Properties

Label 819.2.c.b.64.4
Level $819$
Weight $2$
Character 819.64
Analytic conductor $6.540$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [819,2,Mod(64,819)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(819, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("819.64"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 819 = 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 819.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.53974792554\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.350464.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 4x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 91)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 64.4
Root \(1.45161 - 1.45161i\) of defining polynomial
Character \(\chi\) \(=\) 819.64
Dual form 819.2.c.b.64.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.688892i q^{2} +1.52543 q^{4} +3.21432i q^{5} -1.00000i q^{7} +2.42864i q^{8} -2.21432 q^{10} -2.68889i q^{11} +(3.59210 - 0.311108i) q^{13} +0.688892 q^{14} +1.37778 q^{16} +3.59210 q^{17} +8.54617i q^{19} +4.90321i q^{20} +1.85236 q^{22} -3.28100 q^{23} -5.33185 q^{25} +(0.214320 + 2.47457i) q^{26} -1.52543i q^{28} -2.05086 q^{29} -5.83654i q^{31} +5.80642i q^{32} +2.47457i q^{34} +3.21432 q^{35} +3.93332i q^{37} -5.88739 q^{38} -7.80642 q^{40} +0.755569i q^{41} -8.80642 q^{43} -4.10171i q^{44} -2.26025i q^{46} -1.88247i q^{47} -1.00000 q^{49} -3.67307i q^{50} +(5.47949 - 0.474572i) q^{52} -2.52543 q^{53} +8.64296 q^{55} +2.42864 q^{56} -1.41282i q^{58} -7.33185i q^{59} +9.05086 q^{61} +4.02074 q^{62} -1.24443 q^{64} +(1.00000 + 11.5462i) q^{65} -0.428639i q^{67} +5.47949 q^{68} +2.21432i q^{70} +8.98418i q^{71} +5.79060i q^{73} -2.70964 q^{74} +13.0366i q^{76} -2.68889 q^{77} -4.47949 q^{79} +4.42864i q^{80} -0.520505 q^{82} -10.8272i q^{83} +11.5462i q^{85} -6.06668i q^{86} +6.53035 q^{88} -5.36196i q^{89} +(-0.311108 - 3.59210i) q^{91} -5.00492 q^{92} +1.29682 q^{94} -27.4701 q^{95} -9.62867i q^{97} -0.688892i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 4 q^{4} + 8 q^{13} + 4 q^{14} + 8 q^{16} + 8 q^{17} + 24 q^{22} - 6 q^{23} + 8 q^{25} - 12 q^{26} + 14 q^{29} + 6 q^{35} + 4 q^{38} - 20 q^{40} - 26 q^{43} - 6 q^{49} - 20 q^{52} - 2 q^{53} + 12 q^{55}+ \cdots - 58 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/819\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(379\) \(703\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.688892i 0.487120i 0.969886 + 0.243560i \(0.0783153\pi\)
−0.969886 + 0.243560i \(0.921685\pi\)
\(3\) 0 0
\(4\) 1.52543 0.762714
\(5\) 3.21432i 1.43749i 0.695275 + 0.718744i \(0.255283\pi\)
−0.695275 + 0.718744i \(0.744717\pi\)
\(6\) 0 0
\(7\) 1.00000i 0.377964i
\(8\) 2.42864i 0.858654i
\(9\) 0 0
\(10\) −2.21432 −0.700229
\(11\) 2.68889i 0.810731i −0.914155 0.405366i \(-0.867144\pi\)
0.914155 0.405366i \(-0.132856\pi\)
\(12\) 0 0
\(13\) 3.59210 0.311108i 0.996270 0.0862858i
\(14\) 0.688892 0.184114
\(15\) 0 0
\(16\) 1.37778 0.344446
\(17\) 3.59210 0.871213 0.435607 0.900137i \(-0.356534\pi\)
0.435607 + 0.900137i \(0.356534\pi\)
\(18\) 0 0
\(19\) 8.54617i 1.96063i 0.197449 + 0.980313i \(0.436734\pi\)
−0.197449 + 0.980313i \(0.563266\pi\)
\(20\) 4.90321i 1.09639i
\(21\) 0 0
\(22\) 1.85236 0.394924
\(23\) −3.28100 −0.684135 −0.342068 0.939675i \(-0.611127\pi\)
−0.342068 + 0.939675i \(0.611127\pi\)
\(24\) 0 0
\(25\) −5.33185 −1.06637
\(26\) 0.214320 + 2.47457i 0.0420316 + 0.485304i
\(27\) 0 0
\(28\) 1.52543i 0.288279i
\(29\) −2.05086 −0.380834 −0.190417 0.981703i \(-0.560984\pi\)
−0.190417 + 0.981703i \(0.560984\pi\)
\(30\) 0 0
\(31\) 5.83654i 1.04827i −0.851634 0.524136i \(-0.824388\pi\)
0.851634 0.524136i \(-0.175612\pi\)
\(32\) 5.80642i 1.02644i
\(33\) 0 0
\(34\) 2.47457i 0.424386i
\(35\) 3.21432 0.543319
\(36\) 0 0
\(37\) 3.93332i 0.646634i 0.946291 + 0.323317i \(0.104798\pi\)
−0.946291 + 0.323317i \(0.895202\pi\)
\(38\) −5.88739 −0.955061
\(39\) 0 0
\(40\) −7.80642 −1.23430
\(41\) 0.755569i 0.118000i 0.998258 + 0.0590000i \(0.0187912\pi\)
−0.998258 + 0.0590000i \(0.981209\pi\)
\(42\) 0 0
\(43\) −8.80642 −1.34297 −0.671484 0.741019i \(-0.734343\pi\)
−0.671484 + 0.741019i \(0.734343\pi\)
\(44\) 4.10171i 0.618356i
\(45\) 0 0
\(46\) 2.26025i 0.333256i
\(47\) 1.88247i 0.274586i −0.990530 0.137293i \(-0.956160\pi\)
0.990530 0.137293i \(-0.0438402\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) 3.67307i 0.519451i
\(51\) 0 0
\(52\) 5.47949 0.474572i 0.759869 0.0658114i
\(53\) −2.52543 −0.346894 −0.173447 0.984843i \(-0.555491\pi\)
−0.173447 + 0.984843i \(0.555491\pi\)
\(54\) 0 0
\(55\) 8.64296 1.16542
\(56\) 2.42864 0.324541
\(57\) 0 0
\(58\) 1.41282i 0.185512i
\(59\) 7.33185i 0.954526i −0.878761 0.477263i \(-0.841629\pi\)
0.878761 0.477263i \(-0.158371\pi\)
\(60\) 0 0
