Properties

Label 819.2.dk.a.43.38
Level $819$
Weight $2$
Character 819.43
Analytic conductor $6.540$
Analytic rank $0$
Dimension $168$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 819 = 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 819.dk (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.53974792554\)
Analytic rank: \(0\)
Dimension: \(168\)
Relative dimension: \(84\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 43.38
Character \(\chi\) \(=\) 819.43
Dual form 819.2.dk.a.400.38

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.233987 + 0.135092i) q^{2} +(-0.921408 + 1.46663i) q^{3} +(-0.963500 + 1.66883i) q^{4} +(-1.02596 + 0.592341i) q^{5} +(0.0174666 - 0.467647i) q^{6} -1.00000i q^{7} -1.06101i q^{8} +(-1.30201 - 2.70273i) q^{9} +O(q^{10})\) \(q+(-0.233987 + 0.135092i) q^{2} +(-0.921408 + 1.46663i) q^{3} +(-0.963500 + 1.66883i) q^{4} +(-1.02596 + 0.592341i) q^{5} +(0.0174666 - 0.467647i) q^{6} -1.00000i q^{7} -1.06101i q^{8} +(-1.30201 - 2.70273i) q^{9} +(0.160041 - 0.277200i) q^{10} +(4.19316 - 2.42092i) q^{11} +(-1.55978 - 2.95077i) q^{12} +(-0.439844 - 3.57862i) q^{13} +(0.135092 + 0.233987i) q^{14} +(0.0765862 - 2.05050i) q^{15} +(-1.78367 - 3.08940i) q^{16} +(0.0680483 + 0.117863i) q^{17} +(0.669772 + 0.456511i) q^{18} +(2.44199 - 1.40988i) q^{19} -2.28288i q^{20} +(1.46663 + 0.921408i) q^{21} +(-0.654095 + 1.13293i) q^{22} -8.16325 q^{23} +(1.55612 + 0.977627i) q^{24} +(-1.79826 + 3.11469i) q^{25} +(0.586361 + 0.777930i) q^{26} +(5.16360 + 0.580743i) q^{27} +(1.66883 + 0.963500i) q^{28} +(0.654220 + 1.13314i) q^{29} +(0.259086 + 0.490135i) q^{30} +(8.25123 - 4.76385i) q^{31} +(2.67244 + 1.54293i) q^{32} +(-0.313011 + 8.38047i) q^{33} +(-0.0318448 - 0.0183856i) q^{34} +(0.592341 + 1.02596i) q^{35} +(5.76489 + 0.431239i) q^{36} +(8.80311 + 5.08248i) q^{37} +(-0.380929 + 0.659788i) q^{38} +(5.65380 + 2.65228i) q^{39} +(0.628482 + 1.08856i) q^{40} -8.38412i q^{41} +(-0.467647 - 0.0174666i) q^{42} -5.09614 q^{43} +9.33023i q^{44} +(2.93676 + 2.00167i) q^{45} +(1.91009 - 1.10279i) q^{46} +(-5.17441 - 2.98745i) q^{47} +(6.17449 + 0.230617i) q^{48} -1.00000 q^{49} -0.971726i q^{50} +(-0.235562 - 0.00879824i) q^{51} +(6.39591 + 2.71398i) q^{52} -0.0422456 q^{53} +(-1.28667 + 0.561676i) q^{54} +(-2.86802 + 4.96755i) q^{55} -1.06101 q^{56} +(-0.182290 + 4.88058i) q^{57} +(-0.306157 - 0.176760i) q^{58} +(-9.91918 - 5.72684i) q^{59} +(3.34815 + 2.10347i) q^{60} +9.74614 q^{61} +(-1.28712 + 2.22935i) q^{62} +(-2.70273 + 1.30201i) q^{63} +6.30091 q^{64} +(2.57103 + 3.41100i) q^{65} +(-1.05890 - 2.00320i) q^{66} +4.09863i q^{67} -0.262258 q^{68} +(7.52169 - 11.9725i) q^{69} +(-0.277200 - 0.160041i) q^{70} +(6.42863 - 3.71157i) q^{71} +(-2.86764 + 1.38146i) q^{72} -8.28011i q^{73} -2.74641 q^{74} +(-2.91116 - 5.50729i) q^{75} +5.43370i q^{76} +(-2.42092 - 4.19316i) q^{77} +(-1.68121 + 0.143185i) q^{78} +(-2.24974 + 3.89666i) q^{79} +(3.65996 + 2.11308i) q^{80} +(-5.60952 + 7.03799i) q^{81} +(1.13263 + 1.96177i) q^{82} +(8.79698 + 5.07894i) q^{83} +(-2.95077 + 1.55978i) q^{84} +(-0.139630 - 0.0806155i) q^{85} +(1.19243 - 0.688448i) q^{86} +(-2.26470 - 0.0845867i) q^{87} +(-2.56863 - 4.44900i) q^{88} +(-3.40348 - 1.96500i) q^{89} +(-0.957572 - 0.0716306i) q^{90} +(-3.57862 + 0.439844i) q^{91} +(7.86530 - 13.6231i) q^{92} +(-0.615938 + 16.4910i) q^{93} +1.61432 q^{94} +(-1.67026 + 2.89298i) q^{95} +(-4.72532 + 2.49781i) q^{96} -11.5939i q^{97} +(0.233987 - 0.135092i) q^{98} +(-12.0026 - 8.18090i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 168q + 84q^{4} - 2q^{9} + O(q^{10}) \) \( 168q + 84q^{4} - 2q^{9} + 12q^{12} + 8q^{14} - 84q^{16} + 12q^{18} - 6q^{21} + 40q^{23} - 84q^{24} + 84q^{25} + 4q^{26} - 24q^{27} + 34q^{29} + 44q^{30} + 36q^{32} + 18q^{33} + 16q^{35} + 4q^{36} - 12q^{38} - 6q^{39} - 30q^{45} - 30q^{47} - 2q^{48} - 168q^{49} - 38q^{51} + 18q^{52} - 48q^{53} + 114q^{54} + 48q^{56} - 54q^{57} + 48q^{59} + 24q^{60} + 6q^{62} - 12q^{63} - 132q^{64} - 16q^{65} - 54q^{66} - 156q^{68} - 28q^{69} + 24q^{71} + 36q^{72} - 84q^{74} + 30q^{75} - 16q^{77} + 116q^{78} - 6q^{79} - 2q^{81} - 6q^{82} + 18q^{83} - 24q^{84} + 90q^{85} - 24q^{86} + 52q^{87} + 24q^{88} - 36q^{89} - 44q^{90} - 6q^{91} + 8q^{92} - 66q^{93} + 120q^{94} - 48q^{95} - 24q^{96} + 6q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/819\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(379\) \(703\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.233987 + 0.135092i −0.165453 + 0.0955246i −0.580440 0.814303i \(-0.697120\pi\)
0.414987 + 0.909827i \(0.363786\pi\)
\(3\) −0.921408 + 1.46663i −0.531975 + 0.846760i
\(4\) −0.963500 + 1.66883i −0.481750 + 0.834416i
\(5\) −1.02596 + 0.592341i −0.458825 + 0.264903i −0.711550 0.702635i \(-0.752007\pi\)
0.252725 + 0.967538i \(0.418673\pi\)
\(6\) 0.0174666 0.467647i 0.00713072 0.190916i
\(7\) 1.00000i 0.377964i
\(8\) 1.06101i 0.375125i
\(9\) −1.30201 2.70273i −0.434005 0.900911i
\(10\) 0.160041 0.277200i 0.0506095 0.0876582i
\(11\) 4.19316 2.42092i 1.26428 0.729935i 0.290384 0.956910i \(-0.406217\pi\)
0.973900 + 0.226976i \(0.0728838\pi\)
\(12\) −1.55978 2.95077i −0.450271 0.851815i
\(13\) −0.439844 3.57862i −0.121991 0.992531i
\(14\) 0.135092 + 0.233987i 0.0361049 + 0.0625355i
\(15\) 0.0765862 2.05050i 0.0197745 0.529437i
\(16\) −1.78367 3.08940i −0.445916 0.772350i
\(17\) 0.0680483 + 0.117863i 0.0165041 + 0.0285860i 0.874160 0.485639i \(-0.161413\pi\)
−0.857655 + 0.514225i \(0.828080\pi\)
\(18\) 0.669772 + 0.456511i 0.157867 + 0.107601i
\(19\) 2.44199 1.40988i 0.560231 0.323450i −0.193007 0.981197i \(-0.561824\pi\)
0.753238 + 0.657748i \(0.228491\pi\)
\(20\) 2.28288i 0.510468i
\(21\) 1.46663 + 0.921408i 0.320045 + 0.201068i
\(22\) −0.654095 + 1.13293i −0.139453 + 0.241540i
\(23\) −8.16325 −1.70216 −0.851078 0.525039i \(-0.824051\pi\)
−0.851078 + 0.525039i \(0.824051\pi\)
\(24\) 1.55612 + 0.977627i 0.317641 + 0.199557i
\(25\) −1.79826 + 3.11469i −0.359653 + 0.622937i
\(26\) 0.586361 + 0.777930i 0.114995 + 0.152565i
\(27\) 5.16360 + 0.580743i 0.993735 + 0.111764i
