Properties

Label 819.2.do.c.667.1
Level $819$
Weight $2$
Character 819.667
Analytic conductor $6.540$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [819,2,Mod(361,819)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("819.361"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(819, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 819 = 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 819.do (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.53974792554\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 91)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 667.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 819.667
Dual form 819.2.do.c.361.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.50000 - 0.866025i) q^{2} +(0.500000 - 0.866025i) q^{4} +(1.50000 + 0.866025i) q^{5} +(-2.50000 + 0.866025i) q^{7} +1.73205i q^{8} +3.00000 q^{10} +5.19615i q^{11} +(-1.00000 + 3.46410i) q^{13} +(-3.00000 + 3.46410i) q^{14} +(2.50000 + 4.33013i) q^{16} +(3.00000 - 5.19615i) q^{17} +1.73205i q^{19} +(1.50000 - 0.866025i) q^{20} +(4.50000 + 7.79423i) q^{22} +(-1.00000 - 1.73205i) q^{25} +(1.50000 + 6.06218i) q^{26} +(-0.500000 + 2.59808i) q^{28} +(1.50000 - 2.59808i) q^{29} +(1.50000 - 0.866025i) q^{31} +(4.50000 + 2.59808i) q^{32} -10.3923i q^{34} +(-4.50000 - 0.866025i) q^{35} +(1.50000 + 2.59808i) q^{38} +(-1.50000 + 2.59808i) q^{40} +(4.50000 + 2.59808i) q^{41} +(-5.50000 - 9.52628i) q^{43} +(4.50000 + 2.59808i) q^{44} +(7.50000 + 4.33013i) q^{47} +(5.50000 - 4.33013i) q^{49} +(-3.00000 - 1.73205i) q^{50} +(2.50000 + 2.59808i) q^{52} +(-4.50000 - 7.79423i) q^{53} +(-4.50000 + 7.79423i) q^{55} +(-1.50000 - 4.33013i) q^{56} -5.19615i q^{58} +(3.00000 + 1.73205i) q^{59} +7.00000 q^{61} +(1.50000 - 2.59808i) q^{62} -1.00000 q^{64} +(-4.50000 + 4.33013i) q^{65} +8.66025i q^{67} +(-3.00000 - 5.19615i) q^{68} +(-7.50000 + 2.59808i) q^{70} +(-1.50000 + 0.866025i) q^{71} +(-7.50000 + 4.33013i) q^{73} +(1.50000 + 0.866025i) q^{76} +(-4.50000 - 12.9904i) q^{77} +(2.50000 - 4.33013i) q^{79} +8.66025i q^{80} +9.00000 q^{82} +3.46410i q^{83} +(9.00000 - 5.19615i) q^{85} +(-16.5000 - 9.52628i) q^{86} -9.00000 q^{88} +(6.00000 - 3.46410i) q^{89} +(-0.500000 - 9.52628i) q^{91} +15.0000 q^{94} +(-1.50000 + 2.59808i) q^{95} +(-4.50000 + 2.59808i) q^{97} +(4.50000 - 11.2583i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 3 q^{2} + q^{4} + 3 q^{5} - 5 q^{7} + 6 q^{10} - 2 q^{13} - 6 q^{14} + 5 q^{16} + 6 q^{17} + 3 q^{20} + 9 q^{22} - 2 q^{25} + 3 q^{26} - q^{28} + 3 q^{29} + 3 q^{31} + 9 q^{32} - 9 q^{35} + 3 q^{38}+ \cdots + 9 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/819\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(379\) \(703\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.50000 0.866025i 1.06066 0.612372i 0.135045 0.990839i \(-0.456882\pi\)
0.925615 + 0.378467i \(0.123549\pi\)
\(3\) 0 0
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 1.50000 + 0.866025i 0.670820 + 0.387298i 0.796387 0.604787i \(-0.206742\pi\)
−0.125567 + 0.992085i \(0.540075\pi\)
\(6\) 0 0
\(7\) −2.50000 + 0.866025i −0.944911 + 0.327327i
\(8\) 1.73205i 0.612372i
\(9\) 0 0
\(10\) 3.00000 0.948683
\(11\) 5.19615i 1.56670i 0.621582 + 0.783349i \(0.286490\pi\)
−0.621582 + 0.783349i \(0.713510\pi\)
\(12\) 0 0
\(13\) −1.00000 + 3.46410i −0.277350 + 0.960769i
\(14\) −3.00000 + 3.46410i −0.801784 + 0.925820i
\(15\) 0 0
\(16\) 2.50000 + 4.33013i 0.625000 + 1.08253i
\(17\) 3.00000 5.19615i 0.727607 1.26025i −0.230285 0.973123i \(-0.573966\pi\)
0.957892 0.287129i \(-0.0927008\pi\)
\(18\) 0 0
\(19\) 1.73205i 0.397360i 0.980064 + 0.198680i \(0.0636654\pi\)
−0.980064 + 0.198680i \(0.936335\pi\)
\(20\) 1.50000 0.866025i 0.335410 0.193649i
\(21\) 0 0
\(22\) 4.50000 + 7.79423i 0.959403 + 1.66174i
\(23\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(24\) 0 0
\(25\) −1.00000 1.73205i −0.200000 0.346410i
\(26\) 1.50000 + 6.06218i 0.294174 + 1.18889i
\(27\) 0 0
\(28\) −0.500000 + 2.59808i −0.0944911 + 0.490990i
\(29\) 1.50000 2.59808i 0.278543 0.482451i −0.692480 0.721437i \(-0.743482\pi\)
0.971023 + 0.238987i \(0.0768152\pi\)
\(30\) 0 0
\(31\) 1.50000 0.866025i 0.269408 0.155543i −0.359211 0.933257i \(-0.616954\pi\)
0.628619 + 0.777714i \(0.283621\pi\)
\(32\) 4.50000 + 2.59808i 0.795495 + 0.459279i
\(33\) 0 0
\(34\) 10.3923i 1.78227i
\(35\) −4.50000 0.866025i −0.760639 0.146385i
\(36\) 0 0
\(37\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(38\) 1.50000 + 2.59808i 0.243332 + 0.421464i
\(39\) 0 0
\(40\) −1.50000 + 2.59808i −0.237171 + 0.410792i
\(41\) 4.50000 + 2.59808i 0.702782 + 0.405751i 0.808383 0.588657i \(-0.200343\pi\)
−0.105601 + 0.994409i \(0.533677\pi\)
\(42\) 0 0
\(43\) −5.50000 9.52628i −0.838742 1.45274i −0.890947 0.454108i \(-0.849958\pi\)
0.0522047 0.998636i \(-0.483375\pi\)
\(44\) 4.50000 + 2.59808i 0.678401 + 0.391675i
\(45\) 0 0
\(46\) 0 0
\(47\) 7.50000 + 4.33013i 1.09399 + 0.631614i 0.934635 0.355608i \(-0.115726\pi\)
0.159352 + 0.987222i \(0.449059\pi\)
\(48\) 0 0
\(49\) 5.50000 4.33013i 0.785714 0.618590i
\(50\) −3.00000 1.73205i −0.424264 0.244949i
\(51\) 0 0
\(52\) 2.50000 + 2.59808i 0.346688 + 0.360288i
\(53\) −4.50000 7.79423i −0.618123 1.07062i −0.989828 0.142269i \(-0.954560\pi\)
0.371706 0.928351i \(-0.378773\pi\)
\(54\) 0 0
\(55\) −4.50000 + 7.79423i −0.606780 + 1.05097i
\(56\) −1.50000 4.33013i −0.200446 0.578638i
\(57\) 0 0
\(58\) 5.19615i 0.682288i
\(59\) 3.00000 + 1.73205i 0.390567 + 0.225494i 0.682406 0.730974i \(-0.260934\pi\)
−0.291839 + 0.956467i \(0.594267\pi\)
\(60\) 0 0
\(61\) 7.00000 0.896258 0.448129 0.893969i \(-0.352090\pi\)
0.448129 + 0.893969i \(0.352090\pi\)
\(62\) 1.50000 2.59808i 0.190500 0.329956i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −4.50000 + 4.33013i −0.558156 + 0.537086i
\(66\) 0 0