\(61\) 9.05086 1.15884 0.579422 0.815028i \(-0.303278\pi\)
0.579422 + 0.815028i \(0.303278\pi\)
\(62\) 4.02074 0.510635
\(63\) 0 0
\(64\) −1.24443 −0.155554
\(65\) 1.00000 + 11.5462i 0.124035 + 1.43213i
\(66\) 0 0
\(67\) 0.428639i 0.0523666i −0.999657 0.0261833i \(-0.991665\pi\)
0.999657 0.0261833i \(-0.00833536\pi\)
\(68\) 5.47949 0.664486
\(69\) 0 0
\(70\) 2.21432i 0.264662i
\(71\) 8.98418i 1.06623i 0.846044 + 0.533113i \(0.178978\pi\)
−0.846044 + 0.533113i \(0.821022\pi\)
\(72\) 0 0
\(73\) 5.79060i 0.677739i 0.940833 + 0.338869i \(0.110044\pi\)
−0.940833 + 0.338869i \(0.889956\pi\)
\(74\) −2.70964 −0.314989
\(75\) 0 0
\(76\) 13.0366i 1.49540i
\(77\) −2.68889 −0.306428
\(78\) 0 0
\(79\) −4.47949 −0.503983 −0.251991 0.967730i \(-0.581085\pi\)
−0.251991 + 0.967730i \(0.581085\pi\)
\(80\) 4.42864i 0.495137i
\(81\) 0 0
\(82\) −0.520505 −0.0574802
\(83\) 10.8272i 1.18844i −0.804304 0.594218i \(-0.797462\pi\)
0.804304 0.594218i \(-0.202538\pi\)
\(84\) 0 0
\(85\) 11.5462i 1.25236i
\(86\) 6.06668i 0.654187i
\(87\) 0 0
\(88\) 6.53035 0.696138
\(89\) 5.36196i 0.568367i −0.958770 0.284183i \(-0.908278\pi\)
0.958770 0.284183i \(-0.0917225\pi\)
\(90\) 0 0
\(91\) −0.311108 3.59210i −0.0326130 0.376555i
\(92\) −5.00492 −0.521799
\(93\) 0 0
\(94\) 1.29682 0.133757
\(95\) −27.4701 −2.81838
\(96\) 0 0
\(97\) 9.62867i 0.977643i −0.872384 0.488822i \(-0.837427\pi\)
0.872384 0.488822i \(-0.162573\pi\)
\(98\) 0.688892i 0.0695886i
\(99\) 0 0
\(100\) −8.13335 −0.813335
\(101\) 13.6938 1.36259 0.681293 0.732011i \(-0.261418\pi\)
0.681293 + 0.732011i \(0.261418\pi\)
\(102\) 0 0
\(103\) −12.2953 −1.21149 −0.605745 0.795659i \(-0.707125\pi\)
−0.605745 + 0.795659i \(0.707125\pi\)
\(104\) 0.755569 + 8.72393i 0.0740896 + 0.855451i
\(105\) 0 0
\(106\) 1.73975i 0.168979i
\(107\) 18.1891 1.75841 0.879205 0.476444i \(-0.158075\pi\)
0.879205 + 0.476444i \(0.158075\pi\)
\(108\) 0 0
\(109\) 8.36196i 0.800931i −0.916312 0.400465i \(-0.868848\pi\)
0.916312 0.400465i \(-0.131152\pi\)
\(110\) 5.95407i 0.567698i
\(111\) 0 0
\(112\) 1.37778i 0.130188i
\(113\) 8.46520 0.796339 0.398170 0.917312i \(-0.369646\pi\)
0.398170 + 0.917312i \(0.369646\pi\)
\(114\) 0 0
\(115\) 10.5462i 0.983436i
\(116\) −3.12843 −0.290468
\(117\) 0 0
\(118\) 5.05086 0.464969
\(119\) 3.59210i 0.329288i
\(120\) 0 0
\(121\) 3.76986 0.342714
\(122\) 6.23506i 0.564496i
\(123\) 0 0
\(124\) 8.90321i 0.799532i
\(125\) 1.06668i 0.0954065i
\(126\) 0 0
\(127\) −4.08742 −0.362700 −0.181350 0.983419i \(-0.558047\pi\)
−0.181350 + 0.983419i \(0.558047\pi\)
\(128\) 10.7556i 0.950667i
\(129\) 0 0
\(130\) −7.95407 + 0.688892i −0.697618 + 0.0604198i
\(131\) −5.93978 −0.518961 −0.259480 0.965748i \(-0.583551\pi\)
−0.259480 + 0.965748i \(0.583551\pi\)
\(132\) 0 0
\(133\) 8.54617 0.741047
\(134\) 0.295286 0.0255089
\(135\) 0 0
\(136\) 8.72393i 0.748070i
\(137\) 16.3620i 1.39790i −0.715172 0.698948i \(-0.753652\pi\)
0.715172 0.698948i \(-0.246348\pi\)
\(138\) 0 0
\(139\) 3.03011 0.257011 0.128505 0.991709i \(-0.458982\pi\)
0.128505 + 0.991709i \(0.458982\pi\)
\(140\) 4.90321 0.414397
\(141\) 0 0
\(142\) −6.18913 −0.519380
\(143\) −0.836535 9.65878i −0.0699546 0.807708i
\(144\) 0 0
\(145\) 6.59210i 0.547444i
\(146\) −3.98910 −0.330140
\(147\) 0 0
\(148\) 6.00000i 0.493197i
\(149\) 14.5368i 1.19090i −0.803392 0.595451i \(-0.796974\pi\)
0.803392 0.595451i \(-0.203026\pi\)
\(150\) 0 0
\(151\) 19.9748i 1.62553i −0.582594 0.812764i \(-0.697962\pi\)
0.582594 0.812764i \(-0.302038\pi\)
\(152\) −20.7556 −1.68350
\(153\) 0 0
\(154\) 1.85236i 0.149267i
\(155\) 18.7605 1.50688
\(156\) 0 0
\(157\) 7.39853 0.590467 0.295233 0.955425i \(-0.404603\pi\)
0.295233 + 0.955425i \(0.404603\pi\)
\(158\) 3.08589i 0.245500i
\(159\) 0 0
\(160\) −18.6637 −1.47550
\(161\) 3.28100i 0.258579i
\(162\) 0 0
\(163\) 2.32693i 0.182259i 0.995839 + 0.0911296i \(0.0290477\pi\)
−0.995839 + 0.0911296i \(0.970952\pi\)
\(164\) 1.15257i 0.0900002i
\(165\) 0 0
\(166\) 7.45875 0.578911
\(167\) 3.42219i 0.264817i 0.991195 + 0.132408i \(0.0422710\pi\)
−0.991195 + 0.132408i \(0.957729\pi\)
\(168\) 0 0
\(169\) 12.8064 2.23506i 0.985110 0.171928i
\(170\) −7.95407 −0.610049
\(171\) 0 0
\(172\) −13.4336 −1.02430
\(173\) 8.27454 0.629102 0.314551 0.949241i \(-0.398146\pi\)
0.314551 + 0.949241i \(0.398146\pi\)
\(174\) 0 0
\(175\) 5.33185i 0.403050i
\(176\) 3.70471i 0.279253i
\(177\) 0 0
\(178\) 3.69381 0.276863
\(179\) −16.2257 −1.21277 −0.606383 0.795173i \(-0.707380\pi\)
−0.606383 + 0.795173i \(0.707380\pi\)
\(180\) 0 0
\(181\) 9.20495 0.684199 0.342099 0.939664i \(-0.388862\pi\)
0.342099 + 0.939664i \(0.388862\pi\)
\(182\) 2.47457 0.214320i 0.183428 0.0158864i
\(183\) 0 0
\(184\) 7.96836i 0.587435i
\(185\) −12.6430 −0.929529
\(186\) 0 0
\(187\) 9.65878i 0.706320i
\(188\) 2.87157i 0.209431i
\(189\) 0 0
\(190\) 18.9240i 1.37289i