\(28\) 1.66883 + 0.963500i 0.315379 + 0.182084i
\(29\) 0.654220 + 1.13314i 0.121486 + 0.210419i 0.920354 0.391087i \(-0.127901\pi\)
−0.798868 + 0.601506i \(0.794568\pi\)
\(30\) 0.259086 + 0.490135i 0.0473025 + 0.0894861i
\(31\) 8.25123 4.76385i 1.48197 0.855613i 0.482174 0.876075i \(-0.339847\pi\)
0.999791 + 0.0204623i \(0.00651381\pi\)
\(32\) 2.67244 + 1.54293i 0.472425 + 0.272755i
\(33\) −0.313011 + 8.38047i −0.0544881 + 1.45885i
\(34\) −0.0318448 0.0183856i −0.00546133 0.00315310i
\(35\) 0.592341 + 1.02596i 0.100124 + 0.173420i
\(36\) 5.76489 + 0.431239i 0.960816 + 0.0718732i
\(37\) 8.80311 + 5.08248i 1.44722 + 0.835554i 0.998315 0.0580239i \(-0.0184799\pi\)
0.448907 + 0.893578i \(0.351813\pi\)
\(38\) −0.380929 + 0.659788i −0.0617948 + 0.107032i
\(39\) 5.65380 + 2.65228i 0.905332 + 0.424705i
\(40\) 0.628482 + 1.08856i 0.0993717 + 0.172117i
\(41\) 8.38412i 1.30938i −0.755898 0.654690i \(-0.772799\pi\)
0.755898 0.654690i \(-0.227201\pi\)
\(42\) −0.467647 0.0174666i −0.0721595 0.00269516i
\(43\) −5.09614 −0.777153 −0.388577 0.921416i \(-0.627033\pi\)
−0.388577 + 0.921416i \(0.627033\pi\)
\(44\) 9.33023i 1.40658i
\(45\) 2.93676 + 2.00167i 0.437786 + 0.298391i
\(46\) 1.91009 1.10279i 0.281628 0.162598i
\(47\) −5.17441 2.98745i −0.754766 0.435764i 0.0726476 0.997358i \(-0.476855\pi\)
−0.827413 + 0.561594i \(0.810188\pi\)
\(48\) 6.17449 + 0.230617i 0.891211 + 0.0332868i
\(49\) −1.00000 −0.142857
\(50\) 0.971726i 0.137423i
\(51\) −0.235562 0.00879824i −0.0329853 0.00123200i
\(52\) 6.39591 + 2.71398i 0.886953 + 0.376361i
\(53\) −0.0422456 −0.00580288 −0.00290144 0.999996i \(-0.500924\pi\)
−0.00290144 + 0.999996i \(0.500924\pi\)
\(54\) −1.28667 + 0.561676i −0.175093 + 0.0764344i
\(55\) −2.86802 + 4.96755i −0.386724 + 0.669825i
\(56\) −1.06101 −0.141784
\(57\) −0.182290 + 4.88058i −0.0241449 + 0.646449i
\(58\) −0.306157 0.176760i −0.0402004 0.0232097i
\(59\) −9.91918 5.72684i −1.29137 0.745571i −0.312470 0.949927i \(-0.601157\pi\)
−0.978897 + 0.204356i \(0.934490\pi\)
\(60\) 3.34815 + 2.10347i 0.432244 + 0.271556i
\(61\) 9.74614 1.24787 0.623933 0.781478i \(-0.285534\pi\)
0.623933 + 0.781478i \(0.285534\pi\)
\(62\) −1.28712 + 2.22935i −0.163464 + 0.283128i
\(63\) −2.70273 + 1.30201i −0.340512 + 0.164038i
\(64\) 6.30091 0.787614
\(65\) 2.57103 + 3.41100i 0.318897 + 0.423083i
\(66\) −1.05890 2.00320i −0.130341 0.246577i
\(67\) 4.09863i 0.500728i 0.968152 + 0.250364i \(0.0805503\pi\)
−0.968152 + 0.250364i \(0.919450\pi\)
\(68\) −0.262258 −0.0318035
\(69\) 7.52169 11.9725i 0.905505 1.44132i
\(70\) −0.277200 0.160041i −0.0331317 0.0191286i
\(71\) 6.42863 3.71157i 0.762938 0.440483i −0.0674115 0.997725i \(-0.521474\pi\)
0.830350 + 0.557243i \(0.188141\pi\)
\(72\) −2.86764 + 1.38146i −0.337954 + 0.162806i
\(73\) 8.28011i 0.969113i −0.874760 0.484557i \(-0.838981\pi\)
0.874760 0.484557i \(-0.161019\pi\)
\(74\) −2.74641 −0.319264
\(75\) −2.91116 5.50729i −0.336152 0.635927i
\(76\) 5.43370i 0.623288i
\(77\) −2.42092 4.19316i −0.275889 0.477854i
\(78\) −1.68121 + 0.143185i −0.190360 + 0.0162126i
\(79\) −2.24974 + 3.89666i −0.253116 + 0.438409i −0.964382 0.264514i \(-0.914789\pi\)
0.711266 + 0.702923i \(0.248122\pi\)
\(80\) 3.65996 + 2.11308i 0.409195 + 0.236249i
\(81\) −5.60952 + 7.03799i −0.623279 + 0.781999i
\(82\) 1.13263 + 1.96177i 0.125078 + 0.216641i
\(83\) 8.79698 + 5.07894i 0.965594 + 0.557486i 0.897890 0.440220i \(-0.145099\pi\)
0.0677036 + 0.997705i \(0.478433\pi\)
\(84\) −2.95077 + 1.55978i −0.321956 + 0.170186i
\(85\) −0.139630 0.0806155i −0.0151450 0.00874398i
\(86\) 1.19243 0.688448i 0.128583 0.0742373i
\(87\) −2.26470 0.0845867i −0.242802 0.00906865i
\(88\) −2.56863 4.44900i −0.273817 0.474265i
\(89\) −3.40348 1.96500i −0.360768 0.208290i 0.308649 0.951176i \(-0.400123\pi\)
−0.669418 + 0.742886i \(0.733456\pi\)
\(90\) −0.957572 0.0716306i −0.100937 0.00755053i
\(91\) −3.57862 + 0.439844i −0.375142 + 0.0461082i
\(92\) 7.86530 13.6231i 0.820014 1.42031i
\(93\) −0.615938 + 16.4910i −0.0638698 + 1.71003i
\(94\) 1.61432 0.166505
\(95\) −1.67026 + 2.89298i −0.171366 + 0.296814i
\(96\) −4.72532 + 2.49781i −0.482276 + 0.254932i
\(97\) 11.5939i 1.17718i −0.808432 0.588590i \(-0.799683\pi\)
0.808432 0.588590i \(-0.200317\pi\)
\(98\) 0.233987 0.135092i 0.0236362 0.0136464i
\(99\) −12.0026 8.18090i −1.20631 0.822211i
\(100\) −3.46526 6.00200i −0.346526 0.600200i
\(101\) −4.94628 8.56720i −0.492173 0.852469i 0.507786 0.861483i \(-0.330464\pi\)
−0.999959 + 0.00901441i \(0.997131\pi\)
\(102\) 0.0563069 0.0297639i 0.00557521 0.00294706i
\(103\) 6.01306 + 10.4149i 0.592484 + 1.02621i 0.993897 + 0.110315i \(0.0351860\pi\)
−0.401413 + 0.915897i \(0.631481\pi\)
\(104\) −3.79697 + 0.466681i −0.372323 + 0.0457618i
\(105\) −2.05050 0.0765862i −0.200108 0.00747405i
\(106\) 0.00988490 0.00570705i 0.000960106 0.000554318i
\(107\) 4.78159 8.28196i 0.462254 0.800648i −0.536819 0.843698i \(-0.680374\pi\)
0.999073 + 0.0430499i \(0.0137074\pi\)
\(108\) −5.94429 + 8.05763i −0.571989 + 0.775346i
\(109\) 8.08902i 0.774787i −0.921914 0.387394i \(-0.873375\pi\)
0.921914 0.387394i \(-0.126625\pi\)
\(110\) 1.54979i 0.147766i
\(111\) −15.5654 + 8.22788i −1.47740 + 0.780956i
\(112\) −3.08940 + 1.78367i −0.291921 + 0.168541i
\(113\) 7.32364 12.6849i 0.688950 1.19330i −0.283228 0.959053i \(-0.591405\pi\)
0.972178 0.234244i \(-0.0752613\pi\)
\(114\) −0.616675 1.16662i −0.0577569 0.109264i
\(115\) 8.37521 4.83543i 0.780992 0.450906i
\(116\) −2.52136 −0.234103
\(117\) −9.09937 + 5.84820i −0.841237 + 0.540666i
\(118\) 3.09461 0.284882
\(119\) 0.117863 0.0680483i 0.0108045 0.00623797i
\(120\) −2.17561 0.0812590i −0.198605 0.00741790i
\(121\) 6.22170 10.7763i 0.565609 0.979664i
\(122\) −2.28046 + 1.31663i −0.206464 + 0.119202i
\(123\) 12.2964 + 7.72519i 1.10873 + 0.696557i
\(124\) 18.3599i 1.64877i
\(125\) 10.1842i 0.910898i
\(126\) 0.456511 0.669772i 0.0406692 0.0596680i
\(127\) 2.08730 3.61531i 0.185218 0.320807i −0.758432 0.651752i \(-0.774034\pi\)
0.943650 + 0.330945i \(0.107368\pi\)
\(128\) −6.81920 + 3.93707i −0.602738 + 0.347991i
\(129\) 4.69562 7.47415i 0.413426 0.658062i