\(67\) 8.66025i 1.05802i 0.848616 + 0.529009i \(0.177436\pi\)
−0.848616 + 0.529009i \(0.822564\pi\)
\(68\) −3.00000 5.19615i −0.363803 0.630126i
\(69\) 0 0
\(70\) −7.50000 + 2.59808i −0.896421 + 0.310530i
\(71\) −1.50000 + 0.866025i −0.178017 + 0.102778i −0.586361 0.810050i \(-0.699440\pi\)
0.408344 + 0.912828i \(0.366107\pi\)
\(72\) 0 0
\(73\) −7.50000 + 4.33013i −0.877809 + 0.506803i −0.869935 0.493166i \(-0.835840\pi\)
−0.00787336 + 0.999969i \(0.502506\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 1.50000 + 0.866025i 0.172062 + 0.0993399i
\(77\) −4.50000 12.9904i −0.512823 1.48039i
\(78\) 0 0
\(79\) 2.50000 4.33013i 0.281272 0.487177i −0.690426 0.723403i \(-0.742577\pi\)
0.971698 + 0.236225i \(0.0759104\pi\)
\(80\) 8.66025i 0.968246i
\(81\) 0 0
\(82\) 9.00000 0.993884
\(83\) 3.46410i 0.380235i 0.981761 + 0.190117i \(0.0608868\pi\)
−0.981761 + 0.190117i \(0.939113\pi\)
\(84\) 0 0
\(85\) 9.00000 5.19615i 0.976187 0.563602i
\(86\) −16.5000 9.52628i −1.77924 1.02725i
\(87\) 0 0
\(88\) −9.00000 −0.959403
\(89\) 6.00000 3.46410i 0.635999 0.367194i −0.147073 0.989126i \(-0.546985\pi\)
0.783072 + 0.621932i \(0.213652\pi\)
\(90\) 0 0
\(91\) −0.500000 9.52628i −0.0524142 0.998625i
\(92\) 0 0
\(93\) 0 0
\(94\) 15.0000 1.54713
\(95\) −1.50000 + 2.59808i −0.153897 + 0.266557i
\(96\) 0 0
\(97\) −4.50000 + 2.59808i −0.456906 + 0.263795i −0.710742 0.703452i \(-0.751641\pi\)
0.253837 + 0.967247i \(0.418307\pi\)
\(98\) 4.50000 11.2583i 0.454569 1.13726i
\(99\) 0 0
\(100\) −2.00000 −0.200000
\(101\) 9.00000 0.895533 0.447767 0.894150i \(-0.352219\pi\)
0.447767 + 0.894150i \(0.352219\pi\)
\(102\) 0 0
\(103\) 6.50000 11.2583i 0.640464 1.10932i −0.344865 0.938652i \(-0.612075\pi\)
0.985329 0.170664i \(-0.0545913\pi\)
\(104\) −6.00000 1.73205i −0.588348 0.169842i
\(105\) 0 0
\(106\) −13.5000 7.79423i −1.31124 0.757042i
\(107\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(108\) 0 0
\(109\) 4.50000 2.59808i 0.431022 0.248851i −0.268760 0.963207i \(-0.586614\pi\)
0.699782 + 0.714357i \(0.253281\pi\)
\(110\) 15.5885i 1.48630i
\(111\) 0 0
\(112\) −10.0000 8.66025i −0.944911 0.818317i
\(113\) 7.50000 + 12.9904i 0.705541 + 1.22203i 0.966496 + 0.256681i \(0.0826291\pi\)
−0.260955 + 0.965351i \(0.584038\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −1.50000 2.59808i −0.139272 0.241225i
\(117\) 0 0
\(118\) 6.00000 0.552345
\(119\) −3.00000 + 15.5885i −0.275010 + 1.42899i
\(120\) 0 0
\(121\) −16.0000 −1.45455
\(122\) 10.5000 6.06218i 0.950625 0.548844i
\(123\) 0 0
\(124\) 1.73205i 0.155543i
\(125\) 12.1244i 1.08444i
\(126\) 0 0
\(127\) −6.50000 + 11.2583i −0.576782 + 0.999015i 0.419064 + 0.907957i \(0.362358\pi\)
−0.995846 + 0.0910585i \(0.970975\pi\)
\(128\) −10.5000 + 6.06218i −0.928078 + 0.535826i
\(129\) 0 0
\(130\) −3.00000 + 10.3923i −0.263117 + 0.911465i
\(131\) 7.50000 12.9904i 0.655278 1.13497i −0.326546 0.945181i \(-0.605885\pi\)
0.981824 0.189794i \(-0.0607819\pi\)
\(132\) 0 0
\(133\) −1.50000 4.33013i −0.130066 0.375470i
\(134\) 7.50000 + 12.9904i 0.647901 + 1.12220i
\(135\) 0 0
\(136\) 9.00000 + 5.19615i 0.771744 + 0.445566i
\(137\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(138\) 0 0
\(139\) 6.50000 + 11.2583i 0.551323 + 0.954919i 0.998179 + 0.0603135i \(0.0192101\pi\)
−0.446857 + 0.894606i \(0.647457\pi\)
\(140\) −3.00000 + 3.46410i −0.253546 + 0.292770i
\(141\) 0 0
\(142\) −1.50000 + 2.59808i −0.125877 + 0.218026i
\(143\) −18.0000 5.19615i −1.50524 0.434524i
\(144\) 0 0
\(145\) 4.50000 2.59808i 0.373705 0.215758i
\(146\) −7.50000 + 12.9904i −0.620704 + 1.07509i
\(147\) 0 0
\(148\) 0 0
\(149\) 19.0526i 1.56085i −0.625252 0.780423i \(-0.715004\pi\)
0.625252 0.780423i \(-0.284996\pi\)
\(150\) 0 0
\(151\) −10.5000 + 6.06218i −0.854478 + 0.493333i −0.862159 0.506637i \(-0.830888\pi\)
0.00768132 + 0.999970i \(0.497555\pi\)
\(152\) −3.00000 −0.243332
\(153\) 0 0
\(154\) −18.0000 15.5885i −1.45048 1.25615i
\(155\) 3.00000 0.240966
\(156\) 0 0
\(157\) −11.5000 19.9186i −0.917800 1.58968i −0.802749 0.596316i \(-0.796630\pi\)
−0.115050 0.993360i \(-0.536703\pi\)
\(158\) 8.66025i 0.688973i
\(159\) 0 0
\(160\) 4.50000 + 7.79423i 0.355756 + 0.616188i
\(161\) 0 0
\(162\) 0 0
\(163\) 12.1244i 0.949653i −0.880079 0.474826i \(-0.842511\pi\)
0.880079 0.474826i \(-0.157489\pi\)
\(164\) 4.50000 2.59808i 0.351391 0.202876i
\(165\) 0 0
\(166\) 3.00000 + 5.19615i 0.232845 + 0.403300i
\(167\) 1.50000 + 0.866025i 0.116073 + 0.0670151i 0.556913 0.830571i \(-0.311986\pi\)
−0.440839 + 0.897586i \(0.645319\pi\)
\(168\) 0 0
\(169\) −11.0000 6.92820i −0.846154 0.532939i
\(170\) 9.00000 15.5885i 0.690268 1.19558i
\(171\) 0 0
\(172\) −11.0000 −0.838742
\(173\) −15.0000 −1.14043 −0.570214 0.821496i \(-0.693140\pi\)
−0.570214 + 0.821496i \(0.693140\pi\)
\(174\) 0 0
\(175\) 4.00000 + 3.46410i 0.302372 + 0.261861i
\(176\) −22.5000 + 12.9904i −1.69600 + 0.979187i
\(177\) 0 0
\(178\) 6.00000 10.3923i 0.449719 0.778936i
\(179\) −3.00000 −0.224231 −0.112115 0.993695i \(-0.535763\pi\)
−0.112115 + 0.993695i \(0.535763\pi\)
\(180\) 0 0
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) −9.00000 13.8564i −0.667124 1.02711i
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 27.0000 + 15.5885i 1.97444 + 1.13994i
\(188\) 7.50000 4.33013i 0.546994 0.315807i
\(189\) 0 0
\(190\) 5.19615i 0.376969i
\(191\) 15.0000 1.08536 0.542681 0.839939i \(-0.317409\pi\)
0.542681 + 0.839939i \(0.317409\pi\)
\(192\) 0 0
\(193\) 1.73205i 0.124676i 0.998055 + 0.0623379i \(0.0198556\pi\)
−0.998055 + 0.0623379i \(0.980144\pi\)
\(194\) −4.50000 + 7.79423i −0.323081 + 0.559593i
\(195\) 0 0
\(196\) −1.00000 6.92820i −0.0714286 0.494872i
\(197\) −19.5000 11.2583i −1.38932 0.802123i −0.396079 0.918216i \(-0.629629\pi\)
−0.993238 + 0.116094i \(0.962963\pi\)
\(198\) 0 0
\(199\) −2.00000 + 3.46410i −0.141776 + 0.245564i −0.928166 0.372168i \(-0.878615\pi\)
