7} - 3 \beta_{8} - \beta_{11} ) q^{29} + ( -3 + \beta_{1} - \beta_{2} - 2 \beta_{3} - 2 \beta_{4} - \beta_{5} - 3 \beta_{8} - 2 \beta_{10} ) q^{31} + ( -1 - \beta_{1} - \beta_{2} + \beta_{3} + \beta_{5} + \beta_{7} - \beta_{8} + \beta_{9} - \beta_{10} ) q^{32} + ( 2 + \beta_{1} + 2 \beta_{3} + 2 \beta_{4} - \beta_{5} + 2 \beta_{6} + \beta_{7} - 3 \beta_{9} ) q^{34} + ( -2 + \beta_{1} - \beta_{3} - \beta_{4} - \beta_{5} - 4 \beta_{8} + \beta_{9} + \beta_{10} - \beta_{11} ) q^{35} + ( 1 + \beta_{1} - \beta_{2} - \beta_{3} - \beta_{4} + \beta_{5} - 2 \beta_{6} + 2 \beta_{7} - 2 \beta_{8} + 3 \beta_{10} - 2 \beta_{11} ) q^{37} + ( -1 + \beta_{1} - \beta_{2} - \beta_{3} + 3 \beta_{4} + \beta_{5} + 2 \beta_{9} - \beta_{10} ) q^{38} + ( 2 - \beta_{2} + 3 \beta_{3} - \beta_{4} - \beta_{5} + \beta_{6} + 3 \beta_{7} - \beta_{9} - \beta_{10} - 2 \beta_{11} ) q^{40} + ( 1 - \beta_{1} + 2 \beta_{2} - \beta_{3} + \beta_{4} - 2 \beta_{5} - 2 \beta_{6} - 2 \beta_{7} + 4 \beta_{8} + \beta_{9} - \beta_{10} ) q^{41} + ( 2 - 3 \beta_{1} + 2 \beta_{2} + 2 \beta_{3} - 2 \beta_{4} - 2 \beta_{5} - \beta_{6} + 4 \beta_{9} - 2 \beta_{10} ) q^{43} + ( -5 + 3 \beta_{1} - 3 \beta_{2} - \beta_{3} - \beta_{4} + 3 \beta_{5} - \beta_{6} - 2 \beta_{8} - 3 \beta_{11} ) q^{44} + ( -3 - \beta_{1} - 3 \beta_{2} - \beta_{4} + 3 \beta_{5} - 2 \beta_{6} + 2 \beta_{7} - \beta_{8} - 2 \beta_{9} + 2 \beta_{10} - \beta_{11} ) q^{46} + ( -1 - \beta_{3} + \beta_{4} - \beta_{6} + \beta_{8} ) q^{47} + ( 3 - 2 \beta_{1} + 4 \beta_{2} + 3 \beta_{3} + 2 \beta_{4} - \beta_{5} - 2 \beta_{7} + 4 \beta_{8} - \beta_{11} ) q^{49} + ( 2 \beta_{1} + 2 \beta_{2} + \beta_{3} + 3 \beta_{4} - 2 \beta_{5} + 4 \beta_{6} - \beta_{7} - 2 \beta_{8} + 2 \beta_{9} - 2 \beta_{10} + \beta_{11} ) q^{50} + ( 3 + \beta_{1} + 3 \beta_{2} - \beta_{3} + \beta_{4} + \beta_{5} + \beta_{6} - 2 \beta_{7} + 3 \beta_{8} + 3 \beta_{10} ) q^{52} + ( 2 - 3 \beta_{1} + 2 \beta_{2} + \beta_{3} - \beta_{4} - 2 \beta_{5} - \beta_{6} + \beta_{8} ) q^{53} + ( -3 - \beta_{1} + \beta_{2} - \beta_{3} - \beta_{4} + \beta_{5} + \beta_{6} - 2 \beta_{7} + 2 \beta_{8} - \beta_{9} - \beta_{10} + \beta_{11} ) q^{55} + ( -\beta_{2} + 2 \beta_{4} + 2 \beta_{5} - 2 \beta_{6} - \beta_{7} + 2 \beta_{8} + 4 \beta_{9} + \beta_{10} - \beta_{11} ) q^{56} + ( -3 \beta_{1} - 2 \beta_{3} - 2 \beta_{4} - \beta_{5} + \beta_{7} + 2 \beta_{8} - \beta_{9} ) q^{58} + ( -3 + 5 \beta_{1} - 4 \beta_{3} + 3 \beta_{4} + \beta_{6} - \beta_{8} - 