\(130\) −1.06239 0.450803i −0.0931774 0.0395380i
\(131\) 6.14748 + 10.6478i 0.537108 + 0.930299i 0.999058 + 0.0433927i \(0.0138167\pi\)
−0.461950 + 0.886906i \(0.652850\pi\)
\(132\) −13.6840 8.59694i −1.19104 0.748268i
\(133\) −1.40988 2.44199i −0.122252 0.211748i
\(134\) −0.553693 0.959025i −0.0478318 0.0828472i
\(135\) −5.64167 + 2.46279i −0.485557 + 0.211963i
\(136\) 0.125054 0.0722002i 0.0107233 0.00619111i
\(137\) 3.66071i 0.312756i 0.987697 + 0.156378i \(0.0499818\pi\)
−0.987697 + 0.156378i \(0.950018\pi\)
\(138\) −0.142584 + 3.81752i −0.0121376 + 0.324969i
\(139\) 6.22485 10.7818i 0.527985 0.914497i −0.471482 0.881875i \(-0.656281\pi\)
0.999468 0.0326219i \(-0.0103857\pi\)
\(140\) −2.28288 −0.192939
\(141\) 9.14923 4.83630i 0.770504 0.407290i
\(142\) −1.00281 + 1.73692i −0.0841538 + 0.145759i
\(143\) −10.5079 13.9409i −0.878714 1.16580i
\(144\) −6.02746 + 8.84321i −0.502288 + 0.736934i
\(145\) −1.34241 0.775042i −0.111481 0.0643637i
\(146\) 1.11858 + 1.93743i 0.0925741 + 0.160343i
\(147\) 0.921408 1.46663i 0.0759964 0.120966i
\(148\) −16.9636 + 9.79394i −1.39440 + 0.805057i
\(149\) −11.5914 6.69233i −0.949608 0.548257i −0.0566492 0.998394i \(-0.518042\pi\)
−0.892959 + 0.450137i \(0.851375\pi\)
\(150\) 1.42516 + 0.895356i 0.116364 + 0.0731055i
\(151\) 4.86810 + 2.81060i 0.396160 + 0.228723i 0.684826 0.728707i \(-0.259878\pi\)
−0.288666 + 0.957430i \(0.593212\pi\)
\(152\) −1.49591 2.59099i −0.121334 0.210157i
\(153\) 0.229952 0.337376i 0.0185905 0.0272752i
\(154\) 1.13293 + 0.654095i 0.0912937 + 0.0527084i
\(155\) −5.64365 + 9.77508i −0.453309 + 0.785154i
\(156\) −9.87364 + 6.87976i −0.790524 + 0.550821i
\(157\) −0.235348 0.407635i −0.0187828 0.0325328i 0.856481 0.516178i \(-0.172646\pi\)
−0.875264 + 0.483645i \(0.839312\pi\)
\(158\) 1.21569i 0.0967151i
\(159\) 0.0389254 0.0619587i 0.00308699 0.00491364i
\(160\) −3.65577 −0.289014
\(161\) 8.16325i 0.643354i
\(162\) 0.361773 2.40460i 0.0284236 0.188923i
\(163\) 8.55740 4.94062i 0.670267 0.386979i −0.125911 0.992042i \(-0.540185\pi\)
0.796178 + 0.605063i \(0.206852\pi\)
\(164\) 13.9917 + 8.07810i 1.09257 + 0.630794i
\(165\) −4.64296 8.78347i −0.361454 0.683792i
\(166\) −2.74450 −0.213014
\(167\) 4.66322i 0.360851i 0.983589 + 0.180425i \(0.0577474\pi\)
−0.983589 + 0.180425i \(0.942253\pi\)
\(168\) 0.977627 1.55612i 0.0754255 0.120057i
\(169\) −12.6131 + 3.14807i −0.970236 + 0.242159i
\(170\) 0.0435621 0.00334106
\(171\) −6.99005 4.76436i −0.534542 0.364339i
\(172\) 4.91013 8.50459i 0.374394 0.648469i
\(173\) −19.1388 −1.45509 −0.727547 0.686058i \(-0.759340\pi\)
−0.727547 + 0.686058i \(0.759340\pi\)
\(174\) 0.541337 0.286152i 0.0410387 0.0216931i
\(175\) 3.11469 + 1.79826i 0.235448 + 0.135936i
\(176\) −14.9584 8.63622i −1.12753 0.650980i
\(177\) 17.5388 9.27102i 1.31829 0.696853i
\(178\) 1.06183 0.0795872
\(179\) −1.49542 + 2.59014i −0.111773 + 0.193596i −0.916485 0.400069i \(-0.868986\pi\)
0.804712 + 0.593665i \(0.202320\pi\)
\(180\) −6.17002 + 2.97235i −0.459886 + 0.221546i
\(181\) 11.3857 0.846291 0.423146 0.906062i \(-0.360926\pi\)
0.423146 + 0.906062i \(0.360926\pi\)
\(182\) 0.777930 0.586361i 0.0576640 0.0434640i
\(183\) −8.98017 + 14.2940i −0.663833 + 1.05664i
\(184\) 8.66133i 0.638521i
\(185\) −12.0422 −0.885363
\(186\) −2.08368 3.94187i −0.152783 0.289032i
\(187\) 0.570674 + 0.329479i 0.0417318 + 0.0240939i
\(188\) 9.97110 5.75681i 0.727217 0.419859i
\(189\) 0.580743 5.16360i 0.0422428 0.375596i
\(190\) 0.902559i 0.0654785i
\(191\) −13.6902 −0.990586 −0.495293 0.868726i \(-0.664939\pi\)
−0.495293 + 0.868726i \(0.664939\pi\)
\(192\) −5.80571 + 9.24111i −0.418991 + 0.666920i
\(193\) 25.5289i 1.83761i 0.394715 + 0.918804i \(0.370843\pi\)
−0.394715 + 0.918804i \(0.629157\pi\)
\(194\) 1.56624 + 2.71281i 0.112450 + 0.194768i
\(195\) −7.37165 + 0.627827i −0.527895 + 0.0449596i
\(196\) 0.963500 1.66883i 0.0688214 0.119202i
\(197\) 3.92644 + 2.26693i 0.279747 + 0.161512i 0.633309 0.773899i \(-0.281696\pi\)
−0.353562 + 0.935411i \(0.615030\pi\)
\(198\) 3.91363 + 0.292757i 0.278130 + 0.0208053i
\(199\) −4.38276 7.59117i −0.310686 0.538124i 0.667825 0.744318i \(-0.267225\pi\)
−0.978511 + 0.206194i \(0.933892\pi\)
\(200\) 3.30473 + 1.90798i 0.233679 + 0.134915i
\(201\) −6.01119 3.77651i −0.423996 0.266375i
\(202\) 2.31472 + 1.33641i 0.162863 + 0.0940292i
\(203\) 1.13314 0.654220i 0.0795310 0.0459172i
\(204\) 0.241647 0.384636i 0.0169187 0.0269299i
\(205\) 4.96626 + 8.60181i 0.346858 + 0.600776i
\(206\) −2.81395 1.62463i −0.196057 0.113194i
\(207\) 10.6287 + 22.0631i 0.738744 + 1.53349i
\(208\) −10.2713 + 7.74192i −0.712184 + 0.536806i
\(209\) 6.82643 11.8237i 0.472194 0.817864i
\(210\) 0.490135 0.259086i 0.0338226 0.0178787i
\(211\) 27.8120 1.91466 0.957328 0.289003i \(-0.0933239\pi\)
0.957328 + 0.289003i \(0.0933239\pi\)
\(212\) 0.0407036 0.0705008i 0.00279554 0.00484201i
\(213\) −0.479884 + 12.8483i −0.0328811 + 0.880351i
\(214\) 2.58382i 0.176627i
\(215\) 5.22845 3.01865i 0.356578 0.205870i
\(216\) 0.616176 5.47865i 0.0419255 0.372775i
\(217\) −4.76385 8.25123i −0.323391 0.560130i
\(218\) 1.09276 + 1.89272i 0.0740112 + 0.128191i
\(219\) 12.1439 + 7.62936i 0.820606 + 0.515544i
\(220\) −5.52667 9.57248i −0.372608 0.645376i
\(221\) 0.391857 0.295360i 0.0263591 0.0198681i
\(222\) 2.53057 4.02797i 0.169840 0.270340i
\(223\) 4.98407 2.87756i 0.333758 0.192695i −0.323750 0.946143i \(-0.604944\pi\)
0.657508 + 0.753447i \(0.271610\pi\)
\(224\) 1.54293 2.67244i 0.103092 0.178560i
\(225\) 10.7595 + 0.804860i 0.717302 + 0.0536573i
\(226\) 3.95746i 0.263247i
\(227\) 0.852157i 0.0565597i 0.999600 + 0.0282798i \(0.00900295\pi\)
−0.999600 + 0.0282798i \(0.990997\pi\)
\(228\) −7.96923 5.00665i −0.527775 0.331574i
\(229\) −2.33495 + 1.34809i −0.154298 + 0.0890841i −0.575161 0.818040i \(-0.695061\pi\)
0.420863 + 0.907124i \(0.361727\pi\)
\(230\) −1.30646 + 2.26285i −0.0861452 + 0.149208i
\(231\) 8.38047 + 0.313011i 0.551394 + 0.0205946i
\(232\) 1.20228 0.694136i 0.0789335 0.0455723i
\(233\) 3.92369 0.257049 0.128525 0.991706i \(-0.458976\pi\)
0.128525 + 0.991706i \(0.458976\pi\)