0.786389 + 0.617731i \(0.211948\pi\)
\(200\) 3.00000 1.73205i 0.212132 0.122474i
\(201\) 0 0
\(202\) 13.5000 7.79423i 0.949857 0.548400i
\(203\) −1.50000 + 7.79423i −0.105279 + 0.547048i
\(204\) 0 0
\(205\) 4.50000 + 7.79423i 0.314294 + 0.544373i
\(206\) 22.5167i 1.56881i
\(207\) 0 0
\(208\) −17.5000 + 4.33013i −1.21341 + 0.300240i
\(209\) −9.00000 −0.622543
\(210\) 0 0
\(211\) −6.50000 + 11.2583i −0.447478 + 0.775055i −0.998221 0.0596196i \(-0.981011\pi\)
0.550743 + 0.834675i \(0.314345\pi\)
\(212\) −9.00000 −0.618123
\(213\) 0 0
\(214\) 0 0
\(215\) 19.0526i 1.29937i
\(216\) 0 0
\(217\) −3.00000 + 3.46410i −0.203653 + 0.235159i
\(218\) 4.50000 7.79423i 0.304778 0.527892i
\(219\) 0 0
\(220\) 4.50000 + 7.79423i 0.303390 + 0.525487i
\(221\) 15.0000 + 15.5885i 1.00901 + 1.04859i
\(222\) 0 0
\(223\) 4.50000 + 2.59808i 0.301342 + 0.173980i 0.643046 0.765828i \(-0.277671\pi\)
−0.341703 + 0.939808i \(0.611004\pi\)
\(224\) −13.5000 2.59808i −0.902007 0.173591i
\(225\) 0 0
\(226\) 22.5000 + 12.9904i 1.49668 + 0.864107i
\(227\) 15.0000 + 8.66025i 0.995585 + 0.574801i 0.906939 0.421262i \(-0.138413\pi\)
0.0886460 + 0.996063i \(0.471746\pi\)
\(228\) 0 0
\(229\) 10.5000 + 6.06218i 0.693860 + 0.400600i 0.805056 0.593198i \(-0.202135\pi\)
−0.111197 + 0.993798i \(0.535468\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 4.50000 + 2.59808i 0.295439 + 0.170572i
\(233\) 1.50000 2.59808i 0.0982683 0.170206i −0.812700 0.582683i \(-0.802003\pi\)
0.910968 + 0.412477i \(0.135336\pi\)
\(234\) 0 0
\(235\) 7.50000 + 12.9904i 0.489246 + 0.847399i
\(236\) 3.00000 1.73205i 0.195283 0.112747i
\(237\) 0 0
\(238\) 9.00000 + 25.9808i 0.583383 + 1.68408i
\(239\) 10.3923i 0.672222i 0.941822 + 0.336111i \(0.109112\pi\)
−0.941822 + 0.336111i \(0.890888\pi\)
\(240\) 0 0
\(241\) −6.00000 3.46410i −0.386494 0.223142i 0.294146 0.955761i \(-0.404965\pi\)
−0.680640 + 0.732618i \(0.738298\pi\)
\(242\) −24.0000 + 13.8564i −1.54278 + 0.890724i
\(243\) 0 0
\(244\) 3.50000 6.06218i 0.224065 0.388091i
\(245\) 12.0000 1.73205i 0.766652 0.110657i
\(246\) 0 0
\(247\) −6.00000 1.73205i −0.381771 0.110208i
\(248\) 1.50000 + 2.59808i 0.0952501 + 0.164978i
\(249\) 0 0
\(250\) −10.5000 18.1865i −0.664078 1.15022i
\(251\) 1.50000 + 2.59808i 0.0946792 + 0.163989i 0.909475 0.415759i \(-0.136484\pi\)
−0.814795 + 0.579748i \(0.803151\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 22.5167i 1.41282i
\(255\) 0 0
\(256\) −9.50000 + 16.4545i −0.593750 + 1.02841i
\(257\) 15.0000 + 25.9808i 0.935674 + 1.62064i 0.773427 + 0.633885i \(0.218541\pi\)
0.162247 + 0.986750i \(0.448126\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 1.50000 + 6.06218i 0.0930261 + 0.375960i
\(261\) 0 0
\(262\) 25.9808i 1.60510i
\(263\) −3.00000 −0.184988 −0.0924940 0.995713i \(-0.529484\pi\)
−0.0924940 + 0.995713i \(0.529484\pi\)
\(264\) 0 0
\(265\) 15.5885i 0.957591i
\(266\) −6.00000 5.19615i −0.367884 0.318597i
\(267\) 0 0
\(268\) 7.50000 + 4.33013i 0.458135 + 0.264505i
\(269\) −3.00000 + 5.19615i −0.182913 + 0.316815i −0.942871 0.333157i \(-0.891886\pi\)
0.759958 + 0.649972i \(0.225219\pi\)
\(270\) 0 0
\(271\) −15.0000 + 8.66025i −0.911185 + 0.526073i −0.880812 0.473466i \(-0.843003\pi\)
−0.0303728 + 0.999539i \(0.509669\pi\)
\(272\) 30.0000 1.81902
\(273\) 0 0
\(274\) 0 0
\(275\) 9.00000 5.19615i 0.542720 0.313340i
\(276\) 0 0
\(277\) 5.00000 8.66025i 0.300421 0.520344i −0.675810 0.737075i \(-0.736206\pi\)
0.976231 + 0.216731i \(0.0695395\pi\)
\(278\) 19.5000 + 11.2583i 1.16953 + 0.675230i
\(279\) 0 0
\(280\) 1.50000 7.79423i 0.0896421 0.465794i
\(281\) 6.92820i 0.413302i −0.978415 0.206651i \(-0.933744\pi\)
0.978415 0.206651i \(-0.0662565\pi\)
\(282\) 0 0
\(283\) 19.0000 1.12943 0.564716 0.825285i \(-0.308986\pi\)
0.564716 + 0.825285i \(0.308986\pi\)
\(284\) 1.73205i 0.102778i
\(285\) 0 0
\(286\) −31.5000 + 7.79423i −1.86263 + 0.460882i
\(287\) −13.5000 2.59808i −0.796880 0.153360i
\(288\) 0 0
\(289\) −9.50000 16.4545i −0.558824 0.967911i
\(290\) 4.50000 7.79423i 0.264249 0.457693i
\(291\) 0 0
\(292\) 8.66025i 0.506803i
\(293\) 22.5000 12.9904i 1.31446 0.758906i 0.331632 0.943409i \(-0.392401\pi\)
0.982832 + 0.184503i \(0.0590674\pi\)
\(294\) 0 0
\(295\) 3.00000 + 5.19615i 0.174667 + 0.302532i
\(296\) 0 0
\(297\) 0 0
\(298\) −16.5000 28.5788i −0.955819 1.65553i
\(299\) 0 0
\(300\) 0 0
\(301\) 22.0000 + 19.0526i 1.26806 + 1.09817i
\(302\) −10.5000 + 18.1865i −0.604207 + 1.04652i
\(303\) 0 0
\(304\) −7.50000 + 4.33013i −0.430155 + 0.248350i
\(305\) 10.5000 + 6.06218i 0.601228 + 0.347119i
\(306\) 0 0
\(307\) 24.2487i 1.38395i −0.721923 0.691974i \(-0.756741\pi\)
0.721923 0.691974i \(-0.243259\pi\)
\(308\) −13.5000 2.59808i −0.769234 0.148039i
\(309\) 0 0
\(310\) 4.50000 2.59808i 0.255583 0.147561i
\(311\) −7.50000 12.9904i −0.425286 0.736617i 0.571161 0.820838i \(-0.306493\pi\)
−0.996447 + 0.0842210i \(0.973160\pi\)
\(312\) 0 0
\(313\) −9.50000 + 16.4545i −0.536972 + 0.930062i 0.462093 + 0.886831i \(0.347098\pi\)
−0.999065 + 0.0432311i \(0.986235\pi\)
\(314\) −34.5000 19.9186i −1.94695 1.12407i
\(315\) 0 0
\(316\) −2.50000 4.33013i −0.140636 0.243589i
\(317\) −4.50000 2.59808i −0.252745 0.145922i 0.368275 0.929717i \(-0.379948\pi\)
−0.621021 + 0.783794i \(0.713282\pi\)
\(318\) 0 0
\(319\) 13.5000 + 7.79423i 0.755855 + 0.436393i
\(320\) −1.50000 0.866025i −0.0838525 0.0484123i
\(321\) 0 0
\(322\) 0 0
\(323\) 9.00000 + 5.19615i 0.500773 + 0.289122i
\(324\) 0 0
\(325\) 7.00000 1.73205i 0.388290 0.0960769i
\(326\) −10.5000 18.1865i −0.581541 1.00726i
\(327\) 0 0
\(328\) −4.50000 + 7.79423i −0.248471 + 0.430364i
\(329\) −22.5000 4.33013i −1.24047 0.238728i
\(330\) 0 0
\(331\) 32.9090i 1.80884i −0.426643 0.904420i \(-0.640304\pi\)
0.426643 0.904420i \(-0.359696\pi\)
\(332\) 3.00000 + 1.73205i 0.164646 + 0.0950586i
\(333\) 0 0