\(191\) 6.66815 0.482490 0.241245 0.970464i \(-0.422444\pi\)
0.241245 + 0.970464i \(0.422444\pi\)
\(192\) 0 0
\(193\) 20.6035i 1.48307i 0.670914 + 0.741535i \(0.265902\pi\)
−0.670914 + 0.741535i \(0.734098\pi\)
\(194\) 6.63311 0.476230
\(195\) 0 0
\(196\) −1.52543 −0.108959
\(197\) 8.36842i 0.596225i −0.954531 0.298112i \(-0.903643\pi\)
0.954531 0.298112i \(-0.0963571\pi\)
\(198\) 0 0
\(199\) 0.601472 0.0426372 0.0213186 0.999773i \(-0.493214\pi\)
0.0213186 + 0.999773i \(0.493214\pi\)
\(200\) 12.9491i 0.915643i
\(201\) 0 0
\(202\) 9.43356i 0.663743i
\(203\) 2.05086i 0.143942i
\(204\) 0 0
\(205\) −2.42864 −0.169624
\(206\) 8.47013i 0.590142i
\(207\) 0 0
\(208\) 4.94914 0.428639i 0.343161 0.0297208i
\(209\) 22.9797 1.58954
\(210\) 0 0
\(211\) −1.90321 −0.131023 −0.0655113 0.997852i \(-0.520868\pi\)
−0.0655113 + 0.997852i \(0.520868\pi\)
\(212\) −3.85236 −0.264581
\(213\) 0 0
\(214\) 12.5303i 0.856557i
\(215\) 28.3067i 1.93050i
\(216\) 0 0
\(217\) −5.83654 −0.396210
\(218\) 5.76049 0.390150
\(219\) 0 0
\(220\) 13.1842 0.888879
\(221\) 12.9032 1.11753i 0.867964 0.0751733i
\(222\) 0 0
\(223\) 10.6336i 0.712078i −0.934471 0.356039i \(-0.884127\pi\)
0.934471 0.356039i \(-0.115873\pi\)
\(224\) 5.80642 0.387958
\(225\) 0 0
\(226\) 5.83161i 0.387913i
\(227\) 15.0509i 0.998960i 0.866325 + 0.499480i \(0.166476\pi\)
−0.866325 + 0.499480i \(0.833524\pi\)
\(228\) 0 0
\(229\) 6.53480i 0.431831i −0.976412 0.215916i \(-0.930726\pi\)
0.976412 0.215916i \(-0.0692736\pi\)
\(230\) 7.26517 0.479051
\(231\) 0 0
\(232\) 4.98079i 0.327005i
\(233\) −27.9590 −1.83165 −0.915827 0.401573i \(-0.868464\pi\)
−0.915827 + 0.401573i \(0.868464\pi\)
\(234\) 0 0
\(235\) 6.05086 0.394714
\(236\) 11.1842i 0.728030i
\(237\) 0 0
\(238\) 2.47457 0.160403
\(239\) 19.5812i 1.26660i −0.773905 0.633301i \(-0.781699\pi\)
0.773905 0.633301i \(-0.218301\pi\)
\(240\) 0 0
\(241\) 13.3575i 0.860433i −0.902726 0.430217i \(-0.858437\pi\)
0.902726 0.430217i \(-0.141563\pi\)
\(242\) 2.59703i 0.166943i
\(243\) 0 0
\(244\) 13.8064 0.883866
\(245\) 3.21432i 0.205355i
\(246\) 0 0
\(247\) 2.65878 + 30.6987i 0.169174 + 1.95331i
\(248\) 14.1748 0.900103
\(249\) 0 0
\(250\) 0.734825 0.0464744
\(251\) 3.29682 0.208093 0.104047 0.994572i \(-0.466821\pi\)
0.104047 + 0.994572i \(0.466821\pi\)
\(252\) 0 0
\(253\) 8.82225i 0.554650i
\(254\) 2.81579i 0.176678i
\(255\) 0 0
\(256\) −9.89829 −0.618643
\(257\) −23.6938 −1.47798 −0.738990 0.673717i \(-0.764697\pi\)
−0.738990 + 0.673717i \(0.764697\pi\)
\(258\) 0 0
\(259\) 3.93332 0.244405
\(260\) 1.52543 + 17.6128i 0.0946030 + 1.09230i
\(261\) 0 0
\(262\) 4.09187i 0.252796i
\(263\) −9.99063 −0.616049 −0.308024 0.951378i \(-0.599668\pi\)
−0.308024 + 0.951378i \(0.599668\pi\)
\(264\) 0 0
\(265\) 8.11753i 0.498656i
\(266\) 5.88739i 0.360979i
\(267\) 0 0
\(268\) 0.653858i 0.0399408i
\(269\) 18.2034 1.10988 0.554941 0.831890i \(-0.312741\pi\)
0.554941 + 0.831890i \(0.312741\pi\)
\(270\) 0 0
\(271\) 24.1748i 1.46852i −0.678870 0.734258i \(-0.737530\pi\)
0.678870 0.734258i \(-0.262470\pi\)
\(272\) 4.94914 0.300086
\(273\) 0 0
\(274\) 11.2716 0.680944
\(275\) 14.3368i 0.864540i
\(276\) 0 0
\(277\) −1.69535 −0.101863 −0.0509317 0.998702i \(-0.516219\pi\)
−0.0509317 + 0.998702i \(0.516219\pi\)
\(278\) 2.08742i 0.125195i
\(279\) 0 0
\(280\) 7.80642i 0.466523i
\(281\) 11.6479i 0.694854i −0.937707 0.347427i \(-0.887055\pi\)
0.937707 0.347427i \(-0.112945\pi\)
\(282\) 0 0
\(283\) −12.1334 −0.721253 −0.360626 0.932710i \(-0.617437\pi\)
−0.360626 + 0.932710i \(0.617437\pi\)
\(284\) 13.7047i 0.813225i
\(285\) 0 0
\(286\) 6.65386 0.576283i 0.393451 0.0340763i
\(287\) 0.755569 0.0445998
\(288\) 0 0
\(289\) −4.09679 −0.240988
\(290\) 4.54125 0.266671
\(291\) 0 0
\(292\) 8.83314i 0.516921i
\(293\) 11.4538i 0.669140i −0.942371 0.334570i \(-0.891409\pi\)
0.942371 0.334570i \(-0.108591\pi\)
\(294\) 0 0
\(295\) 23.5669 1.37212
\(296\) −9.55262 −0.555235
\(297\) 0 0
\(298\) 10.0143 0.580112
\(299\) −11.7857 + 1.02074i −0.681583 + 0.0590311i
\(300\) 0 0
\(301\) 8.80642i 0.507594i
\(302\) 13.7605 0.791827
\(303\) 0 0
\(304\) 11.7748i 0.675330i
\(305\) 29.0923i 1.66582i
\(306\) 0 0
\(307\) 3.96989i 0.226574i 0.993562 + 0.113287i \(0.0361379\pi\)
−0.993562 + 0.113287i \(0.963862\pi\)
\(308\) −4.10171 −0.233717
\(309\) 0 0
\(310\) 12.9240i 0.734031i
\(311\) 27.3481 1.55077 0.775386 0.631488i \(-0.217556\pi\)
0.775386 + 0.631488i \(0.217556\pi\)
\(312\) 0 0
\(313\) −19.1032 −1.07978 −0.539890 0.841736i \(-0.681534\pi\)
−0.539890 + 0.841736i \(0.681534\pi\)
\(314\) 5.09679i 0.287628i
\(315\) 0 0
\(316\) −6.83314 −0.384394
\(317\) 9.90813i 0.556496i 0.960509 + 0.278248i \(0.0897538\pi\)
−0.960509 + 0.278248i \(0.910246\pi\)
\(318\) 0 0
\(319\) 5.51453i 0.308754i
\(320\) 4.00000i 0.223607i
\(321\) 0 0
\(322\) −2.26025 −0.125959
\(323\) 30.6987i 1.70812i
\(324\) 0 0