\(234\) 1.33908 2.59765i 0.0875387 0.169814i
\(235\) 7.07835 0.461741
\(236\) 19.1143 11.0356i 1.24423 0.718358i
\(237\) −3.64204 6.88996i −0.236576 0.447551i
\(238\) −0.0183856 + 0.0318448i −0.00119176 + 0.00206419i
\(239\) −15.2475 + 8.80315i −0.986279 + 0.569429i −0.904160 0.427194i \(-0.859502\pi\)
−0.0821192 + 0.996623i \(0.526169\pi\)
\(240\) −6.47142 + 3.42080i −0.417728 + 0.220812i
\(241\) 6.15064i 0.396197i −0.980182 0.198099i \(-0.936523\pi\)
0.980182 0.198099i \(-0.0634767\pi\)
\(242\) 3.36201i 0.216118i
\(243\) −5.15349 14.7120i −0.330596 0.943772i
\(244\) −9.39041 + 16.2647i −0.601159 + 1.04124i
\(245\) 1.02596 0.592341i 0.0655465 0.0378433i
\(246\) −3.92081 0.146442i −0.249982 0.00933682i
\(247\) −6.11954 8.11884i −0.389377 0.516589i
\(248\) −5.05451 8.75467i −0.320962 0.555922i
\(249\) −15.5545 + 8.22215i −0.985728 + 0.521057i
\(250\) 1.37580 + 2.38295i 0.0870132 + 0.150711i
\(251\) −5.68229 9.84202i −0.358663 0.621223i 0.629075 0.777345i \(-0.283434\pi\)
−0.987738 + 0.156122i \(0.950101\pi\)
\(252\) 0.431239 5.76489i 0.0271655 0.363154i
\(253\) −34.2298 + 19.7626i −2.15201 + 1.24246i
\(254\) 1.12791i 0.0707715i
\(255\) 0.246890 0.130506i 0.0154608 0.00817262i
\(256\) −5.23718 + 9.07105i −0.327323 + 0.566941i
\(257\) 12.3769 0.772052 0.386026 0.922488i \(-0.373848\pi\)
0.386026 + 0.922488i \(0.373848\pi\)
\(258\) −0.0890123 + 2.38319i −0.00554166 + 0.148371i
\(259\) 5.08248 8.80311i 0.315810 0.546999i
\(260\) −8.16957 + 1.00411i −0.506655 + 0.0622724i
\(261\) 2.21077 3.24355i 0.136843 0.200771i
\(262\) −2.87686 1.66095i −0.177733 0.102614i
\(263\) 7.26589 + 12.5849i 0.448034 + 0.776018i 0.998258 0.0589992i \(-0.0187909\pi\)
−0.550224 + 0.835017i \(0.685458\pi\)
\(264\) 8.89179 + 0.332109i 0.547252 + 0.0204399i
\(265\) 0.0433425 0.0250238i 0.00266251 0.00153720i
\(266\) 0.659788 + 0.380929i 0.0404542 + 0.0233562i
\(267\) 6.01793 3.18109i 0.368291 0.194679i
\(268\) −6.83993 3.94904i −0.417815 0.241226i
\(269\) −14.9609 25.9130i −0.912180 1.57994i −0.810978 0.585077i \(-0.801064\pi\)
−0.101202 0.994866i \(-0.532269\pi\)
\(270\) 0.987370 1.33840i 0.0600894 0.0814527i
\(271\) −4.48341 2.58850i −0.272348 0.157240i 0.357606 0.933872i \(-0.383593\pi\)
−0.629954 + 0.776632i \(0.716926\pi\)
\(272\) 0.242751 0.420457i 0.0147189 0.0254939i
\(273\) 2.65228 5.65380i 0.160523 0.342183i
\(274\) −0.494534 0.856558i −0.0298759 0.0517466i
\(275\) 17.4138i 1.05009i
\(276\) 12.7329 + 24.0879i 0.766431 + 1.44992i
\(277\) −24.8814 −1.49498 −0.747491 0.664272i \(-0.768741\pi\)
−0.747491 + 0.664272i \(0.768741\pi\)
\(278\) 3.36372i 0.201742i
\(279\) −23.6186 16.0983i −1.41401 0.963778i
\(280\) 1.08856 0.628482i 0.0650541 0.0375590i
\(281\) 18.1292 + 10.4669i 1.08150 + 0.624402i 0.931299 0.364255i \(-0.118676\pi\)
0.150196 + 0.988656i \(0.452010\pi\)
\(282\) −1.48745 + 2.36762i −0.0885764 + 0.140990i
\(283\) −15.0630 −0.895404 −0.447702 0.894183i \(-0.647757\pi\)
−0.447702 + 0.894183i \(0.647757\pi\)
\(284\) 14.3044i 0.848810i
\(285\) −2.70394 5.11528i −0.160168 0.303003i
\(286\) 4.34201 + 1.84245i 0.256748 + 0.108946i
\(287\) −8.38412 −0.494899
\(288\) 0.690579 9.23180i 0.0406928 0.543989i
\(289\) 8.49074 14.7064i 0.499455 0.865082i
\(290\) 0.418808 0.0245933
\(291\) 17.0039 + 10.6827i 0.996788 + 0.626230i
\(292\) 13.8181 + 7.97788i 0.808643 + 0.466870i
\(293\) −17.3446 10.0139i −1.01328 0.585019i −0.101131 0.994873i \(-0.532246\pi\)
−0.912151 + 0.409854i \(0.865580\pi\)
\(294\) −0.0174666 + 0.467647i −0.00101867 + 0.0272737i
\(295\) 13.5690 0.790016
\(296\) 5.39258 9.34023i 0.313437 0.542890i
\(297\) 23.0577 10.0655i 1.33794 0.584060i
\(298\) 3.61632 0.209488
\(299\) 3.59056 + 29.2132i 0.207647 + 1.68944i
\(300\) 11.9956 + 0.448037i 0.692568 + 0.0258674i
\(301\) 5.09614i 0.293736i
\(302\) −1.51876 −0.0873948
\(303\) 17.1225 + 0.639524i 0.983660 + 0.0367397i
\(304\) −8.71139 5.02952i −0.499633 0.288463i
\(305\) −9.99919 + 5.77304i −0.572552 + 0.330563i
\(306\) −0.00822894 + 0.110006i −0.000470417 + 0.00628863i
\(307\) 4.36732i 0.249256i −0.992204 0.124628i \(-0.960226\pi\)
0.992204 0.124628i \(-0.0397738\pi\)
\(308\) 9.33023 0.531639
\(309\) −20.8153 0.777453i −1.18414 0.0442277i
\(310\) 3.04965i 0.173209i
\(311\) 13.3607 + 23.1414i 0.757616 + 1.31223i 0.944063 + 0.329764i \(0.106969\pi\)
−0.186448 + 0.982465i \(0.559698\pi\)
\(312\) 2.81411 5.99876i 0.159318 0.339613i
\(313\) 8.44243 14.6227i 0.477194 0.826524i −0.522464 0.852661i \(-0.674987\pi\)
0.999658 + 0.0261367i \(0.00832053\pi\)
\(314\) 0.110137 + 0.0635874i 0.00621537 + 0.00358845i
\(315\) 2.00167 2.93676i 0.112781 0.165468i
\(316\) −4.33525 7.50887i −0.243877 0.422407i
\(317\) −0.202225 0.116755i −0.0113581 0.00655760i 0.494310 0.869286i \(-0.335421\pi\)
−0.505668 + 0.862728i \(0.668754\pi\)
\(318\) −0.000737888 0.0197560i −4.13787e−5 0.00110786i
\(319\) 5.48649 + 3.16763i 0.307184 + 0.177353i
\(320\) −6.46451 + 3.73229i −0.361377 + 0.208641i
\(321\) 7.74079 + 14.6439i 0.432049 + 0.817343i
\(322\) −1.10279 1.91009i −0.0614562 0.106445i
\(323\) 0.332347 + 0.191880i 0.0184923 + 0.0106765i
\(324\) −6.34045 16.1424i −0.352247 0.896802i
\(325\) 11.9372 + 5.06533i 0.662159 + 0.280974i
\(326\) −1.33488 + 2.31207i −0.0739320 + 0.128054i
\(327\) 11.8636 + 7.45328i 0.656059 + 0.412168i
\(328\) −8.89567 −0.491181
\(329\) −2.98745 + 5.17441i −0.164703 + 0.285275i
\(330\) 2.27297 + 1.42799i 0.125123 + 0.0786081i
\(331\) 21.6743i 1.19133i −0.803235 0.595663i \(-0.796889\pi\)
0.803235 0.595663i \(-0.203111\pi\)
\(332\) −16.9518 + 9.78711i −0.930350 + 0.537138i
\(333\) 2.27479 30.4099i 0.124658 1.66645i
\(334\) −0.629964 1.09113i −0.0344701 0.0597040i
\(335\) −2.42779 4.20505i −0.132644 0.229747i
\(336\) 0.230617 6.17449i 0.0125812 0.336846i
\(337\) −16.6938 28.9144i −0.909367 1.57507i −0.814945 0.579538i \(-0.803233\pi\)
−0.0944222 0.995532i \(-0.530100\pi\)
\(338\) 2.52601 2.44053i 0.137397 0.132748i
\(339\) 11.8560 + 22.4291i 0.643931 + 1.21818i
\(340\) 0.269067 0.155346i 0.0145922 0.00842483i
\(341\) 23.0658 39.9511i 1.24908 2.16348i