\(334\) 3.00000 0.164153
\(335\) −7.50000 + 12.9904i −0.409769 + 0.709740i
\(336\) 0 0
\(337\) 22.0000 1.19842 0.599208 0.800593i \(-0.295482\pi\)
0.599208 + 0.800593i \(0.295482\pi\)
\(338\) −22.5000 0.866025i −1.22384 0.0471056i
\(339\) 0 0
\(340\) 10.3923i 0.563602i
\(341\) 4.50000 + 7.79423i 0.243689 + 0.422081i
\(342\) 0 0
\(343\) −10.0000 + 15.5885i −0.539949 + 0.841698i
\(344\) 16.5000 9.52628i 0.889620 0.513623i
\(345\) 0 0
\(346\) −22.5000 + 12.9904i −1.20961 + 0.698367i
\(347\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(348\) 0 0
\(349\) −4.50000 2.59808i −0.240879 0.139072i 0.374701 0.927146i \(-0.377745\pi\)
−0.615581 + 0.788074i \(0.711079\pi\)
\(350\) 9.00000 + 1.73205i 0.481070 + 0.0925820i
\(351\) 0 0
\(352\) −13.5000 + 23.3827i −0.719552 + 1.24630i
\(353\) 1.73205i 0.0921878i −0.998937 0.0460939i \(-0.985323\pi\)
0.998937 0.0460939i \(-0.0146773\pi\)
\(354\) 0 0
\(355\) −3.00000 −0.159223
\(356\) 6.92820i 0.367194i
\(357\) 0 0
\(358\) −4.50000 + 2.59808i −0.237832 + 0.137313i
\(359\) −16.5000 9.52628i −0.870837 0.502778i −0.00321050 0.999995i \(-0.501022\pi\)
−0.867626 + 0.497217i \(0.834355\pi\)
\(360\) 0 0
\(361\) 16.0000 0.842105
\(362\) 3.00000 1.73205i 0.157676 0.0910346i
\(363\) 0 0
\(364\) −8.50000 4.33013i −0.445521 0.226960i
\(365\) −15.0000 −0.785136
\(366\) 0 0
\(367\) 23.0000 1.20059 0.600295 0.799779i \(-0.295050\pi\)
0.600295 + 0.799779i \(0.295050\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 18.0000 + 15.5885i 0.934513 + 0.809312i
\(372\) 0 0
\(373\) 19.0000 0.983783 0.491891 0.870657i \(-0.336306\pi\)
0.491891 + 0.870657i \(0.336306\pi\)
\(374\) 54.0000 2.79227
\(375\) 0 0
\(376\) −7.50000 + 12.9904i −0.386783 + 0.669928i
\(377\) 7.50000 + 7.79423i 0.386270 + 0.401423i
\(378\) 0 0
\(379\) −1.50000 0.866025i −0.0770498 0.0444847i 0.460980 0.887410i \(-0.347498\pi\)
−0.538030 + 0.842926i \(0.680831\pi\)
\(380\) 1.50000 + 2.59808i 0.0769484 + 0.133278i
\(381\) 0 0
\(382\) 22.5000 12.9904i 1.15120 0.664646i
\(383\) 15.5885i 0.796533i −0.917270 0.398266i \(-0.869612\pi\)
0.917270 0.398266i \(-0.130388\pi\)
\(384\) 0 0
\(385\) 4.50000 23.3827i 0.229341 1.19169i
\(386\) 1.50000 + 2.59808i 0.0763480 + 0.132239i
\(387\) 0 0
\(388\) 5.19615i 0.263795i
\(389\) 1.50000 + 2.59808i 0.0760530 + 0.131728i 0.901544 0.432688i \(-0.142435\pi\)
−0.825491 + 0.564416i \(0.809102\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 7.50000 + 9.52628i 0.378807 + 0.481150i
\(393\) 0 0
\(394\) −39.0000 −1.96479
\(395\) 7.50000 4.33013i 0.377366 0.217872i
\(396\) 0 0
\(397\) 36.3731i 1.82551i −0.408505 0.912756i \(-0.633950\pi\)
0.408505 0.912756i \(-0.366050\pi\)
\(398\) 6.92820i 0.347279i
\(399\) 0 0
\(400\) 5.00000 8.66025i 0.250000 0.433013i
\(401\) 6.00000 3.46410i 0.299626 0.172989i −0.342649 0.939463i \(-0.611324\pi\)
0.642275 + 0.766475i \(0.277991\pi\)
\(402\) 0 0
\(403\) 1.50000 + 6.06218i 0.0747203 + 0.301979i
\(404\) 4.50000 7.79423i 0.223883 0.387777i
\(405\) 0 0
\(406\) 4.50000 + 12.9904i 0.223331 + 0.644702i
\(407\) 0 0
\(408\) 0 0
\(409\) 6.00000 + 3.46410i 0.296681 + 0.171289i 0.640951 0.767582i \(-0.278540\pi\)
−0.344270 + 0.938871i \(0.611874\pi\)
\(410\) 13.5000 + 7.79423i 0.666717 + 0.384930i
\(411\) 0 0
\(412\) −6.50000 11.2583i −0.320232 0.554658i
\(413\) −9.00000 1.73205i −0.442861 0.0852286i
\(414\) 0 0
\(415\) −3.00000 + 5.19615i −0.147264 + 0.255069i
\(416\) −13.5000 + 12.9904i −0.661892 + 0.636906i
\(417\) 0 0
\(418\) −13.5000 + 7.79423i −0.660307 + 0.381228i
\(419\) 10.5000 18.1865i 0.512959 0.888470i −0.486928 0.873442i \(-0.661883\pi\)
0.999887 0.0150285i \(-0.00478389\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 22.5167i 1.09609i
\(423\) 0 0
\(424\) 13.5000 7.79423i 0.655618 0.378521i
\(425\) −12.0000 −0.582086
\(426\) 0 0
\(427\) −17.5000 + 6.06218i −0.846884 + 0.293369i
\(428\) 0 0
\(429\) 0 0
\(430\) −16.5000 28.5788i −0.795701 1.37819i
\(431\) 32.9090i 1.58517i 0.609762 + 0.792585i \(0.291265\pi\)
−0.609762 + 0.792585i \(0.708735\pi\)
\(432\) 0 0
\(433\) −9.50000 16.4545i −0.456541 0.790752i 0.542234 0.840227i \(-0.317578\pi\)
−0.998775 + 0.0494752i \(0.984245\pi\)
\(434\) −1.50000 + 7.79423i −0.0720023 + 0.374135i
\(435\) 0 0
\(436\) 5.19615i 0.248851i
\(437\) 0 0
\(438\) 0 0
\(439\) −4.00000 6.92820i −0.190910 0.330665i 0.754642 0.656136i \(-0.227810\pi\)
−0.945552 + 0.325471i \(0.894477\pi\)
\(440\) −13.5000 7.79423i −0.643587 0.371575i
\(441\) 0 0
\(442\) 36.0000 + 10.3923i 1.71235 + 0.494312i
\(443\) 7.50000 12.9904i 0.356336 0.617192i −0.631010 0.775775i \(-0.717359\pi\)
0.987346 + 0.158583i \(0.0506926\pi\)
\(444\) 0 0
\(445\) 12.0000 0.568855
\(446\) 9.00000 0.426162
\(447\) 0 0
\(448\) 2.50000 0.866025i 0.118114 0.0409159i
\(449\) −1.50000 + 0.866025i −0.0707894 + 0.0408703i −0.534977 0.844867i \(-0.679680\pi\)
0.464188 + 0.885737i \(0.346346\pi\)
\(450\) 0 0
\(451\) −13.5000 + 23.3827i −0.635690 + 1.10105i
\(452\) 15.0000 0.705541
\(453\) 0 0
\(454\) 30.0000 1.40797
\(455\) 7.50000 14.7224i 0.351605 0.690198i
\(456\) 0 0
\(457\) −30.0000 + 17.3205i −1.40334 + 0.810219i −0.994734 0.102491i \(-0.967319\pi\)
−0.408607 + 0.912710i \(0.633985\pi\)
\(458\) 21.0000 0.981266
\(459\) 0 0
\(460\) 0 0
\(461\) −25.5000 + 14.7224i −1.18765 + 0.685692i −0.957773 0.287527i \(-0.907167\pi\)
−0.229881 + 0.973219i \(0.573834\pi\)
\(462\) 0 0
\(463\) 24.2487i 1.12693i 0.826139 + 0.563467i \(0.190533\pi\)
−0.826139 + 0.563467i \(0.809467\pi\)
\(464\) 15.0000 0.696358
\(465\) 0 0
\(466\) 5.19615i 0.240707i
\(467\) −10.5000 + 18.1865i −0.485882 + 0.841572i −0.999868 0.0162260i \(-0.994835\pi\)
0.513986 + 0.857798i \(0.328168\pi\)
\(468\) 0 0
\(469\) −7.50000 21.6506i −0.346318 0.999733i
\(470\) 22.5000 + 12.9904i 1.03785 + 0.599202i
\(471\) 0 0
\(472\) −3.00000 + 5.19615i −0.138086 + 0.239172i