\(325\) −19.1526 + 1.65878i −1.06239 + 0.0920126i
\(326\) −1.60300 −0.0887821
\(327\) 0 0
\(328\) −1.83500 −0.101321
\(329\) −1.88247 −0.103784
\(330\) 0 0
\(331\) 23.4193i 1.28724i −0.765345 0.643620i \(-0.777432\pi\)
0.765345 0.643620i \(-0.222568\pi\)
\(332\) 16.5161i 0.906437i
\(333\) 0 0
\(334\) −2.35752 −0.128998
\(335\) 1.37778 0.0752764
\(336\) 0 0
\(337\) 7.51606 0.409426 0.204713 0.978822i \(-0.434374\pi\)
0.204713 + 0.978822i \(0.434374\pi\)
\(338\) 1.53972 + 8.82225i 0.0837496 + 0.479867i
\(339\) 0 0
\(340\) 17.6128i 0.955191i
\(341\) −15.6938 −0.849868
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) 21.3876i 1.15314i
\(345\) 0 0
\(346\) 5.70027i 0.306448i
\(347\) −5.64449 −0.303012 −0.151506 0.988456i \(-0.548412\pi\)
−0.151506 + 0.988456i \(0.548412\pi\)
\(348\) 0 0
\(349\) 24.1590i 1.29320i 0.762828 + 0.646601i \(0.223810\pi\)
−0.762828 + 0.646601i \(0.776190\pi\)
\(350\) −3.67307 −0.196334
\(351\) 0 0
\(352\) 15.6128 0.832168
\(353\) 36.1289i 1.92295i 0.274896 + 0.961474i \(0.411356\pi\)
−0.274896 + 0.961474i \(0.588644\pi\)
\(354\) 0 0
\(355\) −28.8780 −1.53269
\(356\) 8.17929i 0.433501i
\(357\) 0 0
\(358\) 11.1778i 0.590763i
\(359\) 17.4128i 0.919013i −0.888174 0.459507i \(-0.848026\pi\)
0.888174 0.459507i \(-0.151974\pi\)
\(360\) 0 0
\(361\) −54.0370 −2.84405
\(362\) 6.34122i 0.333287i
\(363\) 0 0
\(364\) −0.474572 5.47949i −0.0248744 0.287204i
\(365\) −18.6128 −0.974241
\(366\) 0 0
\(367\) 2.93825 0.153375 0.0766876 0.997055i \(-0.475566\pi\)
0.0766876 + 0.997055i \(0.475566\pi\)
\(368\) −4.52051 −0.235648
\(369\) 0 0
\(370\) 8.70964i 0.452792i
\(371\) 2.52543i 0.131114i
\(372\) 0 0
\(373\) −18.7699 −0.971866 −0.485933 0.873996i \(-0.661520\pi\)
−0.485933 + 0.873996i \(0.661520\pi\)
\(374\) 6.65386 0.344063
\(375\) 0 0
\(376\) 4.57184 0.235774
\(377\) −7.36689 + 0.638037i −0.379414 + 0.0328606i
\(378\) 0 0
\(379\) 23.6894i 1.21684i −0.793615 0.608421i \(-0.791803\pi\)
0.793615 0.608421i \(-0.208197\pi\)
\(380\) −41.9037 −2.14961
\(381\) 0 0
\(382\) 4.59364i 0.235031i
\(383\) 31.6128i 1.61534i 0.589634 + 0.807671i \(0.299272\pi\)
−0.589634 + 0.807671i \(0.700728\pi\)
\(384\) 0 0
\(385\) 8.64296i 0.440486i
\(386\) −14.1936 −0.722434
\(387\) 0 0
\(388\) 14.6878i 0.745662i
\(389\) −20.0558 −1.01687 −0.508434 0.861101i \(-0.669775\pi\)
−0.508434 + 0.861101i \(0.669775\pi\)
\(390\) 0 0
\(391\) −11.7857 −0.596027
\(392\) 2.42864i 0.122665i
\(393\) 0 0
\(394\) 5.76494 0.290433
\(395\) 14.3985i 0.724469i
\(396\) 0 0
\(397\) 22.8731i 1.14797i 0.818867 + 0.573984i \(0.194603\pi\)
−0.818867 + 0.573984i \(0.805397\pi\)
\(398\) 0.414349i 0.0207695i
\(399\) 0 0
\(400\) −7.34614 −0.367307
\(401\) 5.61285i 0.280292i 0.990131 + 0.140146i \(0.0447572\pi\)
−0.990131 + 0.140146i \(0.955243\pi\)
\(402\) 0 0
\(403\) −1.81579 20.9654i −0.0904510 1.04436i
\(404\) 20.8889 1.03926
\(405\) 0 0
\(406\) −1.41282 −0.0701170
\(407\) 10.5763 0.524247
\(408\) 0 0
\(409\) 26.1175i 1.29143i 0.763579 + 0.645714i \(0.223440\pi\)
−0.763579 + 0.645714i \(0.776560\pi\)
\(410\) 1.67307i 0.0826271i
\(411\) 0 0
\(412\) −18.7556 −0.924021
\(413\) −7.33185 −0.360777
\(414\) 0 0
\(415\) 34.8020 1.70836
\(416\) 1.80642 + 20.8573i 0.0885672 + 1.02261i
\(417\) 0 0
\(418\) 15.8306i 0.774298i
\(419\) 25.2464 1.23337 0.616685 0.787210i \(-0.288475\pi\)
0.616685 + 0.787210i \(0.288475\pi\)
\(420\) 0 0
\(421\) 8.22861i 0.401038i 0.979690 + 0.200519i \(0.0642628\pi\)
−0.979690 + 0.200519i \(0.935737\pi\)
\(422\) 1.31111i 0.0638237i
\(423\) 0 0
\(424\) 6.13335i 0.297862i
\(425\) −19.1526 −0.929036
\(426\) 0 0
\(427\) 9.05086i 0.438002i
\(428\) 27.7462 1.34116
\(429\) 0 0
\(430\) 19.5002 0.940385
\(431\) 1.43801i 0.0692664i −0.999400 0.0346332i \(-0.988974\pi\)
0.999400 0.0346332i \(-0.0110263\pi\)
\(432\) 0 0
\(433\) 16.5018 0.793024 0.396512 0.918029i \(-0.370220\pi\)
0.396512 + 0.918029i \(0.370220\pi\)
\(434\) 4.02074i 0.193002i
\(435\) 0 0
\(436\) 12.7556i 0.610881i
\(437\) 28.0400i 1.34133i
\(438\) 0 0
\(439\) 10.1619 0.485003 0.242501 0.970151i \(-0.422032\pi\)
0.242501 + 0.970151i \(0.422032\pi\)
\(440\) 20.9906i 1.00069i
\(441\) 0 0
\(442\) 0.769859 + 8.88892i 0.0366185 + 0.422803i
\(443\) −3.20787 −0.152410 −0.0762052 0.997092i \(-0.524280\pi\)
−0.0762052 + 0.997092i \(0.524280\pi\)
\(444\) 0 0
\(445\) 17.2351 0.817020
\(446\) 7.32540 0.346868
\(447\) 0 0
\(448\) 1.24443i 0.0587939i
\(449\) 18.4099i 0.868817i 0.900716 + 0.434409i \(0.143043\pi\)
−0.900716 + 0.434409i \(0.856957\pi\)
\(450\) 0 0
\(451\) 2.03164 0.0956663
\(452\) 12.9131 0.607379
\(453\) 0 0
\(454\) −10.3684 −0.486614
\(455\) 11.5462 1.00000i 0.541293 0.0468807i
\(456\) 0 0
\(457\) 3.40297i 0.159184i −0.996828 0.0795922i \(-0.974638\pi\)
0.996828 0.0795922i \(-0.0253618\pi\)
\(458\) 4.50177 0.210354
\(459\) 0 0
\(460\) 16.0874i 0.750080i
