# Properties

 Label 819.2.do.c Level $819$ Weight $2$ Character orbit 819.do Analytic conductor $6.540$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$819 = 3^{2} \cdot 7 \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 819.do (of order $$6$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$6.53974792554$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-3})$$ Defining polynomial: $$x^{2} - x + 1$$ Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 91) Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{6}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + ( 2 - \zeta_{6} ) q^{2} + ( 1 - \zeta_{6} ) q^{4} + ( 1 + \zeta_{6} ) q^{5} + ( -3 + \zeta_{6} ) q^{7} + ( -1 + 2 \zeta_{6} ) q^{8} +O(q^{10})$$ $$q + ( 2 - \zeta_{6} ) q^{2} + ( 1 - \zeta_{6} ) q^{4} + ( 1 + \zeta_{6} ) q^{5} + ( -3 + \zeta_{6} ) q^{7} + ( -1 + 2 \zeta_{6} ) q^{8} + 3 q^{10} + ( -3 + 6 \zeta_{6} ) q^{11} + ( -3 + 4 \zeta_{6} ) q^{13} + ( -5 + 4 \zeta_{6} ) q^{14} + 5 \zeta_{6} q^{16} + ( 6 - 6 \zeta_{6} ) q^{17} + ( -1 + 2 \zeta_{6} ) q^{19} + ( 2 - \zeta_{6} ) q^{20} + 9 \zeta_{6} q^{22} -2 \zeta_{6} q^{25} + ( -2 + 7 \zeta_{6} ) q^{26} + ( -2 + 3 \zeta_{6} ) q^{28} + ( 3 - 3 \zeta_{6} ) q^{29} + ( 2 - \zeta_{6} ) q^{31} + ( 3 + 3 \zeta_{6} ) q^{32} + ( 6 - 12 \zeta_{6} ) q^{34} + ( -4 - \zeta_{6} ) q^{35} + 3 \zeta_{6} q^{38} + ( -3 + 3 \zeta_{6} ) q^{40} + ( 3 + 3 \zeta_{6} ) q^{41} -11 \zeta_{6} q^{43} + ( 3 + 3 \zeta_{6} ) q^{44} + ( 5 + 5 \zeta_{6} ) q^{47} + ( 8 - 5 \zeta_{6} ) q^{49} + ( -2 - 2 \zeta_{6} ) q^{50} + ( 1 + 3 \zeta_{6} ) q^{52} -9 \zeta_{6} q^{53} + ( -9 + 9 \zeta_{6} ) q^{55} + ( 1 - 5 \zeta_{6} ) q^{56} + ( 3 - 6 \zeta_{6} ) q^{58} + ( 2 + 2 \zeta_{6} ) q^{59} + 7 q^{61} + ( 3 - 3 \zeta_{6} ) q^{62} - q^{64} + ( -7 + 5 \zeta_{6} ) q^{65} + ( -5 + 10 \zeta_{6} ) q^{67} -6 \zeta_{6} q^{68} + ( -9 + 3 \zeta_{6} ) q^{70} + ( -2 + \zeta_{6} ) q^{71} + ( -10 + 5 \zeta_{6} ) q^{73} + ( 1 + \zeta_{6} ) q^{76} + ( 3 - 15 \zeta_{6} ) q^{77} + ( 5 - 5 \zeta_{6} ) q^{79} + ( -5 + 10 \zeta_{6} ) q^{80} + 9 q^{82} + ( -2 + 4 \zeta_{6} ) q^{83} + ( 12 - 6 \zeta_{6} ) q^{85} + ( -11 - 11 \zeta_{6} ) q^{86} -9 q^{88} + ( 8 - 4 \zeta_{6} ) q^{89} + ( 5 - 11 \zeta_{6} ) q^{91} + 15 q^{94} + ( -3 + 3 \zeta_{6} ) q^{95} + ( -6 + 3 \zeta_{6} ) q^{97} + ( 11 - 13 \zeta_{6} ) q^{98} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q + 3q^{2} + q^{4} + 3q^{5} - 5q^{7} + O(q^{10})$$ $$2q + 3q^{2} + q^{4} + 3q^{5} - 5q^{7} + 6q^{10} - 2q^{13} - 6q^{14} + 5q^{16} + 6q^{17} + 3q^{20} + 9q^{22} - 2q^{25} + 3q^{26} - q^{28} + 3q^{29} + 3q^{31} + 9q^{32} - 9q^{35} + 3q^{38} - 3q^{40} + 9q^{41} - 11q^{43} + 9q^{44} + 15q^{47} + 11q^{49} - 6q^{50} + 5q^{52} - 9q^{53} - 9q^{55} - 3q^{56} + 6q^{59} + 14q^{61} + 3q^{62} - 2q^{64} - 9q^{65} - 6q^{68} - 15q^{70} - 3q^{71} - 15q^{73} + 3q^{76} - 9q^{77} + 5q^{79} + 18q^{82} + 18q^{85} - 33q^{86} - 18q^{88} + 12q^{89} - q^{91} + 30q^{94} - 3q^{95} - 9q^{97} + 9q^{98} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/819\mathbb{Z}\right)^\times$$.