\(473\) 49.5000 28.5788i 2.27601 1.31406i
\(474\) 0 0
\(475\) 3.00000 1.73205i 0.137649 0.0794719i
\(476\) 12.0000 + 10.3923i 0.550019 + 0.476331i
\(477\) 0 0
\(478\) 9.00000 + 15.5885i 0.411650 + 0.712999i
\(479\) 29.4449i 1.34537i −0.739929 0.672685i \(-0.765141\pi\)
0.739929 0.672685i \(-0.234859\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −12.0000 −0.546585
\(483\) 0 0
\(484\) −8.00000 + 13.8564i −0.363636 + 0.629837i
\(485\) −9.00000 −0.408669
\(486\) 0 0
\(487\) −21.0000 12.1244i −0.951601 0.549407i −0.0580230 0.998315i \(-0.518480\pi\)
−0.893578 + 0.448908i \(0.851813\pi\)
\(488\) 12.1244i 0.548844i
\(489\) 0 0
\(490\) 16.5000 12.9904i 0.745394 0.586846i
\(491\) −13.5000 + 23.3827i −0.609246 + 1.05525i 0.382118 + 0.924113i \(0.375195\pi\)
−0.991365 + 0.131132i \(0.958139\pi\)
\(492\) 0 0
\(493\) −9.00000 15.5885i −0.405340 0.702069i
\(494\) −10.5000 + 2.59808i −0.472417 + 0.116893i
\(495\) 0 0
\(496\) 7.50000 + 4.33013i 0.336760 + 0.194428i
\(497\) 3.00000 3.46410i 0.134568 0.155386i
\(498\) 0 0
\(499\) −1.50000 0.866025i −0.0671492 0.0387686i 0.466049 0.884759i \(-0.345677\pi\)
−0.533199 + 0.845990i \(0.679010\pi\)
\(500\) −10.5000 6.06218i −0.469574 0.271109i
\(501\) 0 0
\(502\) 4.50000 + 2.59808i 0.200845 + 0.115958i
\(503\) −4.50000 7.79423i −0.200645 0.347527i 0.748091 0.663596i \(-0.230970\pi\)
−0.948736 + 0.316068i \(0.897637\pi\)
\(504\) 0 0
\(505\) 13.5000 + 7.79423i 0.600742 + 0.346839i
\(506\) 0 0
\(507\) 0 0
\(508\) 6.50000 + 11.2583i 0.288391 + 0.499508i
\(509\) 6.00000 3.46410i 0.265945 0.153544i −0.361098 0.932528i \(-0.617598\pi\)
0.627044 + 0.778984i \(0.284265\pi\)
\(510\) 0 0
\(511\) 15.0000 17.3205i 0.663561 0.766214i
\(512\) 8.66025i 0.382733i
\(513\) 0 0
\(514\) 45.0000 + 25.9808i 1.98486 + 1.14596i
\(515\) 19.5000 11.2583i 0.859273 0.496101i
\(516\) 0 0
\(517\) −22.5000 + 38.9711i −0.989549 + 1.71395i
\(518\) 0 0
\(519\) 0 0
\(520\) −7.50000 7.79423i −0.328897 0.341800i
\(521\) 19.5000 + 33.7750i 0.854311 + 1.47971i 0.877283 + 0.479973i \(0.159354\pi\)
−0.0229727 + 0.999736i \(0.507313\pi\)
\(522\) 0 0
\(523\) 2.00000 + 3.46410i 0.0874539 + 0.151475i 0.906434 0.422347i \(-0.138794\pi\)
−0.818980 + 0.573822i \(0.805460\pi\)
\(524\) −7.50000 12.9904i −0.327639 0.567487i
\(525\) 0 0
\(526\) −4.50000 + 2.59808i −0.196209 + 0.113282i
\(527\) 10.3923i 0.452696i
\(528\) 0 0
\(529\) 11.5000 19.9186i 0.500000 0.866025i
\(530\) −13.5000 23.3827i −0.586403 1.01568i
\(531\) 0 0
\(532\) −4.50000 0.866025i −0.195100 0.0375470i
\(533\) −13.5000 + 12.9904i −0.584750 + 0.562676i
\(534\) 0 0
\(535\) 0 0
\(536\) −15.0000 −0.647901
\(537\) 0 0
\(538\) 10.3923i 0.448044i
\(539\) 22.5000 + 28.5788i 0.969144 + 1.23098i
\(540\) 0 0
\(541\) 10.5000 + 6.06218i 0.451430 + 0.260633i 0.708434 0.705777i \(-0.249402\pi\)
−0.257004 + 0.966410i \(0.582735\pi\)
\(542\) −15.0000 + 25.9808i −0.644305 + 1.11597i
\(543\) 0 0
\(544\) 27.0000 15.5885i 1.15762 0.668350i
\(545\) 9.00000 0.385518
\(546\) 0 0
\(547\) −28.0000 −1.19719 −0.598597 0.801050i \(-0.704275\pi\)
−0.598597 + 0.801050i \(0.704275\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 9.00000 15.5885i 0.383761 0.664694i
\(551\) 4.50000 + 2.59808i 0.191706 + 0.110682i
\(552\) 0 0
\(553\) −2.50000 + 12.9904i −0.106311 + 0.552407i
\(554\) 17.3205i 0.735878i
\(555\) 0 0
\(556\) 13.0000 0.551323
\(557\) 15.5885i 0.660504i −0.943893 0.330252i \(-0.892866\pi\)
0.943893 0.330252i \(-0.107134\pi\)
\(558\) 0 0
\(559\) 38.5000 9.52628i 1.62838 0.402919i
\(560\) −7.50000 21.6506i −0.316933 0.914906i
\(561\) 0 0
\(562\) −6.00000 10.3923i −0.253095 0.438373i
\(563\) −18.0000 + 31.1769i −0.758610 + 1.31395i 0.184950 + 0.982748i \(0.440788\pi\)
−0.943560 + 0.331202i \(0.892546\pi\)
\(564\) 0 0
\(565\) 25.9808i 1.09302i
\(566\) 28.5000 16.4545i 1.19794 0.691633i
\(567\) 0 0
\(568\) −1.50000 2.59808i −0.0629386 0.109013i
\(569\) −3.00000 5.19615i −0.125767 0.217834i 0.796266 0.604947i \(-0.206806\pi\)
−0.922032 + 0.387113i \(0.873472\pi\)
\(570\) 0 0
\(571\) 11.5000 + 19.9186i 0.481260 + 0.833567i 0.999769 0.0215055i \(-0.00684595\pi\)
−0.518509 + 0.855072i \(0.673513\pi\)
\(572\) −13.5000 + 12.9904i −0.564463 + 0.543155i
\(573\) 0 0
\(574\) −22.5000 + 7.79423i −0.939132 + 0.325325i
\(575\) 0 0
\(576\) 0 0
\(577\) −13.5000 + 7.79423i −0.562012 + 0.324478i −0.753953 0.656929i \(-0.771855\pi\)
0.191940 + 0.981407i \(0.438522\pi\)
\(578\) −28.5000 16.4545i −1.18544 0.684416i
\(579\) 0 0
\(580\) 5.19615i 0.215758i
\(581\) −3.00000 8.66025i −0.124461 0.359288i
\(582\) 0 0
\(583\) 40.5000 23.3827i 1.67734 0.968412i
\(584\) −7.50000 12.9904i −0.310352 0.537546i
\(585\) 0 0
\(586\) 22.5000 38.9711i 0.929466 1.60988i
\(587\) 13.5000 + 7.79423i 0.557205 + 0.321702i 0.752023 0.659137i \(-0.229078\pi\)
−0.194818 + 0.980839i \(0.562412\pi\)
\(588\) 0 0
\(589\) 1.50000 + 2.59808i 0.0618064 + 0.107052i
\(590\) 9.00000 + 5.19615i 0.370524 + 0.213922i
\(591\) 0 0
\(592\) 0 0
\(593\) −4.50000 2.59808i −0.184793 0.106690i 0.404750 0.914428i \(-0.367359\pi\)
−0.589543 + 0.807737i \(0.700692\pi\)
\(594\) 0 0
\(595\) −18.0000 + 20.7846i −0.737928 + 0.852086i
\(596\) −16.5000 9.52628i −0.675866 0.390212i
\(597\) 0 0
\(598\) 0 0
\(599\) 4.50000 + 7.79423i 0.183865 + 0.318464i 0.943193 0.332244i \(-0.107806\pi\)
−0.759328 + 0.650708i \(0.774472\pi\)
\(600\) 0 0
\(601\) −9.50000 + 16.4545i −0.387513 + 0.671192i −0.992114 0.125336i \(-0.959999\pi\)
0.604601 + 0.796528i \(0.293332\pi\)
\(602\) 49.5000 + 9.52628i 2.01747 + 0.388262i
\(603\) 0 0
\(604\) 12.1244i 0.493333i
\(605\) −24.0000 13.8564i −0.975739 0.563343i
\(606\) 0 0
\(607\) −43.0000 −1.74532 −0.872658 0.488332i \(-0.837606\pi\)
−0.872658 + 0.488332i \(0.837606\pi\)
\(608\) −4.50000 + 7.79423i −0.182499 + 0.316098i
\(609\) 0 0
\(610\) 21.0000 0.850265
\(611\) −22.5000 + 21.6506i −0.910253 + 0.875891i
\(612\) 0 0