4 \beta_{9} + 4 \beta_{10} ) q^{59} + ( -1 + \beta_{1} + \beta_{3} - 2 \beta_{5} + 2 \beta_{6} - 2 \beta_{7} - \beta_{8} ) q^{61} + ( -3 - 3 \beta_{1} + 3 \beta_{3} - 8 \beta_{4} + \beta_{6} + 5 \beta_{7} + \beta_{8} - \beta_{9} - \beta_{10} - 5 \beta_{11} ) q^{62} + ( -1 + 3 \beta_{1} + \beta_{2} - 3 \beta_{3} + \beta_{4} - \beta_{5} + 2 \beta_{6} - \beta_{7} - 4 \beta_{8} + \beta_{9} - 2 \beta_{10} + \beta_{11} ) q^{64} + ( -1 - 3 \beta_{1} + \beta_{3} - 2 \beta_{4} + 2 \beta_{5} - 2 \beta_{6} - \beta_{7} + 4 \beta_{8} + 2 \beta_{9} - 2 \beta_{10} + \beta_{11} ) q^{65} + ( -5 \beta_{1} + \beta_{2} - 3 \beta_{3} - 3 \beta_{4} - \beta_{5} - 4 \beta_{6} + \beta_{7} - \beta_{9} - \beta_{11} ) q^{67} + ( 4 - 4 \beta_{1} + 3 \beta_{2} + \beta_{3} - 4 \beta_{5} + \beta_{7} + 2 \beta_{8} + \beta_{11} ) q^{68} + ( 1 - 2 \beta_{2} + 3 \beta_{3} + 2 \beta_{5} - \beta_{6} + 2 \beta_{7} - 2 \beta_{10} - 3 \beta_{11} ) q^{70} + ( -2 - 3 \beta_{1} + \beta_{3} - \beta_{4} + 3 \beta_{6} + \beta_{8} + 3 \beta_{10} ) q^{71} + ( -4 + 2 \beta_{2} + 2 \beta_{3} - 2 \beta_{7} + 4 \beta_{8} + \beta_{10} + 2 \beta_{11} ) q^{73} + ( 3 + 2 \beta_{1} - 2 \beta_{3} + 6 \beta_{4} - \beta_{6} - 3 \beta_{7} - \beta_{8} + 3 \beta_{11} ) q^{74} + ( -5 + 2 \beta_{1} - 2 \beta_{2} + 2 \beta_{5} - \beta_{6} - \beta_{7} - \beta_{8} + 2 \beta_{9} - 2 \beta_{10} - 3 \beta_{11} ) q^{76} + ( -1 + 3 \beta_{1} + \beta_{2} - \beta_{3} - 2 \beta_{4} + 2 \beta_{5} - \beta_{6} - 5 \beta_{8} ) q^{77} + ( -6 + 3 \beta_{1} + \beta_{2} + 3 \beta_{3} - 6 \beta_{4} + \beta_{5} - \beta_{6} + \beta_{9} + \beta_{10} - \beta_{11} ) q^{79} + ( -4 - \beta_{1} - 2 \beta_{2} - 3 \beta_{3} - 6 \beta_{4} + \beta_{6} + 2 \beta_{8} - 2 \beta_{9} + 2 \beta_{11} ) q^{80} + ( -2 \beta_{1} + \beta_{2} - \beta_{3} + \beta_{4} + 2 \beta_{5} - \beta_{6} + 2 \beta_{7} + \beta_{8} - 4 \beta_{9} + 8 \beta_{10} + \beta_{11} ) q^{82} + ( -3 + 4 \beta_{1} - 3 \beta_{2} - \beta_{3} + \beta_{4} + 2 \beta_{5} + 3 \beta_{6} - 2 \beta_{7} + \beta_{8} - 3 \beta_{9} + 3 \beta_{11} ) q^{83} + ( -5 + \beta_{1} - 7 \beta_{3} - 2 \beta_{4} - \beta_{5} - \beta_{7} - 7 \beta_{8} + 5 \beta_{10} + \beta_{11} ) q^{85} + ( -5 - 3 \beta_{2} + \beta_{3} + 3 \beta_{5} - \beta_{6} + \beta_{7} - 2 \beta_{8} - 3 \beta_{9} + 3 \beta_{10} - 2 \beta_{11} ) q^{86} + ( 3 - 2 \beta_{1} - 2 \beta_{2} + 4 \beta_{3} - 2 \beta_{4} + 3 \beta_{6} - \beta_{8} + 2 \beta_{9} - 4 \beta_{10} - 2 \beta_{11} ) q^{88} + ( -6 - \beta_{2} - 2 \beta_{3} - 5 \beta_{4} + 2 \beta_{5} - 2 \beta_{6} + 3 \beta_{7} - 3 \beta_{8} + 4 \beta_{10} - 3 \beta_{11} ) q^{89} + ( -7 + 3 \beta_{1} - 2 \beta_{2} - 2 \beta_{3} - 9 \beta_{4} + \beta_{5} - \beta_{6} + \beta_{7} - 4 \beta_{8} - 4 \beta_{9} + 5 \beta_{10} - \beta_{11} ) q^{91} + ( 5 + 2 \beta_{1} + \beta_{2} - \beta_{3} + \beta_{4} - 2 \beta_{5} + 3 \beta_{6} - 2 \beta_{7} - 3 \beta_{8} + 3 \beta_{9} - 6 \beta_{10} + \beta_{11} ) q^{92} + ( \beta_{2} - \beta_{3} + \beta_{4} + \beta_{11} ) q^{94} + ( -\beta_{1} + \beta_{2} + \beta_{5} + \beta_{8} - \beta_{9} - \beta_{10} - \beta_{11} ) q^{95} + ( 1 - 2 \beta_{1} - 2 \beta_{2} + 2 \beta_{3} - \beta_{4} - \beta_{5} + 3 \beta_{6} + \beta_{7} - 2 \beta_{10} - \beta_{11} ) q^{97} + ( 1 - 2 \beta_{1} - \beta_{2} - 2 \beta_{3} - \beta_{4} + 2 \beta_{5} - 4 \beta_{6} - \beta_{7} + \beta_{8} - 3 \beta_{9} + 5 \beta_{10} + 2 \beta_{11} ) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12q + 4q^{4} - 3q^{5} + 3q^{7} + O(q^{10}) \) \( 12q + 4q^{4} - 3q^{5} + 3q^{7} - 24q^{10} - 2q^{13} - 4q^{14} - 8q^{16} - 17q^{17} + 3q^{20} - 15q^{22} - 3q^{23} - 5q^{25} + 9q^{26} + 27q^{28} + q^{29} - 18q^{31} - 18q^{32} - 18q^{35} + 15q^{37} - 19q^{38} - q^{40} + 6q^{41} + 11q^{43} - 33q^{44} - 30q^{46} - 15q^{47} + 9q^{49} - 18q^{50} + 47q^{52} + 8q^{53} - 15q^{55} - 27q^{59} - 10q^{61} - 41q^{62} + 2q^{64} + 3q^{65} + 11q^{68} - 3q^{70} - 30q^{71} - 42q^{73} + 33q^{74} - 45q^{76} + 19q^{77} - 35q^{79} - 10q^{82} - 21q^{85} - 57q^{86} + 28q^{88} - 48q^{89} - 16q^{91} + 66q^{92} - 2q^{94} - 2q^{95} - 3q^{97} + 36q^{98} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{12} - 3 x^{11} + x^{10} + 10 x^{9} - 15 x^{8} - 10 x^{7} + 45 x^{6} - 20 x^{5} - 60 x^{4} + 80 x^{3} + 16 x^{2} - 96 x + 64\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\((\)\( \nu^{11} - 13 \nu^{10} - 9 \nu^{9} + 72 \nu^{8} - 91 \nu^{7} - 164 \nu^{6} + 313 \nu^{5} + 42 \nu^{4} - 620 \nu^{3} + 344 \nu^{2} + 608 \nu - 800 \)\()/224\)
\(\beta_{3}\)\(=\)\((\)\( -9 \nu^{11} + 5 \nu^{10} + 25 \nu^{9} - 32 \nu^{8} - 21 \nu^{7} + 132 \nu^{6} - 73 \nu^{5} - 154 \nu^{4} + 260 \nu^{3} + 40 \nu^{2} - 320 \nu + 256 \)\()/224\)
\(\beta_{4}\)\(=\)\((\)\( -11 \nu^{11} + 17 \nu^{10} + 29 \nu^{9} - 78 \nu^{8} + 21 \nu^{7} + 166 \nu^{6} - 167 \nu^{5} - 140 \nu^{4} + 380 \nu^{3} - 88 \nu^{2} - 304 \nu + 288 \)\()/224\)