\(342\) 2.27920 + 0.170494i 0.123245 + 0.00921928i
\(343\) 1.00000i 0.0539949i
\(344\) 5.40707i 0.291530i
\(345\) −0.625192 + 16.7387i −0.0336592 + 0.901184i
\(346\) 4.47821 2.58550i 0.240750 0.138997i
\(347\) −12.6422 + 21.8969i −0.678669 + 1.17549i 0.296714 + 0.954967i \(0.404109\pi\)
−0.975382 + 0.220522i \(0.929224\pi\)
\(348\) 2.32320 3.69791i 0.124537 0.198229i
\(349\) −3.51509 + 2.02944i −0.188159 + 0.108633i −0.591120 0.806583i \(-0.701314\pi\)
0.402962 + 0.915217i \(0.367981\pi\)
\(350\) −0.971726 −0.0519409
\(351\) −0.192920 18.7340i −0.0102973 0.999947i
\(352\) 14.9413 0.796372
\(353\) 10.9006 6.29348i 0.580181 0.334968i −0.181024 0.983479i \(-0.557941\pi\)
0.761205 + 0.648511i \(0.224608\pi\)
\(354\) −2.85139 + 4.53865i −0.151550 + 0.241226i
\(355\) −4.39703 + 7.61588i −0.233370 + 0.404209i
\(356\) 6.55851 3.78656i 0.347600 0.200687i
\(357\) −0.00879824 + 0.235562i −0.000465652 + 0.0124673i
\(358\) 0.808078i 0.0427082i
\(359\) 11.6529i 0.615016i 0.951545 + 0.307508i \(0.0994951\pi\)
−0.951545 + 0.307508i \(0.900505\pi\)
\(360\) 2.12380 3.11594i 0.111934 0.164225i
\(361\) −5.52445 + 9.56863i −0.290761 + 0.503612i
\(362\) −2.66410 + 1.53812i −0.140022 + 0.0808416i
\(363\) 10.0721 + 19.0543i 0.528650 + 1.00009i
\(364\) 2.71398 6.39591i 0.142251 0.335237i
\(365\) 4.90465 + 8.49509i 0.256721 + 0.444654i
\(366\) 0.170232 4.55775i 0.00889817 0.238237i
\(367\) −3.68933 6.39011i −0.192582 0.333561i 0.753523 0.657421i \(-0.228353\pi\)
−0.946105 + 0.323860i \(0.895019\pi\)
\(368\) 14.5605 + 25.2195i 0.759019 + 1.31466i
\(369\) −22.6600 + 10.9162i −1.17963 + 0.568277i
\(370\) 2.81772 1.62681i 0.146486 0.0845740i
\(371\) 0.0422456i 0.00219328i
\(372\) −26.9272 16.9169i −1.39611 0.877103i
\(373\) 10.0065 17.3317i 0.518115 0.897401i −0.481664 0.876356i \(-0.659967\pi\)
0.999779 0.0210448i \(-0.00669927\pi\)
\(374\) −0.178040 −0.00920623
\(375\) 14.9364 + 9.38376i 0.771312 + 0.484575i
\(376\) −3.16972 + 5.49012i −0.163466 + 0.283132i
\(377\) 3.76733 2.83961i 0.194027 0.146247i
\(378\) 0.561676 + 1.28667i 0.0288895 + 0.0661790i
\(379\) 12.1513 + 7.01554i 0.624169 + 0.360364i 0.778490 0.627656i \(-0.215986\pi\)
−0.154321 + 0.988021i \(0.549319\pi\)
\(380\) −3.21860 5.57478i −0.165111 0.285980i
\(381\) 3.37907 + 6.39248i 0.173115 + 0.327496i
\(382\) 3.20332 1.84943i 0.163896 0.0946253i
\(383\) 20.2628 + 11.6988i 1.03538 + 0.597779i 0.918522 0.395370i \(-0.129383\pi\)
0.116861 + 0.993148i \(0.462717\pi\)
\(384\) 0.509040 13.6289i 0.0259768 0.695497i
\(385\) 4.96755 + 2.86802i 0.253170 + 0.146168i
\(386\) −3.44875 5.97341i −0.175537 0.304038i
\(387\) 6.63524 + 13.7735i 0.337288 + 0.700146i
\(388\) 19.3482 + 11.1707i 0.982257 + 0.567106i
\(389\) 7.73435 13.3963i 0.392147 0.679219i −0.600585 0.799561i \(-0.705066\pi\)
0.992733 + 0.120342i \(0.0383991\pi\)
\(390\) 1.64005 1.14276i 0.0830472 0.0578657i
\(391\) −0.555495 0.962146i −0.0280926 0.0486578i
\(392\) 1.06101i 0.0535893i
\(393\) −21.2807 0.794833i −1.07347 0.0400940i
\(394\) −1.22498 −0.0617135
\(395\) 5.33045i 0.268204i
\(396\) 25.2171 12.1481i 1.26721 0.610465i
\(397\) −10.8447 + 6.26121i −0.544282 + 0.314241i −0.746812 0.665035i \(-0.768417\pi\)
0.202531 + 0.979276i \(0.435083\pi\)
\(398\) 2.05102 + 1.18415i 0.102808 + 0.0593563i
\(399\) 4.88058 + 0.182290i 0.244335 + 0.00912590i
\(400\) 12.8300 0.641501
\(401\) 34.5268i 1.72419i −0.506748 0.862094i \(-0.669153\pi\)
0.506748 0.862094i \(-0.330847\pi\)
\(402\) 1.91671 + 0.0715893i 0.0955970 + 0.00357055i
\(403\) −20.6773 27.4327i −1.03001 1.36652i
\(404\) 19.0630 0.948418
\(405\) 1.58627 10.5435i 0.0788225 0.523910i
\(406\) −0.176760 + 0.306157i −0.00877245 + 0.0151943i
\(407\) 49.2171 2.43960
\(408\) −0.00933506 + 0.249934i −0.000462154 + 0.0123736i
\(409\) −27.8058 16.0537i −1.37491 0.793805i −0.383368 0.923596i \(-0.625236\pi\)
−0.991541 + 0.129791i \(0.958569\pi\)
\(410\) −2.32407 1.34180i −0.114778 0.0662670i
\(411\) −5.36892 3.37301i −0.264829 0.166378i
\(412\) −23.1743 −1.14172
\(413\) −5.72684 + 9.91918i −0.281799 + 0.488091i
\(414\) −5.46752 3.72661i −0.268714 0.183153i
\(415\) −12.0338 −0.590718
\(416\) 4.34612 10.2423i 0.213086 0.502170i
\(417\) 10.0772 + 19.0640i 0.493485 + 0.933567i
\(418\) 3.68879i 0.180425i
\(419\) −0.299223 −0.0146180 −0.00730900 0.999973i \(-0.502327\pi\)
−0.00730900 + 0.999973i \(0.502327\pi\)
\(420\) 2.10347 3.34815i 0.102639 0.163373i
\(421\) 23.0210 + 13.2912i 1.12197 + 0.647772i 0.941904 0.335882i \(-0.109034\pi\)
0.180070 + 0.983654i \(0.442368\pi\)
\(422\) −6.50763 + 3.75718i −0.316786 + 0.182897i
\(423\) −1.33711 + 17.8747i −0.0650125 + 0.869100i
\(424\) 0.0448232i 0.00217681i
\(425\) −0.489475 −0.0237430
\(426\) −1.62342 3.07116i −0.0786549 0.148798i
\(427\) 9.74614i 0.471649i
\(428\) 9.21413 + 15.9593i 0.445382 + 0.771424i
\(429\) 30.1282 2.56595i 1.45460 0.123885i
\(430\) −0.815592 + 1.41265i −0.0393313 + 0.0681239i
\(431\) −30.0006 17.3208i −1.44508 0.834315i −0.446894 0.894587i \(-0.647470\pi\)
−0.998182 + 0.0602720i \(0.980803\pi\)
\(432\) −7.41599 16.9883i −0.356802 0.817348i
\(433\) 0.0401378 + 0.0695207i 0.00192890 + 0.00334095i 0.866988 0.498329i \(-0.166053\pi\)
−0.865059 + 0.501670i \(0.832719\pi\)
\(434\) 2.22935 + 1.28712i 0.107012 + 0.0617836i
\(435\) 2.37361 1.25469i 0.113806 0.0601580i
\(436\) 13.4992 + 7.79377i 0.646495 + 0.373254i
\(437\) −19.9346 + 11.5092i −0.953601 + 0.550562i
\(438\) −3.87217 0.144625i −0.185019 0.00691047i
\(439\) 18.9741 + 32.8640i 0.905582 + 1.56851i 0.820134 + 0.572172i \(0.193899\pi\)
0.0854481 + 0.996343i \(0.472768\pi\)
\(440\) 5.27065 + 3.04301i 0.251268 + 0.145070i
\(441\) 1.30201 + 2.70273i 0.0620007 + 0.128702i
\(442\) −0.0517883 + 0.122047i −0.00246332 + 0.00580519i
\(443\) −18.6101 + 32.2336i −0.884193 + 1.53147i −0.0375561 + 0.999295i \(0.511957\pi\)
−0.846636 + 0.532172i \(0.821376\pi\)
\(444\) 1.26630 33.9036i 0.0600959 1.60899i
\(445\) 4.65580 0.220706
\(446\) −0.777471 + 1.34662i −0.0368143 + 0.0637642i
\(447\) 20.4956 10.8340i 0.969410 0.512432i
\(448\) 6.30091i 0.297690i
\(449\) 26.1521 15.0989i 1.23419 0.712562i 0.266292 0.963892i \(-0.414201\pi\)