\(461\) 17.5714i 0.818380i 0.912449 + 0.409190i \(0.134189\pi\)
−0.912449 + 0.409190i \(0.865811\pi\)
\(462\) 0 0
\(463\) 15.7714i 0.732959i 0.930426 + 0.366479i \(0.119437\pi\)
−0.930426 + 0.366479i \(0.880563\pi\)
\(464\) −2.82564 −0.131177
\(465\) 0 0
\(466\) 19.2607i 0.892236i
\(467\) −3.76694 −0.174313 −0.0871567 0.996195i \(-0.527778\pi\)
−0.0871567 + 0.996195i \(0.527778\pi\)
\(468\) 0 0
\(469\) −0.428639 −0.0197927
\(470\) 4.16839i 0.192273i
\(471\) 0 0
\(472\) 17.8064 0.819607
\(473\) 23.6795i 1.08879i
\(474\) 0 0
\(475\) 45.5669i 2.09075i
\(476\) 5.47949i 0.251152i
\(477\) 0 0
\(478\) 13.4893 0.616988
\(479\) 12.1032i 0.553011i 0.961012 + 0.276506i \(0.0891764\pi\)
−0.961012 + 0.276506i \(0.910824\pi\)
\(480\) 0 0
\(481\) 1.22369 + 14.1289i 0.0557954 + 0.644223i
\(482\) 9.20189 0.419135
\(483\) 0 0
\(484\) 5.75065 0.261393
\(485\) 30.9496 1.40535
\(486\) 0 0
\(487\) 17.3778i 0.787463i 0.919226 + 0.393731i \(0.128816\pi\)
−0.919226 + 0.393731i \(0.871184\pi\)
\(488\) 21.9813i 0.995045i
\(489\) 0 0
\(490\) 2.21432 0.100033
\(491\) −19.3921 −0.875152 −0.437576 0.899181i \(-0.644163\pi\)
−0.437576 + 0.899181i \(0.644163\pi\)
\(492\) 0 0
\(493\) −7.36689 −0.331788
\(494\) −21.1481 + 1.83161i −0.951499 + 0.0824082i
\(495\) 0 0
\(496\) 8.04149i 0.361073i
\(497\) 8.98418 0.402995
\(498\) 0 0
\(499\) 10.6702i 0.477662i 0.971061 + 0.238831i \(0.0767642\pi\)
−0.971061 + 0.238831i \(0.923236\pi\)
\(500\) 1.62714i 0.0727678i
\(501\) 0 0
\(502\) 2.27115i 0.101366i
\(503\) 4.27655 0.190682 0.0953410 0.995445i \(-0.469606\pi\)
0.0953410 + 0.995445i \(0.469606\pi\)
\(504\) 0 0
\(505\) 44.0163i 1.95870i
\(506\) −6.07758 −0.270181
\(507\) 0 0
\(508\) −6.23506 −0.276636
\(509\) 33.0765i 1.46609i 0.680180 + 0.733046i \(0.261902\pi\)
−0.680180 + 0.733046i \(0.738098\pi\)
\(510\) 0 0
\(511\) 5.79060 0.256161
\(512\) 14.6923i 0.649313i
\(513\) 0 0
\(514\) 16.3225i 0.719954i
\(515\) 39.5210i 1.74150i
\(516\) 0 0
\(517\) −5.06175 −0.222616
\(518\) 2.70964i 0.119055i
\(519\) 0 0
\(520\) −28.0415 + 2.42864i −1.22970 + 0.106503i
\(521\) −24.3783 −1.06803 −0.534015 0.845475i \(-0.679318\pi\)
−0.534015 + 0.845475i \(0.679318\pi\)
\(522\) 0 0
\(523\) 34.9403 1.52783 0.763915 0.645317i \(-0.223275\pi\)
0.763915 + 0.645317i \(0.223275\pi\)
\(524\) −9.06070 −0.395818
\(525\) 0 0
\(526\) 6.88247i 0.300090i
\(527\) 20.9654i 0.913269i
\(528\) 0 0
\(529\) −12.2351 −0.531959
\(530\) 5.59210 0.242905
\(531\) 0 0
\(532\) 13.0366 0.565207
\(533\) 0.235063 + 2.71408i 0.0101817 + 0.117560i
\(534\) 0 0
\(535\) 58.4657i 2.52769i
\(536\) 1.04101 0.0449648
\(537\) 0 0
\(538\) 12.5402i 0.540646i
\(539\) 2.68889i 0.115819i
\(540\) 0 0
\(541\) 30.4953i 1.31110i −0.755153 0.655548i \(-0.772438\pi\)
0.755153 0.655548i \(-0.227562\pi\)
\(542\) 16.6539 0.715344
\(543\) 0 0
\(544\) 20.8573i 0.894248i
\(545\) 26.8780 1.15133
\(546\) 0 0
\(547\) −10.0049 −0.427780 −0.213890 0.976858i \(-0.568613\pi\)
−0.213890 + 0.976858i \(0.568613\pi\)
\(548\) 24.9590i 1.06620i
\(549\) 0 0
\(550\) −9.87649 −0.421135
\(551\) 17.5270i 0.746674i
\(552\) 0 0
\(553\) 4.47949i 0.190487i
\(554\) 1.16791i 0.0496198i
\(555\) 0 0
\(556\) 4.62222 0.196026
\(557\) 14.1936i 0.601401i −0.953719 0.300701i \(-0.902780\pi\)
0.953719 0.300701i \(-0.0972205\pi\)
\(558\) 0 0
\(559\) −31.6336 + 2.73975i −1.33796 + 0.115879i
\(560\) 4.42864 0.187144
\(561\) 0 0
\(562\) 8.02413 0.338478
\(563\) −21.3590 −0.900177 −0.450088 0.892984i \(-0.648607\pi\)
−0.450088 + 0.892984i \(0.648607\pi\)
\(564\) 0 0
\(565\) 27.2099i 1.14473i
\(566\) 8.35857i 0.351337i
\(567\) 0 0
\(568\) −21.8193 −0.915519
\(569\) 34.2672 1.43656 0.718278 0.695757i \(-0.244931\pi\)
0.718278 + 0.695757i \(0.244931\pi\)
\(570\) 0 0
\(571\) 37.6494 1.57558 0.787789 0.615945i \(-0.211226\pi\)
0.787789 + 0.615945i \(0.211226\pi\)
\(572\) −1.27607 14.7338i −0.0533553 0.616050i
\(573\) 0 0
\(574\) 0.520505i 0.0217255i
\(575\) 17.4938 0.729541
\(576\) 0 0
\(577\) 28.3970i 1.18218i −0.806605 0.591091i \(-0.798697\pi\)
0.806605 0.591091i \(-0.201303\pi\)
\(578\) 2.82225i 0.117390i
\(579\) 0 0
\(580\) 10.0558i 0.417543i
\(581\) −10.8272 −0.449187
\(582\) 0 0
\(583\) 6.79060i 0.281238i
\(584\) −14.0633 −0.581943
\(585\) 0 0
\(586\) 7.89045 0.325952
\(587\) 6.23659i 0.257412i −0.991683 0.128706i \(-0.958918\pi\)
0.991683 0.128706i \(-0.0410823\pi\)
\(588\) 0 0
\(589\) 49.8800 2.05527
\(590\) 16.2351i 0.668387i
\(591\) 0 0
\(592\) 5.41927i 0.222731i
\(593\) 17.5698i 0.721506i −0.932661 0.360753i \(-0.882520\pi\)
0.932661 0.360753i \(-0.117480\pi\)
\(594\) 0 0
\(595\) 11.5462 0.473347
\(596\) 22.1748i 0.908317i
\(597\) 0 0
\(598\) −0.703182 8.11906i −0.0287553 0.332013i
\(599\) −16.9813 −0.693836 −0.346918 0.937896i \(-0.612772\pi\)
−0.346918 + 0.937896i \(0.612772\pi\)
\(600\) 0 0
\(601\) −18.7052 −0.763001 −0.381500 0.924369i \(-0.624592\pi\)