\(\beta_{5}\)\(=\)\((\)\( -13 \nu^{11} + 29 \nu^{10} + 5 \nu^{9} - 96 \nu^{8} + 91 \nu^{7} + 200 \nu^{6} - 289 \nu^{5} - 126 \nu^{4} + 584 \nu^{3} - 160 \nu^{2} - 512 \nu + 544 \)\()/224\)
\(\beta_{6}\)\(=\)\((\)\( 8 \nu^{11} - 13 \nu^{10} - 9 \nu^{9} + 51 \nu^{8} - 42 \nu^{7} - 101 \nu^{6} + 194 \nu^{5} + 7 \nu^{4} - 340 \nu^{3} + 260 \nu^{2} + 216 \nu - 464 \)\()/112\)
\(\beta_{7}\)\(=\)\((\)\( 13 \nu^{11} - 57 \nu^{10} - 5 \nu^{9} + 208 \nu^{8} - 231 \nu^{7} - 396 \nu^{6} + 821 \nu^{5} + 42 \nu^{4} - 1452 \nu^{3} + 720 \nu^{2} + 1184 \nu - 1664 \)\()/224\)
\(\beta_{8}\)\(=\)\((\)\( 2 \nu^{11} - 5 \nu^{10} - 4 \nu^{9} + 18 \nu^{8} - 7 \nu^{7} - 41 \nu^{6} + 45 \nu^{5} + 35 \nu^{4} - 99 \nu^{3} + 16 \nu^{2} + 96 \nu - 88 \)\()/28\)
\(\beta_{9}\)\(=\)\((\)\( 3 \nu^{11} - 4 \nu^{10} - 6 \nu^{9} + 20 \nu^{8} - 44 \nu^{6} + 43 \nu^{5} + 56 \nu^{4} - 82 \nu^{3} + 3 \nu^{2} + 102 \nu - 48 \)\()/28\)
\(\beta_{10}\)\(=\)\((\)\( -15 \nu^{11} + 20 \nu^{10} + 30 \nu^{9} - 121 \nu^{8} + 21 \nu^{7} + 269 \nu^{6} - 271 \nu^{5} - 273 \nu^{4} + 634 \nu^{3} - 64 \nu^{2} - 664 \nu + 464 \)\()/112\)
\(\beta_{11}\)\(=\)\((\)\( -17 \nu^{11} + 39 \nu^{10} + 13 \nu^{9} - 160 \nu^{8} + 133 \nu^{7} + 310 \nu^{6} - 547 \nu^{5} - 168 \nu^{4} + 1062 \nu^{3} - 500 \nu^{2} - 872 \nu + 1056 \)\()/112\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(\beta_{8} - \beta_{7} + \beta_{6} + \beta_{4} + \beta_{3} + \beta_{2} + 1\)
\(\nu^{3}\)\(=\)\(\beta_{11} + \beta_{9} + \beta_{6} - \beta_{5} + \beta_{4} + \beta_{3} + \beta_{2}\)
\(\nu^{4}\)\(=\)\(-\beta_{11} + \beta_{10} + \beta_{9} - \beta_{7} - \beta_{6} + \beta_{2} - \beta_{1} - 1\)
\(\nu^{5}\)\(=\)\(\beta_{10} + 2 \beta_{9} - 2 \beta_{8} + 2 \beta_{7} - \beta_{6} + \beta_{5} - 2 \beta_{3} - \beta_{2} - \beta_{1}\)
\(\nu^{6}\)\(=\)\(-4 \beta_{11} + 2 \beta_{10} - 3 \beta_{8} + \beta_{7} - 5 \beta_{6} + 4 \beta_{5} - 7 \beta_{4} - 2 \beta_{3} - 4 \beta_{2} + 3 \beta_{1} - 6\)
\(\nu^{7}\)\(=\)\(-\beta_{11} - \beta_{10} - \beta_{9} + 3 \beta_{8} + \beta_{7} + \beta_{6} + 6 \beta_{5} + 4 \beta_{4} - \beta_{3} - 4 \beta_{2} + \beta_{1}\)
\(\nu^{8}\)\(=\)\(-4 \beta_{10} - 2 \beta_{9} - \beta_{8} + 2 \beta_{5} - 4 \beta_{4} + 8 \beta_{3} - 2 \beta_{2} + 3 \beta_{1} - 6\)
\(\nu^{9}\)\(=\)\(2 \beta_{11} - 6 \beta_{10} - 2 \beta_{9} + 6 \beta_{8} - 3 \beta_{7} + 7 \beta_{6} - 4 \beta_{5} + 21 \beta_{4} + 6 \beta_{3} - 3 \beta_{1} + 4\)
\(\nu^{10}\)\(=\)\(5 \beta_{11} - 9 \beta_{10} + \beta_{9} - 16 \beta_{8} + \beta_{7} + 3 \beta_{6} - 8 \beta_{5} + 2 \beta_{4} + 2 \beta_{3} + 7 \beta_{2} - 6 \beta_{1} + 1\)