0.967901 + 0.251330i \(0.0808680\pi\)
\(450\) −2.62631 + 1.26520i −0.123806 + 0.0596422i
\(451\) −20.2973 35.1559i −0.955762 1.65543i
\(452\) 14.1127 + 24.4438i 0.663803 + 1.14974i
\(453\) −8.60762 + 4.55000i −0.404421 + 0.213778i
\(454\) −0.115120 0.199393i −0.00540284 0.00935799i
\(455\) 3.41100 2.57103i 0.159910 0.120532i
\(456\) 5.17836 + 0.193412i 0.242499 + 0.00905734i
\(457\) −4.56705 + 2.63679i −0.213638 + 0.123344i −0.603001 0.797741i \(-0.706028\pi\)
0.389363 + 0.921084i \(0.372695\pi\)
\(458\) 0.364232 0.630868i 0.0170194 0.0294785i
\(459\) 0.282926 + 0.648116i 0.0132058 + 0.0302515i
\(460\) 18.6357i 0.868896i
\(461\) 22.3456i 1.04074i 0.853941 + 0.520370i \(0.174206\pi\)
−0.853941 + 0.520370i \(0.825794\pi\)
\(462\) −2.00320 + 1.05890i −0.0931974 + 0.0492643i
\(463\) −12.6181 + 7.28508i −0.586414 + 0.338566i −0.763678 0.645597i \(-0.776609\pi\)
0.177264 + 0.984163i \(0.443275\pi\)
\(464\) 2.33382 4.04229i 0.108345 0.187659i
\(465\) −9.13634 17.2840i −0.423688 0.801526i
\(466\) −0.918091 + 0.530060i −0.0425297 + 0.0245545i
\(467\) 10.9083 0.504778 0.252389 0.967626i \(-0.418784\pi\)
0.252389 + 0.967626i \(0.418784\pi\)
\(468\) −0.992413 20.8201i −0.0458743 0.962408i
\(469\) 4.09863 0.189257
\(470\) −1.65624 + 0.956230i −0.0763966 + 0.0441076i
\(471\) 0.814702 + 0.0304291i 0.0375395 + 0.00140210i
\(472\) −6.07626 + 10.5244i −0.279682 + 0.484424i
\(473\) −21.3689 + 12.3373i −0.982543 + 0.567271i
\(474\) 1.78297 + 1.12015i 0.0818944 + 0.0514500i
\(475\) 10.1414i 0.465318i
\(476\) 0.262258i 0.0120206i
\(477\) 0.0550044 + 0.114178i 0.00251848 + 0.00522787i
\(478\) 2.37847 4.11964i 0.108789 0.188428i
\(479\) 12.5843 7.26555i 0.574991 0.331971i −0.184149 0.982898i \(-0.558953\pi\)
0.759140 + 0.650927i \(0.225620\pi\)
\(480\) 3.36845 5.36166i 0.153748 0.244725i
\(481\) 14.3163 33.7385i 0.652766 1.53834i
\(482\) 0.830903 + 1.43917i 0.0378466 + 0.0655522i
\(483\) −11.9725 7.52169i −0.544767 0.342249i
\(484\) 11.9892 + 20.7659i 0.544965 + 0.943907i
\(485\) 6.86752 + 11.8949i 0.311838 + 0.540120i
\(486\) 3.19332 + 2.74620i 0.144852 + 0.124570i
\(487\) −25.1394 + 14.5142i −1.13917 + 0.657702i −0.946226 0.323507i \(-0.895138\pi\)
−0.192948 + 0.981209i \(0.561805\pi\)
\(488\) 10.3408i 0.468106i
\(489\) −0.638792 + 17.1029i −0.0288872 + 0.773418i
\(490\) −0.160041 + 0.277200i −0.00722993 + 0.0125226i
\(491\) −17.2727 −0.779508 −0.389754 0.920919i \(-0.627440\pi\)
−0.389754 + 0.920919i \(0.627440\pi\)
\(492\) −24.7396 + 13.0774i −1.11535 + 0.589575i
\(493\) −0.0890370 + 0.154217i −0.00401003 + 0.00694557i
\(494\) 2.52868 + 1.07300i 0.113771 + 0.0482764i
\(495\) 17.1602 + 1.28366i 0.771292 + 0.0576960i
\(496\) −29.4349 16.9942i −1.32167 0.763064i
\(497\) −3.71157 6.42863i −0.166487 0.288364i
\(498\) 2.52880 4.02517i 0.113318 0.180372i
\(499\) −13.6439 + 7.87730i −0.610784 + 0.352636i −0.773272 0.634074i \(-0.781381\pi\)
0.162488 + 0.986710i \(0.448048\pi\)
\(500\) 16.9956 + 9.81243i 0.760068 + 0.438825i
\(501\) −6.83922 4.29672i −0.305554 0.191963i
\(502\) 2.65916 + 1.53527i 0.118684 + 0.0685223i
\(503\) 15.9840 + 27.6851i 0.712691 + 1.23442i 0.963844 + 0.266469i \(0.0858569\pi\)
−0.251153 + 0.967947i \(0.580810\pi\)
\(504\) 1.38146 + 2.86764i 0.0615349 + 0.127735i
\(505\) 10.1494 + 5.85976i 0.451643 + 0.260756i
\(506\) 5.33954 9.24835i 0.237371 0.411139i
\(507\) 7.00473 21.3994i 0.311091 0.950380i
\(508\) 4.02223 + 6.96670i 0.178458 + 0.309097i
\(509\) 18.6131i 0.825013i −0.910955 0.412507i \(-0.864653\pi\)
0.910955 0.412507i \(-0.135347\pi\)
\(510\) −0.0401385 + 0.0638896i −0.00177736 + 0.00282908i
\(511\) −8.28011 −0.366290
\(512\) 18.5783i 0.821052i
\(513\) 13.4282 5.86191i 0.592871 0.258809i
\(514\) −2.89604 + 1.67203i −0.127739 + 0.0737499i
\(515\) −12.3384 7.12356i −0.543693 0.313902i
\(516\) 7.94887 + 15.0375i 0.349929 + 0.661991i
\(517\) −28.9295 −1.27232
\(518\) 2.74641i 0.120670i
\(519\) 17.6346 28.0695i 0.774074 1.23212i
\(520\) 3.61912 2.72790i 0.158709 0.119626i
\(521\) 21.6205 0.947210 0.473605 0.880737i \(-0.342952\pi\)
0.473605 + 0.880737i \(0.342952\pi\)
\(522\) −0.0791135 + 1.05760i −0.00346270 + 0.0462901i
\(523\) −2.42546 + 4.20103i −0.106058 + 0.183698i −0.914170 0.405331i \(-0.867156\pi\)
0.808112 + 0.589029i \(0.200490\pi\)
\(524\) −23.6924 −1.03501
\(525\) −5.50729 + 2.91116i −0.240358 + 0.127053i
\(526\) −3.40024 1.96313i −0.148258 0.0855966i
\(527\) 1.12296 + 0.648344i 0.0489171 + 0.0282423i
\(528\) 26.4489 13.9809i 1.15104 0.608442i
\(529\) 43.6387 1.89733
\(530\) −0.00676104 + 0.0117105i −0.000293681 + 0.000508670i
\(531\) −2.56320 + 34.2653i −0.111233 + 1.48699i
\(532\) 5.43370 0.235581
\(533\) −30.0036 + 3.68771i −1.29960 + 0.159732i
\(534\) −0.978374 + 1.55731i −0.0423384 + 0.0673912i
\(535\) 11.3293i 0.489810i
\(536\) 4.34871 0.187836
\(537\) −2.42089 4.57981i −0.104469 0.197633i
\(538\) 7.00128 + 4.04219i 0.301847 + 0.174271i
\(539\) −4.19316 + 2.42092i −0.180612 + 0.104276i
\(540\) 1.32577 11.7879i 0.0570519 0.507270i
\(541\) 29.1335i 1.25255i 0.779603 + 0.626275i \(0.215421\pi\)
−0.779603 + 0.626275i \(0.784579\pi\)
\(542\) 1.39874 0.0600812
\(543\) −10.4909 + 16.6986i −0.450206 + 0.716605i
\(544\) 0.419976i 0.0180063i
\(545\) 4.79145 + 8.29904i 0.205243 + 0.355492i
\(546\) 0.143185 + 1.68121i 0.00612777 + 0.0719493i
\(547\) −4.95822 + 8.58789i −0.211998 + 0.367192i −0.952340 0.305039i \(-0.901330\pi\)
0.740342 + 0.672231i \(0.234664\pi\)
\(548\) −6.10912 3.52710i −0.260968 0.150670i
\(549\) −12.6896 26.3412i −0.541580 1.12421i
\(550\) −2.35247 4.07460i −0.100310 0.173741i
\(551\) 3.19520 + 1.84475i 0.136120 + 0.0785889i
\(552\) −12.7030 7.98061i −0.540674 0.339677i
\(553\) 3.89666 + 2.24974i 0.165703 + 0.0956687i
\(554\) 5.82192 3.36129i 0.247350 0.142807i
\(555\) 11.0958 17.6615i 0.470991 0.749690i
\(556\) 11.9953 + 20.7765i 0.508714 + 0.881118i
\(557\) −14.2831 8.24635i −0.605194 0.349409i 0.165888 0.986145i \(-0.446951\pi\)
−0.771082 + 0.636735i \(0.780284\pi\)
\(558\) 7.70119 + 0.576083i 0.326017 + 0.0243875i
\(559\) 2.24151 + 18.2371i 0.0948056 + 0.771349i