 $$n$$ $$92$$ $$379$$ $$703$$ $$\chi(n)$$ $$1$$ $$\zeta_{6}$$ $$-1 + \zeta_{6}$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
361.1
 0.5 − 0.866025i 0.5 + 0.866025i
1.50000 + 0.866025i 0 0.500000 + 0.866025i 1.50000 0.866025i 0 −2.50000 0.866025i 1.73205i 0 3.00000
667.1 1.50000 0.866025i 0 0.500000 0.866025i 1.50000 + 0.866025i 0 −2.50000 + 0.866025i 1.73205i 0 3.00000
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
91.u even 6 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 819.2.do.c 2
3.b odd 2 1 91.2.u.a yes 2
7.c even 3 1 819.2.bm.a 2
13.e even 6 1 819.2.bm.a 2
21.c even 2 1 637.2.u.a 2
21.g even 6 1 637.2.k.b 2
21.g even 6 1 637.2.q.b 2
21.h odd 6 1 91.2.k.a 2
21.h odd 6 1 637.2.q.c 2
39.h odd 6 1 91.2.k.a 2
39.k even 12 2 1183.2.e.e 4
91.u even 6 1 inner 819.2.do.c 2
273.u even 6 1 637.2.k.b 2
273.x odd 6 1 91.2.u.a yes 2
273.y even 6 1 637.2.u.a 2
273.bp odd 6 1 637.2.q.c 2
273.br even 6 1 637.2.q.b 2
273.bv even 12 2 1183.2.e.e 4
273.bw even 12 2 8281.2.a.s 2
273.ch odd 12 2 8281.2.a.w 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
91.2.k.a 2 21.h odd 6 1
91.2.k.a 2 39.h odd 6 1
91.2.u.a yes 2 3.b odd 2 1
91.2.u.a yes 2 273.x odd 6 1
637.2.k.b 2 21.g even 6 1
637.2.k.b 2 273.u even 6 1
637.2.q.b 2 21.g even 6 1
637.2.q.b 2 273.br even 6 1
637.2.q.c 2 21.h odd 6 1
637.2.q.c 2 273.bp odd 6 1
637.2.u.a 2 21.c even 2 1
637.2.u.a 2 273.y even 6 1
819.2.bm.a 2 7.c even 3 1
819.2.bm.a 2 13.e even 6 1
819.2.do.c 2 1.a even 1 1 trivial
819.2.do.c 2 91.u even 6 1 inner
1183.2.e.e 4 39.k even 12 2
1183.2.e.e 4 273.bv even 12 2
8281.2.a.s 2 273.bw even 12 2
8281.2.a.w 2 273.ch odd 12 2

## Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator $$T_{2}^{2} - 3 T_{2} + 3$$ acting on $$S_{2}^{\mathrm{new}}(819, [\chi])$$.

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$3 - 3 T + T^{2}$$
$3$ $$T^{2}$$
$5$ $$3 - 3 T + T^{2}$$
$7$ $$7 + 5 T + T^{2}$$
$11$ $$27 + T^{2}$$
$13$ $$13 + 2 T + T^{2}$$
$17$ $$36 - 6 T + T^{2}$$
$19$ $$3 + T^{2}$$
$23$ $$T^{2}$$
$29$ $$9 - 3 T + T^{2}$$
$31$ $$3 - 3 T + T^{2}$$
$37$ $$T^{2}$$
$41$ $$27 - 9 T + T^{2}$$
$43$ $$121 + 11 T + T^{2}$$
$47$ $$75 - 15 T + T^{2}$$
$53$ $$81 + 9 T + T^{2}$$
$59$ $$12 - 6 T + T^{2}$$
$61$ $$( -7 + T )^{2}$$
$67$ $$75 + T^{2}$$
$71$ $$3 + 3 T + T^{2}$$
$73$ $$75 + 15 T + T^{2}$$
$79$ $$25 - 5 T + T^{2}$$
$83$ $$12 + T^{2}$$
$89$ $$48 - 12 T + T^{2}$$
$97$ $$27 + 9 T + T^{2}$$