\(\nu^{11}\)\(=\)\(-2 \beta_{11} - \beta_{10} - 19 \beta_{8} + \beta_{7} + 4 \beta_{6} - 15 \beta_{5} - 5 \beta_{4} - 13 \beta_{3} - 14 \beta_{2} + 9 \beta_{1} - 5\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/819\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(379\) \(703\)
\(\chi(n)\) \(1\) \(-\beta_{4}\) \(-1 - \beta_{4}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
361.1
1.21245 0.727987i
0.874681 + 1.11128i
−1.18541 0.771231i
0.655911 1.25291i
−1.38488 + 0.286553i
1.32725 + 0.488273i
1.21245 + 0.727987i
0.874681 1.11128i
−1.18541 + 0.771231i
0.655911 + 1.25291i
−1.38488 0.286553i
1.32725 0.488273i
−1.99469 1.15163i 0 1.65252 + 2.86225i 0.733776 0.423646i 0 2.09135 1.62057i 3.00585i 0 −1.95154
361.2 −1.16500 0.672613i 0 −0.0951832 0.164862i 3.08979 1.78389i 0 −2.09638 1.61406i 2.94654i 0 −4.79947
361.3 −0.433001 0.249993i 0 −0.875007 1.51556i −0.902810 + 0.521238i 0 1.52469 + 2.16225i 1.87496i 0 0.521224
361.4 0.156598 + 0.0904119i 0 −0.983651 1.70373i −2.32670 + 1.34332i 0 −0.393717 2.61629i 0.717383i 0 −0.485809
361.5 1.19430 + 0.689527i 0 −0.0491037 0.0850501i −0.697972 + 0.402974i 0 −2.25549 + 1.38302i 2.89354i 0 −1.11145
361.6 2.24179 + 1.29430i 0 2.35043 + 4.07106i −1.39608 + 0.806027i 0 2.62954 0.292422i 6.99143i 0 −4.17296
667.1 −1.99469 + 1.15163i 0 1.65252 2.86225i 0.733776 + 0.423646i 0 2.09135 + 1.62057i 3.00585i 0 −1.95154
667.2 −1.16500 + 0.672613i 0 −0.0951832 + 0.164862i 3.08979 + 1.78389i 0 −2.09638 + 1.61406i 2.94654i 0 −4.79947
667.3 −0.433001 + 0.249993i 0 −0.875007 + 1.51556i −0.902810 0.521238i 0 1.52469 2.16225i 1.87496i 0 0.521224
667.4 0.156598 0.0904119i 0 −0.983651 + 1.70373i −2.32670 1.34332i 0 −0.393717 + 2.61629i 0.717383i 0 −0.485809
667.5 1.19430 0.689527i 0 −0.0491037 + 0.0850501i −0.697972 0.402974i 0 −2.25549 1.38302i 2.89354i 0 −1.11145
667.6 2.24179 1.29430i 0 2.35043 4.07106i −1.39608 0.806027i 0 2.62954 + 0.292422i 6.99143i 0 −4.17296
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 667.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
91.u even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 819.2.do.e 12
3.b odd 2 1 91.2.u.b yes 12
7.c even 3 1 819.2.bm.f 12
13.e even 6 1 819.2.bm.f 12
21.c even 2 1 637.2.u.g 12
21.g even 6 1 637.2.k.i 12
21.g even 6 1 637.2.q.i 12
21.h odd 6 1 91.2.k.b 12
21.h odd 6 1 637.2.q.g 12
39.h odd 6 1 91.2.k.b 12
39.k even 12 2 1183.2.e.j 24