\(560\) 2.11308 3.65996i 0.0892938 0.154661i
\(561\) −1.00905 + 0.533384i −0.0426020 + 0.0225195i
\(562\) −5.65597 −0.238583
\(563\) 4.05790 7.02849i 0.171020 0.296216i −0.767757 0.640742i \(-0.778627\pi\)
0.938777 + 0.344526i \(0.111960\pi\)
\(564\) −0.744322 + 19.9283i −0.0313416 + 0.839133i
\(565\) 17.3524i 0.730019i
\(566\) 3.52454 2.03490i 0.148148 0.0855331i
\(567\) 7.03799 + 5.60952i 0.295568 + 0.235577i
\(568\) −3.93803 6.82087i −0.165236 0.286197i
\(569\) 18.9307 + 32.7889i 0.793616 + 1.37458i 0.923714 + 0.383082i \(0.125137\pi\)
−0.130098 + 0.991501i \(0.541529\pi\)
\(570\) 1.32372 + 0.831625i 0.0554446 + 0.0348329i
\(571\) −6.70098 11.6064i −0.280427 0.485714i 0.691063 0.722795i \(-0.257143\pi\)
−0.971490 + 0.237080i \(0.923810\pi\)
\(572\) 33.3894 4.10385i 1.39608 0.171590i
\(573\) 12.6142 20.0784i 0.526967 0.838789i
\(574\) 1.96177 1.13263i 0.0818827 0.0472750i
\(575\) 14.6797 25.4260i 0.612185 1.06034i
\(576\) −8.20388 17.0297i −0.341828 0.709570i
\(577\) 35.9731i 1.49758i 0.662807 + 0.748790i \(0.269365\pi\)
−0.662807 + 0.748790i \(0.730635\pi\)
\(578\) 4.58813i 0.190841i
\(579\) −37.4414 23.5225i −1.55601 0.977561i
\(580\) 2.58683 1.49351i 0.107412 0.0620145i
\(581\) 5.07894 8.79698i 0.210710 0.364960i
\(582\) −5.42184 0.202506i −0.224742 0.00839413i
\(583\) −0.177142 + 0.102273i −0.00733649 + 0.00423572i
\(584\) −8.78531 −0.363539
\(585\) 5.87150 11.3900i 0.242757 0.470918i
\(586\) 5.41120 0.223535
\(587\) 21.2219 12.2525i 0.875923 0.505714i 0.00661090 0.999978i \(-0.497896\pi\)
0.869312 + 0.494264i \(0.164562\pi\)
\(588\) 1.55978 + 2.95077i 0.0643244 + 0.121688i
\(589\) 13.4330 23.2666i 0.553495 0.958682i
\(590\) −3.17496 + 1.83306i −0.130711 + 0.0754659i
\(591\) −6.94260 + 3.66987i −0.285581 + 0.150958i
\(592\) 36.2618i 1.49035i
\(593\) 38.0338i 1.56186i −0.624619 0.780930i \(-0.714746\pi\)
0.624619 0.780930i \(-0.285254\pi\)
\(594\) −4.03542 + 5.47011i −0.165575 + 0.224441i
\(595\) −0.0806155 + 0.139630i −0.00330492 + 0.00572428i
\(596\) 22.3367 12.8961i 0.914948 0.528245i
\(597\) 15.1718 + 0.566665i 0.620939 + 0.0231921i
\(598\) −4.78662 6.35044i −0.195739 0.259689i
\(599\) 13.3958 + 23.2021i 0.547336 + 0.948013i 0.998456 + 0.0555498i \(0.0176912\pi\)
−0.451120 + 0.892463i \(0.648975\pi\)
\(600\) −5.84331 + 3.08878i −0.238552 + 0.126099i
\(601\) 19.0278 + 32.9572i 0.776162 + 1.34435i 0.934139 + 0.356909i \(0.116169\pi\)
−0.157977 + 0.987443i \(0.550497\pi\)
\(602\) −0.688448 1.19243i −0.0280590 0.0485997i
\(603\) 11.0775 5.33648i 0.451111 0.217318i
\(604\) −9.38083 + 5.41602i −0.381701 + 0.220375i
\(605\) 14.7415i 0.599326i
\(606\) −4.09282 + 2.16347i −0.166260 + 0.0878850i
\(607\) 2.66099 4.60897i 0.108006 0.187072i −0.806956 0.590611i \(-0.798887\pi\)
0.914962 + 0.403539i \(0.132220\pi\)
\(608\) 8.70143 0.352889
\(609\) −0.0845867 + 2.26470i −0.00342763 + 0.0917704i
\(610\) 1.55978 2.70162i 0.0631538 0.109386i
\(611\) −8.41501 + 19.8313i −0.340435 + 0.802288i
\(612\) 0.341464 + 0.708813i 0.0138029 + 0.0286521i
\(613\) 0.485771 + 0.280460i 0.0196201 + 0.0113277i 0.509778 0.860306i \(-0.329728\pi\)
−0.490158 + 0.871634i \(0.663061\pi\)
\(614\) 0.589991 + 1.02189i 0.0238101 + 0.0412403i
\(615\) −17.1916 0.642108i −0.693233 0.0258923i
\(616\) −4.44900 + 2.56863i −0.179255 + 0.103493i
\(617\) 21.9654 + 12.6817i 0.884293 + 0.510547i 0.872071 0.489378i \(-0.162776\pi\)
0.0122215 + 0.999925i \(0.496110\pi\)
\(618\) 4.97553 2.63007i 0.200145 0.105797i
\(619\) −26.9080 15.5353i −1.08152 0.624418i −0.150217 0.988653i \(-0.547997\pi\)
−0.931307 + 0.364235i \(0.881331\pi\)
\(620\) −10.8753 18.8366i −0.436763 0.756496i
\(621\) −42.1517 4.74075i −1.69149 0.190240i
\(622\) −6.25245 3.60985i −0.250700 0.144742i
\(623\) −1.96500 + 3.40348i −0.0787261 + 0.136358i
\(624\) −1.89052 22.1976i −0.0756815 0.888616i
\(625\) −2.95883 5.12485i −0.118353 0.204994i
\(626\) 4.56202i 0.182335i
\(627\) 11.0511 + 20.9063i 0.441339 + 0.834919i
\(628\) 0.907032 0.0361945
\(629\) 1.38342i 0.0551604i
\(630\) −0.0716306 + 0.957572i −0.00285383 + 0.0381506i
\(631\) 4.17044 2.40780i 0.166023 0.0958532i −0.414686 0.909964i \(-0.636109\pi\)
0.580709 + 0.814111i \(0.302775\pi\)
\(632\) 4.13442 + 2.38701i 0.164458 + 0.0949500i
\(633\) −25.6262 + 40.7899i −1.01855 + 1.62125i
\(634\) 0.0630906 0.00250565
\(635\) 4.94557i 0.196259i
\(636\) 0.0658940 + 0.124657i 0.00261287 + 0.00494298i
\(637\) 0.439844 + 3.57862i 0.0174273 + 0.141790i
\(638\) −1.71169 −0.0677663
\(639\) −18.4016 12.5423i −0.727954 0.496167i
\(640\) 4.66417 8.07859i 0.184368 0.319334i
\(641\) −13.8883 −0.548556 −0.274278 0.961650i \(-0.588439\pi\)
−0.274278 + 0.961650i \(0.588439\pi\)
\(642\) −3.78952 2.38076i −0.149560 0.0939609i
\(643\) −8.64843 4.99317i −0.341061 0.196912i 0.319680 0.947525i \(-0.396425\pi\)
−0.660741 + 0.750614i \(0.729758\pi\)
\(644\) −13.6231 7.86530i −0.536825 0.309936i
\(645\) −0.390294 + 10.4496i −0.0153678 + 0.411453i
\(646\) −0.103686 −0.00407948
\(647\) −14.1482 + 24.5054i −0.556223 + 0.963406i 0.441585 + 0.897220i \(0.354416\pi\)
−0.997807 + 0.0661862i \(0.978917\pi\)
\(648\) 7.46741 + 5.95177i 0.293348 + 0.233808i
\(649\) −55.4569 −2.17687
\(650\) −3.47744 + 0.427408i −0.136396 + 0.0167643i
\(651\) 16.4910 + 0.615938i 0.646332 + 0.0241405i
\(652\) 19.0411i 0.745708i
\(653\) −24.9742 −0.977315 −0.488658 0.872476i \(-0.662513\pi\)
−0.488658 + 0.872476i \(0.662513\pi\)
\(654\) −3.78280 0.141288i −0.147919 0.00552479i
\(655\) −12.6142 7.28281i −0.492878 0.284563i
\(656\) −25.9019 + 14.9545i −1.01130 + 0.583874i
\(657\) −22.3789 + 10.7808i −0.873084 + 0.420600i
\(658\) 1.61432i 0.0629329i
\(659\) −22.2070 −0.865061 −0.432530 0.901619i \(-0.642379\pi\)
−0.432530 + 0.901619i \(0.642379\pi\)
\(660\) 19.1316 + 0.714566i 0.744697 + 0.0278145i
\(661\) 30.4918i 1.18599i −0.805205 0.592996i \(-0.797945\pi\)
0.805205 0.592996i \(-0.202055\pi\)
\(662\) 2.92802 + 5.07149i 0.113801 + 0.197109i
\(663\) 0.0721250 + 0.846857i 0.00280110 + 0.0328892i
\(664\) 5.38882 9.33372i 0.209127 0.362218i
\(665\) 2.89298 + 1.67026i 0.112185 + 0.0647701i