\(613\) 36.3731i 1.46909i 0.678558 + 0.734547i \(0.262605\pi\)
−0.678558 + 0.734547i \(0.737395\pi\)
\(614\) −21.0000 36.3731i −0.847491 1.46790i
\(615\) 0 0
\(616\) 22.5000 7.79423i 0.906551 0.314038i
\(617\) −37.5000 + 21.6506i −1.50969 + 0.871622i −0.509757 + 0.860318i \(0.670265\pi\)
−0.999936 + 0.0113033i \(0.996402\pi\)
\(618\) 0 0
\(619\) −16.5000 + 9.52628i −0.663191 + 0.382893i −0.793492 0.608581i \(-0.791739\pi\)
0.130301 + 0.991475i \(0.458406\pi\)
\(620\) 1.50000 2.59808i 0.0602414 0.104341i
\(621\) 0 0
\(622\) −22.5000 12.9904i −0.902168 0.520867i
\(623\) −12.0000 + 13.8564i −0.480770 + 0.555145i
\(624\) 0 0
\(625\) 5.50000 9.52628i 0.220000 0.381051i
\(626\) 32.9090i 1.31531i
\(627\) 0 0
\(628\) −23.0000 −0.917800
\(629\) 0 0
\(630\) 0 0
\(631\) −40.5000 + 23.3827i −1.61228 + 0.930850i −0.623439 + 0.781872i \(0.714265\pi\)
−0.988841 + 0.148978i \(0.952402\pi\)
\(632\) 7.50000 + 4.33013i 0.298334 + 0.172243i
\(633\) 0 0
\(634\) −9.00000 −0.357436
\(635\) −19.5000 + 11.2583i −0.773834 + 0.446773i
\(636\) 0 0
\(637\) 9.50000 + 23.3827i 0.376404 + 0.926456i
\(638\) 27.0000 1.06894
\(639\) 0 0
\(640\) −21.0000 −0.830098
\(641\) 15.0000 25.9808i 0.592464 1.02618i −0.401435 0.915888i \(-0.631488\pi\)
0.993899 0.110291i \(-0.0351782\pi\)
\(642\) 0 0
\(643\) −4.50000 + 2.59808i −0.177463 + 0.102458i −0.586100 0.810239i \(-0.699337\pi\)
0.408637 + 0.912697i \(0.366004\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 18.0000 0.708201
\(647\) 9.00000 0.353827 0.176913 0.984226i \(-0.443389\pi\)
0.176913 + 0.984226i \(0.443389\pi\)
\(648\) 0 0
\(649\) −9.00000 + 15.5885i −0.353281 + 0.611900i
\(650\) 9.00000 8.66025i 0.353009 0.339683i
\(651\) 0 0
\(652\) −10.5000 6.06218i −0.411212 0.237413i
\(653\) −15.0000 25.9808i −0.586995 1.01671i −0.994623 0.103558i \(-0.966977\pi\)
0.407628 0.913148i \(-0.366356\pi\)
\(654\) 0 0
\(655\) 22.5000 12.9904i 0.879148 0.507576i
\(656\) 25.9808i 1.01438i
\(657\) 0 0
\(658\) −37.5000 + 12.9904i −1.46190 + 0.506418i
\(659\) 7.50000 + 12.9904i 0.292159 + 0.506033i 0.974320 0.225168i \(-0.0722932\pi\)
−0.682161 + 0.731202i \(0.738960\pi\)
\(660\) 0 0
\(661\) 36.3731i 1.41475i 0.706839 + 0.707374i \(0.250120\pi\)
−0.706839 + 0.707374i \(0.749880\pi\)
\(662\) −28.5000 49.3634i −1.10768 1.91856i
\(663\) 0 0
\(664\) −6.00000 −0.232845
\(665\) 1.50000 7.79423i 0.0581675 0.302247i
\(666\) 0 0
\(667\) 0 0
\(668\) 1.50000 0.866025i 0.0580367 0.0335075i
\(669\) 0 0
\(670\) 25.9808i 1.00372i
\(671\) 36.3731i 1.40417i
\(672\) 0 0
\(673\) 0.500000 0.866025i 0.0192736 0.0333828i −0.856228 0.516599i \(-0.827198\pi\)
0.875501 + 0.483216i \(0.160531\pi\)
\(674\) 33.0000 19.0526i 1.27111 0.733877i
\(675\) 0 0
\(676\) −11.5000 + 6.06218i −0.442308 + 0.233161i
\(677\) 13.5000 23.3827i 0.518847 0.898670i −0.480913 0.876768i \(-0.659695\pi\)
0.999760 0.0219013i \(-0.00697196\pi\)
\(678\) 0 0
\(679\) 9.00000 10.3923i 0.345388 0.398820i
\(680\) 9.00000 + 15.5885i 0.345134 + 0.597790i
\(681\) 0 0
\(682\) 13.5000 + 7.79423i 0.516942 + 0.298456i
\(683\) −21.0000 12.1244i −0.803543 0.463926i 0.0411658 0.999152i \(-0.486893\pi\)
−0.844708 + 0.535227i \(0.820226\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −1.50000 + 32.0429i −0.0572703 + 1.22341i
\(687\) 0 0
\(688\) 27.5000 47.6314i 1.04843 1.81593i
\(689\) 31.5000 7.79423i 1.20005 0.296936i
\(690\) 0 0
\(691\) 27.0000 15.5885i 1.02713 0.593013i 0.110968 0.993824i \(-0.464605\pi\)
0.916161 + 0.400811i \(0.131272\pi\)
\(692\) −7.50000 + 12.9904i −0.285107 + 0.493820i
\(693\) 0 0
\(694\) 0 0
\(695\) 22.5167i 0.854106i
\(696\) 0 0
\(697\) 27.0000 15.5885i 1.02270 0.590455i
\(698\) −9.00000 −0.340655
\(699\) 0 0
\(700\) 5.00000 1.73205i 0.188982 0.0654654i
\(701\) 6.00000 0.226617 0.113308 0.993560i \(-0.463855\pi\)
0.113308 + 0.993560i \(0.463855\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 5.19615i 0.195837i
\(705\) 0 0
\(706\) −1.50000 2.59808i −0.0564532 0.0977799i
\(707\) −22.5000 + 7.79423i −0.846200 + 0.293132i
\(708\) 0 0
\(709\) 12.1244i 0.455340i 0.973738 + 0.227670i \(0.0731107\pi\)
−0.973738 + 0.227670i \(0.926889\pi\)
\(710\) −4.50000 + 2.59808i −0.168882 + 0.0975041i
\(711\) 0 0
\(712\) 6.00000 + 10.3923i 0.224860 + 0.389468i
\(713\) 0 0
\(714\) 0 0
\(715\) −22.5000 23.3827i −0.841452 0.874463i
\(716\) −1.50000 + 2.59808i −0.0560576 + 0.0970947i
\(717\) 0 0
\(718\) −33.0000 −1.23155
\(719\) 15.0000 0.559406 0.279703 0.960087i \(-0.409764\pi\)
0.279703 + 0.960087i \(0.409764\pi\)
\(720\) 0 0
\(721\) −6.50000 + 33.7750i −0.242073 + 1.25785i
\(722\) 24.0000 13.8564i 0.893188 0.515682i
\(723\) 0 0
\(724\) 1.00000 1.73205i 0.0371647 0.0643712i
\(725\) −6.00000 −0.222834
\(726\) 0 0
\(727\) −32.0000 −1.18681 −0.593407 0.804902i \(-0.702218\pi\)
−0.593407 + 0.804902i \(0.702218\pi\)
\(728\) 16.5000 0.866025i 0.611531 0.0320970i
\(729\) 0 0
\(730\) −22.5000 + 12.9904i −0.832762 + 0.480796i
\(731\) −66.0000 −2.44110
\(732\) 0 0
\(733\) −43.5000 25.1147i −1.60671 0.927634i −0.990100 0.140365i \(-0.955173\pi\)
−0.616609 0.787269i \(-0.711494\pi\)
\(734\) 34.5000 19.9186i 1.27342 0.735208i
\(735\) 0 0
\(736\) 0 0
\(737\) −45.0000 −1.65760
\(738\) 0 0
\(739\) 39.8372i 1.46543i −0.680534 0.732717i \(-0.738252\pi\)
0.680534 0.732717i \(-0.261748\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 40.5000 + 7.79423i 1.48680 + 0.286135i
\(743\) 1.50000 + 0.866025i 0.0550297 + 0.0317714i 0.527262 0.849703i \(-0.323218\pi\)
−0.472233 + 0.881474i \(0.656552\pi\)
\(744\) 0 0
\(745\) 16.5000 28.5788i 0.604513 1.04705i
\(746\) 28.5000 16.4545i 1.04346 0.602441i
\(747\) 0 0
\(748\) 27.0000 15.5885i 0.987218 0.569970i
\(749\) 0 0
\(750\) 0 0
\(751\) −10.0000 17.3205i −0.364905 0.632034i 0.623856 0.781540i \(-0.285565\pi\)
−0.988761 + 0.149505i \(0.952232\pi\)
\(752\) 43.3013i 1.57903i
\(753\) 0 0