−0.381500 + 0.924369i \(0.624592\pi\)
\(602\) −6.06668 −0.247259
\(603\) 0 0
\(604\) 30.4701i 1.23981i
\(605\) 12.1175i 0.492648i
\(606\) 0 0
\(607\) −10.3575 −0.420399 −0.210199 0.977659i \(-0.567411\pi\)
−0.210199 + 0.977659i \(0.567411\pi\)
\(608\) −49.6227 −2.01247
\(609\) 0 0
\(610\) −20.0415 −0.811456
\(611\) −0.585651 6.76202i −0.0236929 0.273562i
\(612\) 0 0
\(613\) 7.02227i 0.283627i 0.989893 + 0.141814i \(0.0452933\pi\)
−0.989893 + 0.141814i \(0.954707\pi\)
\(614\) −2.73483 −0.110369
\(615\) 0 0
\(616\) 6.53035i 0.263115i
\(617\) 29.9813i 1.20700i 0.797363 + 0.603500i \(0.206228\pi\)
−0.797363 + 0.603500i \(0.793772\pi\)
\(618\) 0 0
\(619\) 0.0285802i 0.00114874i 1.00000 0.000574368i \(0.000182827\pi\)
−1.00000 0.000574368i \(0.999817\pi\)
\(620\) 28.6178 1.14932
\(621\) 0 0
\(622\) 18.8399i 0.755412i
\(623\) −5.36196 −0.214823
\(624\) 0 0
\(625\) −23.2306 −0.929225
\(626\) 13.1601i 0.525982i
\(627\) 0 0
\(628\) 11.2859 0.450357
\(629\) 14.1289i 0.563356i
\(630\) 0 0
\(631\) 12.1936i 0.485419i −0.970099 0.242709i \(-0.921964\pi\)
0.970099 0.242709i \(-0.0780361\pi\)
\(632\) 10.8791i 0.432746i
\(633\) 0 0
\(634\) −6.82564 −0.271081
\(635\) 13.1383i 0.521377i
\(636\) 0 0
\(637\) −3.59210 + 0.311108i −0.142324 + 0.0123265i
\(638\) −3.79892 −0.150401
\(639\) 0 0
\(640\) −34.5718 −1.36657
\(641\) −2.82516 −0.111587 −0.0557935 0.998442i \(-0.517769\pi\)
−0.0557935 + 0.998442i \(0.517769\pi\)
\(642\) 0 0
\(643\) 37.7275i 1.48783i 0.668276 + 0.743913i \(0.267032\pi\)
−0.668276 + 0.743913i \(0.732968\pi\)
\(644\) 5.00492i 0.197222i
\(645\) 0 0
\(646\) −21.1481 −0.832062
\(647\) 12.3664 0.486174 0.243087 0.970005i \(-0.421840\pi\)
0.243087 + 0.970005i \(0.421840\pi\)
\(648\) 0 0
\(649\) −19.7146 −0.773864
\(650\) −1.14272 13.1941i −0.0448212 0.517513i
\(651\) 0 0
\(652\) 3.54956i 0.139012i
\(653\) 33.0005 1.29141 0.645704 0.763588i \(-0.276564\pi\)
0.645704 + 0.763588i \(0.276564\pi\)
\(654\) 0 0
\(655\) 19.0923i 0.746000i
\(656\) 1.04101i 0.0406446i
\(657\) 0 0
\(658\) 1.29682i 0.0505552i
\(659\) −32.8118 −1.27817 −0.639084 0.769137i \(-0.720686\pi\)
−0.639084 + 0.769137i \(0.720686\pi\)
\(660\) 0 0
\(661\) 14.7067i 0.572025i −0.958226 0.286013i \(-0.907670\pi\)
0.958226 0.286013i \(-0.0923299\pi\)
\(662\) 16.1334 0.627041
\(663\) 0 0
\(664\) 26.2953 1.02046
\(665\) 27.4701i 1.06525i
\(666\) 0 0
\(667\) 6.72885 0.260542
\(668\) 5.22030i 0.201979i
\(669\) 0 0
\(670\) 0.949145i 0.0366687i
\(671\) 24.3368i 0.939511i
\(672\) 0 0
\(673\) −21.2908 −0.820702 −0.410351 0.911928i \(-0.634594\pi\)
−0.410351 + 0.911928i \(0.634594\pi\)
\(674\) 5.17775i 0.199440i
\(675\) 0 0
\(676\) 19.5353 3.40943i 0.751357 0.131132i
\(677\) 3.07160 0.118051 0.0590256 0.998256i \(-0.481201\pi\)
0.0590256 + 0.998256i \(0.481201\pi\)
\(678\) 0 0
\(679\) −9.62867 −0.369514
\(680\) −28.0415 −1.07534
\(681\) 0 0
\(682\) 10.8113i 0.413988i
\(683\) 24.7971i 0.948833i 0.880301 + 0.474416i \(0.157341\pi\)
−0.880301 + 0.474416i \(0.842659\pi\)
\(684\) 0 0
\(685\) 52.5926 2.00946
\(686\) −0.688892 −0.0263020
\(687\) 0 0
\(688\) −12.1334 −0.462580
\(689\) −9.07160 + 0.785680i −0.345600 + 0.0299320i
\(690\) 0 0
\(691\) 27.0953i 1.03075i 0.856964 + 0.515376i \(0.172348\pi\)
−0.856964 + 0.515376i \(0.827652\pi\)
\(692\) 12.6222 0.479825
\(693\) 0 0
\(694\) 3.88845i 0.147603i
\(695\) 9.73975i 0.369450i
\(696\) 0 0
\(697\) 2.71408i 0.102803i
\(698\) −16.6430 −0.629945
\(699\) 0 0
\(700\) 8.13335i 0.307412i
\(701\) 13.5205 0.510662 0.255331 0.966854i \(-0.417815\pi\)
0.255331 + 0.966854i \(0.417815\pi\)
\(702\) 0 0
\(703\) −33.6149 −1.26781
\(704\) 3.34614i 0.126112i
\(705\) 0 0
\(706\) −24.8889 −0.936707
\(707\) 13.6938i 0.515009i
\(708\) 0 0
\(709\) 50.9753i 1.91442i −0.289399 0.957209i \(-0.593455\pi\)
0.289399 0.957209i \(-0.406545\pi\)
\(710\) 19.8938i 0.746603i
\(711\) 0 0
\(712\) 13.0223 0.488030
\(713\) 19.1497i 0.717160i
\(714\) 0 0
\(715\) 31.0464 2.68889i 1.16107 0.100559i
\(716\) −24.7511 −0.924993
\(717\) 0 0
\(718\) 11.9956 0.447670
\(719\) 41.5417 1.54924 0.774622 0.632424i \(-0.217940\pi\)
0.774622 + 0.632424i \(0.217940\pi\)
\(720\) 0 0
\(721\) 12.2953i 0.457900i
\(722\) 37.2257i 1.38540i
\(723\) 0 0
\(724\) 14.0415 0.521848
\(725\) 10.9349 0.406110
\(726\) 0 0
\(727\) 20.8988 0.775092 0.387546 0.921850i \(-0.373323\pi\)
0.387546 + 0.921850i \(0.373323\pi\)
\(728\) 8.72393 0.755569i 0.323330 0.0280032i
\(729\) 0 0
\(730\) 12.8222i 0.474573i
\(731\) −31.6336 −1.17001
\(732\) 0 0
\(733\) 19.3575i 0.714986i −0.933916 0.357493i \(-0.883632\pi\)
0.933916 0.357493i \(-0.116368\pi\)
\(734\) 2.02413i 0.0747122i
\(735\) 0 0
\(736\) 19.0509i 0.702224i
\(737\) −1.15257 −0.0424553
\(738\) 0 0
\(739\) 1.31111i 0.0482299i −0.999709 0.0241149i \(-0.992323\pi\)
0.999709 0.0241149i \(-0.00767677\pi\)