91.u even 6 1 inner 819.2.do.e 12
273.u even 6 1 637.2.k.i 12
273.x odd 6 1 91.2.u.b yes 12
273.y even 6 1 637.2.u.g 12
273.bp odd 6 1 637.2.q.g 12
273.br even 6 1 637.2.q.i 12
273.bv even 12 2 1183.2.e.j 24
273.bw even 12 2 8281.2.a.cp 12
273.ch odd 12 2 8281.2.a.co 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
91.2.k.b 12 21.h odd 6 1
91.2.k.b 12 39.h odd 6 1
91.2.u.b yes 12 3.b odd 2 1
91.2.u.b yes 12 273.x odd 6 1
637.2.k.i 12 21.g even 6 1
637.2.k.i 12 273.u even 6 1
637.2.q.g 12 21.h odd 6 1
637.2.q.g 12 273.bp odd 6 1
637.2.q.i 12 21.g even 6 1
637.2.q.i 12 273.br even 6 1
637.2.u.g 12 21.c even 2 1
637.2.u.g 12 273.y even 6 1
819.2.bm.f 12 7.c even 3 1
819.2.bm.f 12 13.e even 6 1
819.2.do.e 12 1.a even 1 1 trivial
819.2.do.e 12 91.u even 6 1 inner
1183.2.e.j 24 39.k even 12 2
1183.2.e.j 24 273.bv even 12 2
8281.2.a.co 12 273.ch odd 12 2
8281.2.a.cp 12 273.bw even 12 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \(T_{2}^{12} - \cdots\) acting on \(S_{2}^{\mathrm{new}}(819, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 - 6 T + 72 T^{3} + 130 T^{4} - 36 T^{5} - 91 T^{6} + 18 T^{7} + 52 T^{8} - 8 T^{10} + T^{12} \)
$3$ \( T^{12} \)
$5$ \( 121 + 363 T + 275 T^{2} - 264 T^{3} - 343 T^{4} + 351 T^{5} + 801 T^{6} + 495 T^{7} + 81 T^{8} - 33 T^{9} - 8 T^{10} + 3 T^{11} + T^{12} \)
$7$ \( 117649 - 50421 T + 1029 T^{3} + 2205 T^{4} - 1218 T^{5} + 317 T^{6} - 174 T^{7} + 45 T^{8} + 3 T^{9} - 3 T^{11} + T^{12} \)
$11$ \( 85849 + 122593 T^{2} + 61227 T^{4} + 13284 T^{6} + 1355 T^{8} + 62 T^{10} + T^{12} \)
$13$ \( 4826809 + 742586 T - 514098 T^{2} - 37349 T^{3} + 57629 T^{4} - 819 T^{5} - 6395 T^{6} - 63 T^{7} + 341 T^{8} - 17 T^{9} - 18 T^{10} + 2 T^{11} + T^{12} \)
$17$ \( 361 - 2774 T + 20252 T^{2} - 15700 T^{3} + 30220 T^{4} + 39443 T^{5} + 36348 T^{6} + 16958 T^{7} + 5794 T^{8} + 1236 T^{9} + 193 T^{10} + 17 T^{11} + T^{12} \)
$19$ \( 1 + 474 T^{2} + 13117 T^{4} + 15833 T^{6} + 1984 T^{8} + 79 T^{10} + T^{12} \)
$23$ \( 628849 + 512278 T + 564021 T^{2} + 291264 T^{3} + 241189 T^{4} + 114894 T^{5} + 57479 T^{6} + 14706 T^{7} + 3462 T^{8} + 368 T^{9} + 59 T^{10} + 3 T^{11} + T^{12} \)
$29$ \( 16072081 - 20205360 T + 19636658 T^{2} - 8770940 T^{3} + 3370218 T^{4} - 597669 T^{5} + 162746 T^{6} - 18504 T^{7} + 6148 T^{8} - 294 T^{9} + 87 T^{10} - T^{11} + T^{12} \)
$31$ \( 241274089 + 221904438 T + 60760488 T^{2} - 6685848 T^{3} - 4975196 T^{4} + 325530 T^{5} + 469517 T^{6} + 65880 T^{7} - 3446 T^{8} - 1116 T^{9} + 46 T^{10} + 18 T^{11} + T^{12} \)