\(754\) 18.0000 + 5.19615i 0.655521 + 0.189233i
\(755\) −21.0000 −0.764268
\(756\) 0 0
\(757\) 8.50000 14.7224i 0.308938 0.535096i −0.669193 0.743089i \(-0.733360\pi\)
0.978130 + 0.207993i \(0.0666932\pi\)
\(758\) −3.00000 −0.108965
\(759\) 0 0
\(760\) −4.50000 2.59808i −0.163232 0.0942421i
\(761\) 29.4449i 1.06738i 0.845682 + 0.533688i \(0.179194\pi\)
−0.845682 + 0.533688i \(0.820806\pi\)
\(762\) 0 0
\(763\) −9.00000 + 10.3923i −0.325822 + 0.376227i
\(764\) 7.50000 12.9904i 0.271340 0.469975i
\(765\) 0 0
\(766\) −13.5000 23.3827i −0.487775 0.844851i
\(767\) −9.00000 + 8.66025i −0.324971 + 0.312704i
\(768\) 0 0
\(769\) −16.5000 9.52628i −0.595005 0.343526i 0.172069 0.985085i \(-0.444955\pi\)
−0.767074 + 0.641558i \(0.778288\pi\)
\(770\) −13.5000 38.9711i −0.486506 1.40442i
\(771\) 0 0
\(772\) 1.50000 + 0.866025i 0.0539862 + 0.0311689i
\(773\) 12.0000 + 6.92820i 0.431610 + 0.249190i 0.700032 0.714111i \(-0.253169\pi\)
−0.268422 + 0.963301i \(0.586502\pi\)
\(774\) 0 0
\(775\) −3.00000 1.73205i −0.107763 0.0622171i
\(776\) −4.50000 7.79423i −0.161541 0.279797i
\(777\) 0 0
\(778\) 4.50000 + 2.59808i 0.161333 + 0.0931455i
\(779\) −4.50000 + 7.79423i −0.161229 + 0.279257i
\(780\) 0 0
\(781\) −4.50000 7.79423i −0.161023 0.278899i
\(782\) 0 0
\(783\) 0 0
\(784\) 32.5000 + 12.9904i 1.16071 + 0.463942i
\(785\) 39.8372i 1.42185i
\(786\) 0 0
\(787\) −27.0000 15.5885i −0.962446 0.555668i −0.0655211 0.997851i \(-0.520871\pi\)
−0.896925 + 0.442183i \(0.854204\pi\)
\(788\) −19.5000 + 11.2583i −0.694659 + 0.401061i
\(789\) 0 0
\(790\) 7.50000 12.9904i 0.266838 0.462177i
\(791\) −30.0000 25.9808i −1.06668 0.923770i
\(792\) 0 0
\(793\) −7.00000 + 24.2487i −0.248577 + 0.861097i
\(794\) −31.5000 54.5596i −1.11789 1.93625i
\(795\) 0 0
\(796\) 2.00000 + 3.46410i 0.0708881 + 0.122782i
\(797\) −16.5000 28.5788i −0.584460 1.01231i −0.994943 0.100446i \(-0.967973\pi\)
0.410483 0.911868i \(-0.365360\pi\)
\(798\) 0 0
\(799\) 45.0000 25.9808i 1.59199 0.919133i
\(800\) 10.3923i 0.367423i
\(801\) 0 0
\(802\) 6.00000 10.3923i 0.211867 0.366965i
\(803\) −22.5000 38.9711i −0.794008 1.37526i
\(804\) 0 0
\(805\) 0 0
\(806\) 7.50000 + 7.79423i 0.264176 + 0.274540i
\(807\) 0 0
\(808\) 15.5885i 0.548400i
\(809\) 21.0000 0.738321 0.369160 0.929366i \(-0.379645\pi\)
0.369160 + 0.929366i \(0.379645\pi\)
\(810\) 0 0
\(811\) 3.46410i 0.121641i 0.998149 + 0.0608205i \(0.0193717\pi\)
−0.998149 + 0.0608205i \(0.980628\pi\)
\(812\) 6.00000 + 5.19615i 0.210559 + 0.182349i
\(813\) 0 0
\(814\) 0 0
\(815\) 10.5000 18.1865i 0.367799 0.637046i
\(816\) 0 0
\(817\) 16.5000 9.52628i 0.577262 0.333282i
\(818\) 12.0000 0.419570
\(819\) 0 0
\(820\) 9.00000 0.314294
\(821\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(822\) 0 0
\(823\) −16.0000 + 27.7128i −0.557725 + 0.966008i 0.439961 + 0.898017i \(0.354992\pi\)
−0.997686 + 0.0679910i \(0.978341\pi\)
\(824\) 19.5000 + 11.2583i 0.679315 + 0.392203i
\(825\) 0 0
\(826\) −15.0000 + 5.19615i −0.521917 + 0.180797i
\(827\) 10.3923i 0.361376i 0.983540 + 0.180688i \(0.0578324\pi\)
−0.983540 + 0.180688i \(0.942168\pi\)
\(828\) 0 0
\(829\) 7.00000 0.243120 0.121560 0.992584i \(-0.461210\pi\)
0.121560 + 0.992584i \(0.461210\pi\)
\(830\) 10.3923i 0.360722i
\(831\) 0 0
\(832\) 1.00000 3.46410i 0.0346688 0.120096i
\(833\) −6.00000 41.5692i −0.207888 1.44029i
\(834\) 0 0
\(835\) 1.50000 + 2.59808i 0.0519096 + 0.0899101i
\(836\) −4.50000 + 7.79423i −0.155636 + 0.269569i
\(837\) 0 0
\(838\) 36.3731i 1.25649i
\(839\) −1.50000 + 0.866025i −0.0517858 + 0.0298985i −0.525669 0.850689i \(-0.676185\pi\)
0.473884 + 0.880587i \(0.342852\pi\)
\(840\) 0 0
\(841\) 10.0000 + 17.3205i 0.344828 + 0.597259i
\(842\) 0 0
\(843\) 0 0
\(844\) 6.50000 + 11.2583i 0.223739 + 0.387528i
\(845\) −10.5000 19.9186i −0.361211 0.685220i
\(846\) 0 0
\(847\) 40.0000 13.8564i 1.37442 0.476112i
\(848\) 22.5000 38.9711i 0.772653 1.33827i
\(849\) 0 0
\(850\) −18.0000 + 10.3923i −0.617395 + 0.356453i
\(851\) 0 0
\(852\) 0 0
\(853\) 41.5692i 1.42330i −0.702533 0.711651i \(-0.747948\pi\)
0.702533 0.711651i \(-0.252052\pi\)
\(854\) −21.0000 + 24.2487i −0.718605 + 0.829774i
\(855\) 0 0
\(856\) 0 0
\(857\) −16.5000 28.5788i −0.563629 0.976235i −0.997176 0.0751033i \(-0.976071\pi\)
0.433546 0.901131i \(-0.357262\pi\)
\(858\) 0 0
\(859\) 14.5000 25.1147i 0.494734 0.856904i −0.505248 0.862974i \(-0.668599\pi\)
0.999982 + 0.00607046i \(0.00193230\pi\)
\(860\) −16.5000 9.52628i −0.562645 0.324843i
\(861\) 0 0
\(862\) 28.5000 + 49.3634i 0.970714 + 1.68133i
\(863\) 1.50000 + 0.866025i 0.0510606 + 0.0294798i 0.525313 0.850909i \(-0.323948\pi\)
−0.474252 + 0.880389i \(0.657282\pi\)
\(864\) 0 0
\(865\) −22.5000 12.9904i −0.765023 0.441686i
\(866\) −28.5000 16.4545i −0.968469 0.559146i
\(867\) 0 0
\(868\) 1.50000 + 4.33013i 0.0509133 + 0.146974i
\(869\) 22.5000 + 12.9904i 0.763260 + 0.440668i
\(870\) 0 0
\(871\) −30.0000 8.66025i −1.01651 0.293442i
\(872\) 4.50000 + 7.79423i 0.152389 + 0.263946i
\(873\) 0 0
\(874\) 0 0
\(875\) 10.5000 + 30.3109i 0.354965 + 1.02470i
\(876\) 0 0
\(877\) 1.73205i 0.0584872i −0.999572 0.0292436i \(-0.990690\pi\)
0.999572 0.0292436i \(-0.00930985\pi\)
\(878\) −12.0000 6.92820i −0.404980 0.233816i
\(879\) 0 0
\(880\) −45.0000 −1.51695
\(881\) −16.5000 + 28.5788i −0.555899 + 0.962846i 0.441934 + 0.897048i \(0.354293\pi\)
−0.997833 + 0.0657979i \(0.979041\pi\)
\(882\) 0 0
\(883\) −44.0000 −1.48072 −0.740359 0.672212i \(-0.765344\pi\)
−0.740359 + 0.672212i \(0.765344\pi\)
\(884\) 21.0000 5.19615i 0.706306 0.174766i
\(885\) 0 0
\(886\) 25.9808i 0.872841i
\(887\) 12.0000 + 20.7846i 0.402921 + 0.697879i 0.994077 0.108678i \(-0.0346618\pi\)
−0.591156 + 0.806557i \(0.701328\pi\)
\(888\) 0 0
\(889\) 6.50000 33.7750i 0.218003 1.13278i
\(890\) 18.0000 10.3923i 0.603361 0.348351i
\(891\) 0 0
\(892\) 4.50000 2.59808i 0.150671 0.0869900i