\(740\) −19.2859 −0.708964
\(741\) 0 0
\(742\) −1.73975 −0.0638681
\(743\) 21.5210i 0.789528i −0.918783 0.394764i \(-0.870826\pi\)
0.918783 0.394764i \(-0.129174\pi\)
\(744\) 0 0
\(745\) 46.7259 1.71191
\(746\) 12.9304i 0.473416i
\(747\) 0 0
\(748\) 14.7338i 0.538720i
\(749\) 18.1891i 0.664616i
\(750\) 0 0
\(751\) 16.3176 0.595436 0.297718 0.954654i \(-0.403774\pi\)
0.297718 + 0.954654i \(0.403774\pi\)
\(752\) 2.59364i 0.0945802i
\(753\) 0 0
\(754\) −0.439539 5.07499i −0.0160071 0.184820i
\(755\) 64.2054 2.33667
\(756\) 0 0
\(757\) −18.7462 −0.681342 −0.340671 0.940183i \(-0.610654\pi\)
−0.340671 + 0.940183i \(0.610654\pi\)
\(758\) 16.3194 0.592748
\(759\) 0 0
\(760\) 66.7150i 2.42001i
\(761\) 10.2968i 0.373259i 0.982430 + 0.186630i \(0.0597564\pi\)
−0.982430 + 0.186630i \(0.940244\pi\)
\(762\) 0 0
\(763\) −8.36196 −0.302723
\(764\) 10.1718 0.368002
\(765\) 0 0
\(766\) −21.7778 −0.786865
\(767\) −2.28100 26.3368i −0.0823620 0.950966i
\(768\) 0 0
\(769\) 9.36641i 0.337761i −0.985637 0.168881i \(-0.945985\pi\)
0.985637 0.168881i \(-0.0540153\pi\)
\(770\) 5.95407 0.214570
\(771\) 0 0
\(772\) 31.4291i 1.13116i
\(773\) 3.71456i 0.133603i −0.997766 0.0668017i \(-0.978721\pi\)
0.997766 0.0668017i \(-0.0212795\pi\)
\(774\) 0 0
\(775\) 31.1195i 1.11785i
\(776\) 23.3846 0.839457
\(777\) 0 0
\(778\) 13.8163i 0.495337i
\(779\) −6.45722 −0.231354
\(780\) 0 0
\(781\) 24.1575 0.864423
\(782\) 8.11906i 0.290337i
\(783\) 0 0
\(784\) −1.37778 −0.0492066
\(785\) 23.7812i 0.848789i
\(786\) 0 0
\(787\) 6.23659i 0.222311i 0.993803 + 0.111155i \(0.0354551\pi\)
−0.993803 + 0.111155i \(0.964545\pi\)
\(788\) 12.7654i 0.454749i
\(789\) 0 0
\(790\) 9.91903 0.352903
\(791\) 8.46520i 0.300988i
\(792\) 0 0
\(793\) 32.5116 2.81579i 1.15452 0.0999917i
\(794\) −15.7571 −0.559199
\(795\) 0 0
\(796\) 0.917502 0.0325200
\(797\) −40.0701 −1.41935 −0.709677 0.704527i \(-0.751159\pi\)
−0.709677 + 0.704527i \(0.751159\pi\)
\(798\) 0 0
\(799\) 6.76202i 0.239223i
\(800\) 30.9590i 1.09457i
\(801\) 0 0
\(802\) −3.86665 −0.136536
\(803\) 15.5703 0.549464
\(804\) 0 0
\(805\) −10.5462 −0.371704
\(806\) 14.4429 1.25088i 0.508730 0.0440605i
\(807\) 0 0
\(808\) 33.2573i 1.16999i
\(809\) 2.57136 0.0904042 0.0452021 0.998978i \(-0.485607\pi\)
0.0452021 + 0.998978i \(0.485607\pi\)
\(810\) 0 0
\(811\) 28.3654i 0.996042i 0.867165 + 0.498021i \(0.165940\pi\)
−0.867165 + 0.498021i \(0.834060\pi\)
\(812\) 3.12843i 0.109786i
\(813\) 0 0
\(814\) 7.28592i 0.255371i
\(815\) −7.47949 −0.261995
\(816\) 0 0
\(817\) 75.2612i 2.63306i
\(818\) −17.9922 −0.629081
\(819\) 0 0
\(820\) −3.70471 −0.129374
\(821\) 31.7846i 1.10929i −0.832087 0.554646i \(-0.812854\pi\)
0.832087 0.554646i \(-0.187146\pi\)
\(822\) 0 0
\(823\) −30.9131 −1.07756 −0.538781 0.842446i \(-0.681115\pi\)
−0.538781 + 0.842446i \(0.681115\pi\)
\(824\) 29.8608i 1.04025i
\(825\) 0 0
\(826\) 5.05086i 0.175742i
\(827\) 49.7560i 1.73019i −0.501610 0.865094i \(-0.667259\pi\)
0.501610 0.865094i \(-0.332741\pi\)
\(828\) 0 0
\(829\) 19.9190 0.691817 0.345908 0.938268i \(-0.387571\pi\)
0.345908 + 0.938268i \(0.387571\pi\)
\(830\) 23.9748i 0.832178i
\(831\) 0 0
\(832\) −4.47013 + 0.387152i −0.154974 + 0.0134221i
\(833\) −3.59210 −0.124459
\(834\) 0 0
\(835\) −11.0000 −0.380671
\(836\) 35.0539 1.21237
\(837\) 0 0
\(838\) 17.3921i 0.600799i
\(839\) 11.5625i 0.399181i −0.979879 0.199590i \(-0.936039\pi\)
0.979879 0.199590i \(-0.0639611\pi\)
\(840\) 0 0
\(841\) −24.7940 −0.854965
\(842\) −5.66862 −0.195354
\(843\) 0 0
\(844\) −2.90321 −0.0999327
\(845\) 7.18421 + 41.1639i 0.247144 + 1.41608i
\(846\) 0 0
\(847\) 3.76986i 0.129534i
\(848\) −3.47949 −0.119486
\(849\) 0 0
\(850\) 13.1941i 0.452552i
\(851\) 12.9052i 0.442385i
\(852\) 0 0
\(853\) 1.74467i 0.0597363i 0.999554 + 0.0298682i \(0.00950875\pi\)
−0.999554 + 0.0298682i \(0.990491\pi\)
\(854\) 6.23506 0.213359
\(855\) 0 0
\(856\) 44.1748i 1.50986i
\(857\) −42.3368 −1.44620 −0.723098 0.690745i \(-0.757283\pi\)
−0.723098 + 0.690745i \(0.757283\pi\)
\(858\) 0 0
\(859\) −5.37778 −0.183488 −0.0917438 0.995783i \(-0.529244\pi\)
−0.0917438 + 0.995783i \(0.529244\pi\)
\(860\) 43.1798i 1.47242i
\(861\) 0 0
\(862\) 0.990632 0.0337411
\(863\) 15.4291i 0.525213i 0.964903 + 0.262607i \(0.0845821\pi\)
−0.964903 + 0.262607i \(0.915418\pi\)
\(864\) 0 0
\(865\) 26.5970i 0.904326i
\(866\) 11.3679i 0.386298i
\(867\) 0 0
\(868\) −8.90321 −0.302195
\(869\) 12.0449i 0.408595i
\(870\) 0 0
\(871\) −0.133353 1.53972i −0.00451850 0.0521713i
\(872\) 20.3082 0.687722
\(873\) 0 0
\(874\) 19.3165 0.653391
\(875\) −1.06668 −0.0360602
\(876\) 0 0
\(877\) 38.5181i 1.30066i −0.759651 0.650331i \(-0.774630\pi\)
0.759651 0.650331i \(-0.225370\pi\)
\(878\) 7.00048i 0.236255i
\(879\) 0 0
\(880\) 11.9081 0.401423
\(881\) −41.7373 −1.40617 −0.703083 0.711108i \(-0.748194\pi\)