$37$ \( 123201 - 151632 T - 92583 T^{2} + 190512 T^{3} + 109917 T^{4} - 292410 T^{5} + 164889 T^{6} - 23868 T^{7} - 1638 T^{8} + 540 T^{9} + 39 T^{10} - 15 T^{11} + T^{12} \)
$41$ \( 389707081 + 591933885 T + 198922270 T^{2} - 153073425 T^{3} + 9911704 T^{4} + 6405744 T^{5} - 349015 T^{6} - 188553 T^{7} + 21580 T^{8} + 1026 T^{9} - 159 T^{10} - 6 T^{11} + T^{12} \)
$43$ \( 418898089 - 158496448 T + 88152595 T^{2} - 22738656 T^{3} + 9218116 T^{4} - 2107681 T^{5} + 554133 T^{6} - 78022 T^{7} + 12754 T^{8} - 1093 T^{9} + 170 T^{10} - 11 T^{11} + T^{12} \)
$47$ \( 121 + 363 T - 77 T^{2} - 1320 T^{3} + 1083 T^{4} + 1035 T^{5} - 567 T^{6} - 543 T^{7} + 179 T^{8} + 255 T^{9} + 92 T^{10} + 15 T^{11} + T^{12} \)
$53$ \( 289 + 4488 T + 59309 T^{2} + 175040 T^{3} + 479331 T^{4} - 266772 T^{5} + 137852 T^{6} - 25392 T^{7} + 5287 T^{8} - 504 T^{9} + 102 T^{10} - 8 T^{11} + T^{12} \)
$59$ \( 35582408689 + 40868659881 T + 15977236899 T^{2} + 379583064 T^{3} - 342075677 T^{4} - 14175459 T^{5} + 6359213 T^{6} + 586863 T^{7} - 24383 T^{8} - 4185 T^{9} + 88 T^{10} + 27 T^{11} + T^{12} \)
$61$ \( ( 1777 + 4825 T + 1100 T^{2} - 354 T^{3} - 75 T^{4} + 5 T^{5} + T^{6} )^{2} \)
$67$ \( 5708255809 + 1907282039 T^{2} + 147600062 T^{4} + 4680243 T^{6} + 68286 T^{8} + 439 T^{10} + T^{12} \)
$71$ \( 639230089 + 907078191 T + 408851926 T^{2} - 28665723 T^{3} - 35115036 T^{4} + 1753566 T^{5} + 2943903 T^{6} + 193635 T^{7} - 25312 T^{8} - 2190 T^{9} + 227 T^{10} + 30 T^{11} + T^{12} \)
$73$ \( 484396081 + 1488776796 T + 1844455448 T^{2} + 981108576 T^{3} + 272029226 T^{4} + 39258450 T^{5} + 1956141 T^{6} - 180798 T^{7} - 13662 T^{8} + 3948 T^{9} + 682 T^{10} + 42 T^{11} + T^{12} \)
$79$ \( 65086724641 - 9372380177 T + 6623723602 T^{2} + 1016625969 T^{3} + 321095857 T^{4} + 44623483 T^{5} + 9161565 T^{6} + 1236997 T^{7} + 156649 T^{8} + 13048 T^{9} + 881 T^{10} + 35 T^{11} + T^{12} \)
$83$ \( 402363481 + 194879694 T^{2} + 33361345 T^{4} + 2359793 T^{6} + 59836 T^{8} + 463 T^{10} + T^{12} \)
$89$ \( 145033849 + 341491308 T + 348395894 T^{2} + 189247944 T^{3} + 54744071 T^{4} + 6344400 T^{5} - 401292 T^{6} - 117660 T^{7} + 21411 T^{8} + 8112 T^{9} + 937 T^{10} + 48 T^{11} + T^{12} \)
$97$ \( 1681 - 8364 T + 8255 T^{2} + 27948 T^{3} - 34684 T^{4} - 122601 T^{5} + 291057 T^{6} - 159822 T^{7} + 33072 T^{8} - 537 T^{9} - 176 T^{10} + 3 T^{11} + T^{12} \)
show more
show less