\(666\) 3.57587 + 7.42282i 0.138562 + 0.287628i
\(667\) −5.34056 9.25012i −0.206787 0.358166i
\(668\) −7.78212 4.49301i −0.301099 0.173840i
\(669\) −0.372051 + 9.96120i −0.0143843 + 0.385122i
\(670\) 1.13614 + 0.655951i 0.0438929 + 0.0253416i
\(671\) 40.8671 23.5946i 1.57766 0.910860i
\(672\) 2.49781 + 4.72532i 0.0963551 + 0.182283i
\(673\) −0.123050 0.213129i −0.00474322 0.00821550i 0.863644 0.504102i \(-0.168176\pi\)
−0.868387 + 0.495887i \(0.834843\pi\)
\(674\) 7.81223 + 4.51039i 0.300916 + 0.173734i
\(675\) −11.0943 + 15.0387i −0.427022 + 0.578838i
\(676\) 6.89910 24.0823i 0.265350 0.926241i
\(677\) 2.41199 4.17768i 0.0927002 0.160561i −0.815946 0.578128i \(-0.803784\pi\)
0.908646 + 0.417566i \(0.137117\pi\)
\(678\) −5.80414 3.64644i −0.222907 0.140041i
\(679\) −11.5939 −0.444932
\(680\) −0.0855342 + 0.148150i −0.00328009 + 0.00568128i
\(681\) −1.24980 0.785184i −0.0478925 0.0300883i
\(682\) 12.4640i 0.477273i
\(683\) 14.5572 8.40463i 0.557018 0.321594i −0.194930 0.980817i \(-0.562448\pi\)
0.751948 + 0.659223i \(0.229115\pi\)
\(684\) 14.6858 7.07475i 0.561526 0.270510i
\(685\) −2.16839 3.75576i −0.0828500 0.143500i
\(686\) −0.135092 0.233987i −0.00515784 0.00893365i
\(687\) 0.174300 4.66666i 0.00664995 0.178044i
\(688\) 9.08980 + 15.7440i 0.346545 + 0.600234i
\(689\) 0.0185815 + 0.151181i 0.000707898 + 0.00575954i
\(690\) −2.11499 4.00110i −0.0805162 0.152319i
\(691\) −25.3693 + 14.6470i −0.965095 + 0.557198i −0.897738 0.440531i \(-0.854790\pi\)
−0.0673579 + 0.997729i \(0.521457\pi\)
\(692\) 18.4402 31.9394i 0.700992 1.21415i
\(693\) −8.18090 + 12.0026i −0.310767 + 0.455943i
\(694\) 6.83145i 0.259318i
\(695\) 14.7489i 0.559459i
\(696\) −0.0897477 + 2.40288i −0.00340188 + 0.0910810i
\(697\) 0.988178 0.570525i 0.0374299 0.0216102i
\(698\) 0.548323 0.949723i 0.0207543 0.0359475i
\(699\) −3.61532 + 5.75461i −0.136744 + 0.217659i
\(700\) −6.00200 + 3.46526i −0.226854 + 0.130974i
\(701\) −48.4840 −1.83121 −0.915607 0.402074i \(-0.868289\pi\)
−0.915607 + 0.402074i \(0.868289\pi\)
\(702\) 2.57596 + 4.35744i 0.0972233 + 0.164461i
\(703\) 28.6628 1.08104
\(704\) 26.4207 15.2540i 0.995767 0.574907i
\(705\) −6.52205 + 10.3813i −0.245635 + 0.390984i
\(706\) −1.70040 + 2.94518i −0.0639953 + 0.110843i
\(707\) −8.56720 + 4.94628i −0.322203 + 0.186024i
\(708\) −1.42684 + 38.2019i −0.0536240 + 1.43571i
\(709\) 14.0482i 0.527592i 0.964578 + 0.263796i \(0.0849746\pi\)
−0.964578 + 0.263796i \(0.915025\pi\)
\(710\) 2.37602i 0.0891704i
\(711\) 13.4608 + 1.00693i 0.504821 + 0.0377628i
\(712\) −2.08489 + 3.61114i −0.0781347 + 0.135333i
\(713\) −67.3569 + 38.8885i −2.52254 + 1.45639i
\(714\) −0.0297639 0.0563069i −0.00111389 0.00210723i
\(715\) 19.0385 + 8.07861i 0.711999 + 0.302123i
\(716\) −2.88167 4.99120i −0.107693 0.186530i
\(717\) 1.13820 30.4738i 0.0425067 1.13806i
\(718\) −1.57422 2.72662i −0.0587492 0.101757i
\(719\) 4.39578 + 7.61371i 0.163935 + 0.283943i 0.936276 0.351264i \(-0.114248\pi\)
−0.772342 + 0.635207i \(0.780915\pi\)
\(720\) 0.945762 12.6431i 0.0352465 0.471182i
\(721\) 10.4149 6.01306i 0.387872 0.223938i
\(722\) 2.98524i 0.111099i
\(723\) 9.02072 + 5.66725i 0.335484 + 0.210767i
\(724\) −10.9701 + 19.0008i −0.407701 + 0.706159i
\(725\) −4.70584 −0.174771
\(726\) −4.93083 3.09779i −0.183000 0.114970i
\(727\) 7.62448 13.2060i 0.282776 0.489783i −0.689291 0.724484i \(-0.742078\pi\)
0.972067 + 0.234702i \(0.0754113\pi\)
\(728\) 0.466681 + 3.79697i 0.0172963 + 0.140725i
\(729\) 26.3255 + 5.99744i 0.975018 + 0.222128i
\(730\) −2.29524 1.32516i −0.0849507 0.0490463i
\(731\) −0.346783 0.600646i −0.0128262 0.0222157i
\(732\) −15.2019 28.7586i −0.561877 1.06295i
\(733\) −13.5244 + 7.80829i −0.499533 + 0.288406i −0.728521 0.685024i \(-0.759792\pi\)
0.228987 + 0.973429i \(0.426459\pi\)
\(734\) 1.72651 + 0.996800i 0.0637266 + 0.0367925i
\(735\) −0.0765862 + 2.05050i −0.00282492 + 0.0756338i
\(736\) −21.8158 12.5953i −0.804140 0.464271i
\(737\) 9.92246 + 17.1862i 0.365499 + 0.633062i
\(738\) 3.82744 5.61545i 0.140890 0.206707i
\(739\) −5.58892 3.22676i −0.205592 0.118698i 0.393669 0.919252i \(-0.371205\pi\)
−0.599261 + 0.800554i \(0.704539\pi\)
\(740\) 11.6027 20.0965i 0.426524 0.738761i
\(741\) 17.5459 1.49435i 0.644566 0.0548963i
\(742\) −0.00570705 0.00988490i −0.000209512 0.000362886i
\(743\) 31.6580i 1.16142i 0.814110 + 0.580710i \(0.197225\pi\)
−0.814110 + 0.580710i \(0.802775\pi\)
\(744\) 17.4971 + 0.653519i 0.641477 + 0.0239592i
\(745\) 15.8566 0.580939
\(746\) 5.40718i 0.197971i
\(747\) 2.27321 30.3887i 0.0831724 1.11187i
\(748\) −1.09969 + 0.634906i −0.0402086 + 0.0232145i
\(749\) −8.28196 4.78159i −0.302616 0.174716i
\(750\) −4.76259 0.177883i −0.173905 0.00649536i
\(751\) −33.2020 −1.21156 −0.605779 0.795633i \(-0.707139\pi\)
−0.605779 + 0.795633i \(0.707139\pi\)
\(752\) 21.3144i 0.777258i
\(753\) 19.6703 + 0.734687i 0.716826 + 0.0267735i
\(754\) −0.497896 + 1.17337i −0.0181323 + 0.0427315i
\(755\) −6.65933 −0.242358
\(756\) 8.05763 + 5.94429i 0.293053 + 0.216192i
\(757\) −23.2558 + 40.2803i −0.845247 + 1.46401i 0.0401596 + 0.999193i \(0.487213\pi\)
−0.885407 + 0.464817i \(0.846120\pi\)
\(758\) −3.79098 −0.137695
\(759\) 2.55518 68.4119i 0.0927473 2.48319i
\(760\) 3.06950 + 1.77217i 0.111342 + 0.0642835i
\(761\) 24.2838 + 14.0202i 0.880286 + 0.508234i 0.870753 0.491721i \(-0.163632\pi\)
0.00953362 + 0.999955i \(0.496965\pi\)
\(762\) −1.65423 1.03927i −0.0599265 0.0376487i
\(763\) −8.08902 −0.292842
\(764\) 13.1905 22.8466i 0.477215 0.826560i
\(765\) −0.0360816 + 0.482346i −0.00130453 + 0.0174392i
\(766\) −6.32164 −0.228410
\(767\) −16.1313 + 38.0159i −0.582468 + 1.37267i
\(768\) −8.47832 16.0391i −0.305935 0.578763i
\(769\) 24.4073i 0.880148i 0.897961 + 0.440074i \(0.145048\pi\)
−0.897961 + 0.440074i \(0.854952\pi\)
\(770\) −1.54979 −0.0558505
\(771\) −11.4042 + 18.1524i −0.410712 + 0.653743i
\(772\) −42.6034 24.5971i −1.53333 0.885268i
\(773\) −36.5947 + 21.1280i −1.31622 + 0.759920i −0.983118 0.182971i \(-0.941428\pi\)
−0.333101 + 0.942891i \(0.608095\pi\)
\(774\) −3.41325 2.32644i −0.122687 0.0836222i
\(775\) 34.2667i 1.23089i