\(893\) −7.50000 + 12.9904i −0.250978 + 0.434707i
\(894\) 0 0
\(895\) −4.50000 2.59808i −0.150418 0.0868441i
\(896\) 21.0000 24.2487i 0.701561 0.810093i
\(897\) 0 0
\(898\) −1.50000 + 2.59808i −0.0500556 + 0.0866989i
\(899\) 5.19615i 0.173301i
\(900\) 0 0
\(901\) −54.0000 −1.79900
\(902\) 46.7654i 1.55712i
\(903\) 0 0
\(904\) −22.5000 + 12.9904i −0.748339 + 0.432054i
\(905\) 3.00000 + 1.73205i 0.0997234 + 0.0575753i
\(906\) 0 0
\(907\) −29.0000 −0.962929 −0.481465 0.876466i \(-0.659895\pi\)
−0.481465 + 0.876466i \(0.659895\pi\)
\(908\) 15.0000 8.66025i 0.497792 0.287401i
\(909\) 0 0
\(910\) −1.50000 28.5788i −0.0497245 0.947379i
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) −18.0000 −0.595713
\(914\) −30.0000 + 51.9615i −0.992312 + 1.71873i
\(915\) 0 0
\(916\) 10.5000 6.06218i 0.346930 0.200300i
\(917\) −7.50000 + 38.9711i −0.247672 + 1.28694i
\(918\) 0 0
\(919\) −47.0000 −1.55039 −0.775193 0.631724i \(-0.782348\pi\)
−0.775193 + 0.631724i \(0.782348\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −25.5000 + 44.1673i −0.839798 + 1.45457i
\(923\) −1.50000 6.06218i −0.0493731 0.199539i
\(924\) 0 0
\(925\) 0 0
\(926\) 21.0000 + 36.3731i 0.690103 + 1.19529i
\(927\) 0 0
\(928\) 13.5000 7.79423i 0.443159 0.255858i
\(929\) 46.7654i 1.53432i −0.641455 0.767161i \(-0.721669\pi\)
0.641455 0.767161i \(-0.278331\pi\)
\(930\) 0 0
\(931\) 7.50000 + 9.52628i 0.245803 + 0.312211i
\(932\) −1.50000 2.59808i −0.0491341 0.0851028i
\(933\) 0 0
\(934\) 36.3731i 1.19016i
\(935\) 27.0000 + 46.7654i 0.882994 + 1.52939i
\(936\) 0 0
\(937\) 22.0000 0.718709 0.359354 0.933201i \(-0.382997\pi\)
0.359354 + 0.933201i \(0.382997\pi\)
\(938\) −30.0000 25.9808i −0.979535 0.848302i
\(939\) 0 0
\(940\) 15.0000 0.489246
\(941\) −4.50000 + 2.59808i −0.146696 + 0.0846949i −0.571551 0.820566i \(-0.693658\pi\)
0.424856 + 0.905261i \(0.360325\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 17.3205i 0.563735i
\(945\) 0 0
\(946\) 49.5000 85.7365i 1.60938 2.78753i
\(947\) 33.0000 19.0526i 1.07236 0.619125i 0.143532 0.989646i \(-0.454154\pi\)
0.928824 + 0.370521i \(0.120821\pi\)
\(948\) 0 0
\(949\) −7.50000 30.3109i −0.243460 0.983933i
\(950\) 3.00000 5.19615i 0.0973329 0.168585i
\(951\) 0 0
\(952\) −27.0000 5.19615i −0.875075 0.168408i
\(953\) −28.5000 49.3634i −0.923206 1.59904i −0.794422 0.607366i \(-0.792226\pi\)
−0.128784 0.991673i \(-0.541107\pi\)
\(954\) 0 0
\(955\) 22.5000 + 12.9904i 0.728083 + 0.420359i
\(956\) 9.00000 + 5.19615i 0.291081 + 0.168056i
\(957\) 0 0
\(958\) −25.5000 44.1673i −0.823868 1.42698i
\(959\) 0 0
\(960\) 0 0
\(961\) −14.0000 + 24.2487i −0.451613 + 0.782216i
\(962\) 0 0
\(963\) 0 0
\(964\) −6.00000 + 3.46410i −0.193247 + 0.111571i
\(965\) −1.50000 + 2.59808i −0.0482867 + 0.0836350i
\(966\) 0 0
\(967\) 10.3923i 0.334194i 0.985940 + 0.167097i \(0.0534393\pi\)
−0.985940 + 0.167097i \(0.946561\pi\)
\(968\) 27.7128i 0.890724i
\(969\) 0 0
\(970\) −13.5000 + 7.79423i −0.433459 + 0.250258i
\(971\) −21.0000 −0.673922 −0.336961 0.941519i \(-0.609399\pi\)
−0.336961 + 0.941519i \(0.609399\pi\)
\(972\) 0 0
\(973\) −26.0000 22.5167i −0.833522 0.721851i
\(974\) −42.0000 −1.34577
\(975\) 0 0
\(976\) 17.5000 + 30.3109i 0.560161 + 0.970228i
\(977\) 19.0526i 0.609545i 0.952425 + 0.304773i \(0.0985805\pi\)
−0.952425 + 0.304773i \(0.901420\pi\)
\(978\) 0 0
\(979\) 18.0000 + 31.1769i 0.575282 + 0.996419i
\(980\) 4.50000 11.2583i 0.143747 0.359634i
\(981\) 0 0
\(982\) 46.7654i 1.49234i
\(983\) −31.5000 + 18.1865i −1.00469 + 0.580060i −0.909634 0.415411i \(-0.863638\pi\)
−0.0950602 + 0.995472i \(0.530304\pi\)
\(984\) 0 0
\(985\) −19.5000 33.7750i −0.621322 1.07616i
\(986\) −27.0000 15.5885i −0.859855 0.496438i
\(987\) 0 0
\(988\) −4.50000 + 4.33013i −0.143164 + 0.137760i
\(989\) 0 0
\(990\) 0 0
\(991\) 59.0000 1.87420 0.937098 0.349065i \(-0.113501\pi\)
0.937098 + 0.349065i \(0.113501\pi\)
\(992\) 9.00000 0.285750
\(993\) 0 0
\(994\) 1.50000 7.79423i 0.0475771 0.247218i
\(995\) −6.00000 + 3.46410i −0.190213 + 0.109819i
\(996\) 0 0
\(997\) −1.00000 + 1.73205i −0.0316703 + 0.0548546i −0.881426 0.472322i \(-0.843416\pi\)
0.849756 + 0.527176i \(0.176749\pi\)
\(998\) −3.00000 −0.0949633
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 819.2.do.c.667.1 2
3.2 odd 2 91.2.u.a.30.1 yes 2
7.4 even 3 819.2.bm.a.550.1 2
13.10 even 6 819.2.bm.a.478.1 2
21.2 odd 6 637.2.q.c.589.1 2
21.5 even 6 637.2.q.b.589.1 2
21.11 odd 6 91.2.k.a.4.1 2
21.17 even 6 637.2.k.b.459.1 2
21.20 even 2 637.2.u.a.30.1 2
39.20 even 12 1183.2.e.e.170.1 4
39.23 odd 6 91.2.k.a.23.1 yes 2
39.32 even 12 1183.2.e.e.170.2 4
91.88 even 6 inner 819.2.do.c.361.1 2
273.23 odd 6 637.2.q.c.491.1 2
273.32 even 12 1183.2.e.e.508.2 4
273.62 even 6 637.2.k.b.569.1 2
273.101 even 6 637.2.u.a.361.1 2
273.110 odd 12 8281.2.a.w.1.1 2
273.137 even 12 1183.2.e.e.508.1 4
273.149 even 12 8281.2.a.s.1.1 2
273.179 odd 6 91.2.u.a.88.1 yes 2
273.215 odd 12 8281.2.a.w.1.2 2
273.254 even 12 8281.2.a.s.1.2 2
273.257 even 6 637.2.q.b.491.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
91.2.k.a.4.1 2 21.11 odd 6
91.2.k.a.23.1 yes 2 39.23 odd 6
91.2.u.a.30.1 yes 2 3.2 odd 2
91.2.u.a.88.1 yes 2 273.179 odd 6
637.2.k.b.459.1 2 21.17 even 6
637.2.k.b.569.1 2 273.62 even 6
637.2.q.b.491.1 2 273.257 even 6
637.2.q.b.589.1 2 21.5 even 6
637.2.q.c.491.1 2 273.23 odd 6
637.2.q.c.589.1 2 21.2 odd 6
637.2.u.a.30.1 2 21.20 even 2
637.2.u.a.361.1 2 273.101 even 6
819.2.bm.a.478.1 2 13.10 even 6
819.2.bm.a.550.1 2 7.4 even 3
819.2.do.c.361.1 2 91.88 even 6 inner
819.2.do.c.667.1 2 1.1 even 1 trivial
1183.2.e.e.170.1 4 39.20 even 12
1183.2.e.e.170.2 4 39.32 even 12
1183.2.e.e.508.1 4 273.137 even 12
1183.2.e.e.508.2 4 273.32 even 12
8281.2.a.s.1.1 2 273.149 even 12
8281.2.a.s.1.2 2 273.254 even 12
8281.2.a.w.1.1 2 273.110 odd 12
8281.2.a.w.1.2 2 273.215 odd 12