−0.703083 + 0.711108i \(0.748194\pi\)
\(882\) 0 0
\(883\) −52.8439 −1.77834 −0.889170 0.457577i \(-0.848717\pi\)
−0.889170 + 0.457577i \(0.848717\pi\)
\(884\) 19.6829 1.70471i 0.662008 0.0573357i
\(885\) 0 0
\(886\) 2.20987i 0.0742422i
\(887\) −8.99063 −0.301876 −0.150938 0.988543i \(-0.548229\pi\)
−0.150938 + 0.988543i \(0.548229\pi\)
\(888\) 0 0
\(889\) 4.08742i 0.137088i
\(890\) 11.8731i 0.397987i
\(891\) 0 0
\(892\) 16.2208i 0.543112i
\(893\) 16.0879 0.538361
\(894\) 0 0
\(895\) 52.1546i 1.74334i
\(896\) 10.7556 0.359318
\(897\) 0 0
\(898\) −12.6824 −0.423218
\(899\) 11.9699i 0.399218i
\(900\) 0 0
\(901\) −9.07160 −0.302219
\(902\) 1.39958i 0.0466010i
\(903\) 0 0
\(904\) 20.5589i 0.683780i
\(905\) 29.5877i 0.983527i
\(906\) 0 0
\(907\) 20.7003 0.687341 0.343671 0.939090i \(-0.388330\pi\)
0.343671 + 0.939090i \(0.388330\pi\)
\(908\) 22.9590i 0.761921i
\(909\) 0 0
\(910\) 0.688892 + 7.95407i 0.0228366 + 0.263675i
\(911\) −29.8988 −0.990590 −0.495295 0.868725i \(-0.664940\pi\)
−0.495295 + 0.868725i \(0.664940\pi\)
\(912\) 0 0
\(913\) −29.1131 −0.963503
\(914\) 2.34428 0.0775420
\(915\) 0 0
\(916\) 9.96836i 0.329364i
\(917\) 5.93978i 0.196149i
\(918\) 0 0
\(919\) 38.5847 1.27279 0.636397 0.771362i \(-0.280424\pi\)
0.636397 + 0.771362i \(0.280424\pi\)
\(920\) 25.6128 0.844431
\(921\) 0 0
\(922\) −12.1048 −0.398649
\(923\) 2.79505 + 32.2721i 0.0920001 + 1.06225i
\(924\) 0 0
\(925\) 20.9719i 0.689552i
\(926\) −10.8648 −0.357039
\(927\) 0 0
\(928\) 11.9081i 0.390904i
\(929\) 3.25581i 0.106820i 0.998573 + 0.0534098i \(0.0170090\pi\)
−0.998573 + 0.0534098i \(0.982991\pi\)
\(930\) 0 0
\(931\) 8.54617i 0.280089i
\(932\) −42.6494 −1.39703
\(933\) 0 0
\(934\) 2.59502i 0.0849116i
\(935\) 31.0464 1.01533
\(936\) 0 0
\(937\) −11.6840 −0.381699 −0.190849 0.981619i \(-0.561124\pi\)
−0.190849 + 0.981619i \(0.561124\pi\)
\(938\) 0.295286i 0.00964144i
\(939\) 0 0
\(940\) 9.23014 0.301054
\(941\) 41.9699i 1.36818i −0.729398 0.684090i \(-0.760200\pi\)
0.729398 0.684090i \(-0.239800\pi\)
\(942\) 0 0
\(943\) 2.47902i 0.0807279i
\(944\) 10.1017i 0.328783i
\(945\) 0 0
\(946\) −16.3126 −0.530370
\(947\) 20.3555i 0.661465i 0.943725 + 0.330733i \(0.107296\pi\)
−0.943725 + 0.330733i \(0.892704\pi\)
\(948\) 0 0
\(949\) 1.80150 + 20.8004i 0.0584792 + 0.675211i
\(950\) 31.3907 1.01845
\(951\) 0 0
\(952\) 8.72393 0.282744
\(953\) −30.5496 −0.989597 −0.494799 0.869008i \(-0.664758\pi\)
−0.494799 + 0.869008i \(0.664758\pi\)
\(954\) 0 0
\(955\) 21.4336i 0.693574i
\(956\) 29.8697i 0.966055i
\(957\) 0 0
\(958\) −8.33783 −0.269383
\(959\) −16.3620 −0.528355
\(960\) 0 0
\(961\) −3.06515 −0.0988757
\(962\) −9.73329 + 0.842989i −0.313814 + 0.0271791i
\(963\) 0 0
\(964\) 20.3759i 0.656264i
\(965\) −66.2262 −2.13190
\(966\) 0 0
\(967\) 54.4548i 1.75115i −0.483084 0.875574i \(-0.660484\pi\)
0.483084 0.875574i \(-0.339516\pi\)
\(968\) 9.15563i 0.294273i
\(969\) 0 0
\(970\) 21.3210i 0.684575i
\(971\) 54.6035 1.75231 0.876155 0.482030i \(-0.160101\pi\)
0.876155 + 0.482030i \(0.160101\pi\)
\(972\) 0 0
\(973\) 3.03011i 0.0971409i
\(974\) −11.9714 −0.383589
\(975\) 0 0
\(976\) 12.4701 0.399159
\(977\) 32.6474i 1.04448i 0.852798 + 0.522242i \(0.174904\pi\)
−0.852798 + 0.522242i \(0.825096\pi\)
\(978\) 0 0
\(979\) −14.4177 −0.460793
\(980\) 4.90321i 0.156627i
\(981\) 0 0
\(982\) 13.3590i 0.426304i
\(983\) 27.5052i 0.877278i 0.898663 + 0.438639i \(0.144539\pi\)
−0.898663 + 0.438639i \(0.855461\pi\)
\(984\) 0 0
\(985\) 26.8988 0.857066
\(986\) 5.07499i 0.161621i
\(987\) 0 0
\(988\) 4.05578 + 46.8287i 0.129031 + 1.48982i
\(989\) 28.8938 0.918771
\(990\) 0 0
\(991\) −6.29390 −0.199932 −0.0999662 0.994991i \(-0.531873\pi\)
−0.0999662 + 0.994991i \(0.531873\pi\)
\(992\) 33.8894 1.07599
\(993\) 0 0
\(994\) 6.18913i 0.196307i
\(995\) 1.93332i 0.0612905i
\(996\) 0 0
\(997\) −20.8702 −0.660965 −0.330483 0.943812i \(-0.607212\pi\)
−0.330483 + 0.943812i \(0.607212\pi\)
\(998\) −7.35059 −0.232679
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 819.2.c.b.64.4 6
3.2 odd 2 91.2.c.a.64.3 6
12.11 even 2 1456.2.k.c.337.5 6
13.12 even 2 inner 819.2.c.b.64.3 6
21.2 odd 6 637.2.r.e.116.3 12
21.5 even 6 637.2.r.d.116.3 12
21.11 odd 6 637.2.r.e.324.4 12
21.17 even 6 637.2.r.d.324.4 12
21.20 even 2 637.2.c.d.246.3 6
39.5 even 4 1183.2.a.h.1.2 3
39.8 even 4 1183.2.a.j.1.2 3
39.38 odd 2 91.2.c.a.64.4 yes 6
156.155 even 2 1456.2.k.c.337.6 6
273.38 even 6 637.2.r.d.324.3 12
273.83 odd 4 8281.2.a.be.1.2 3
273.116 odd 6 637.2.r.e.324.3 12
273.125 odd 4 8281.2.a.bi.1.2 3
273.194 even 6 637.2.r.d.116.4 12
273.233 odd 6 637.2.r.e.116.4 12
273.272 even 2 637.2.c.d.246.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
91.2.c.a.64.3 6 3.2 odd 2
91.2.c.a.64.4 yes 6 39.38 odd 2
637.2.c.d.246.3 6 21.20 even 2
637.2.c.d.246.4 6 273.272 even 2
637.2.r.d.116.3 12 21.5 even 6
637.2.r.d.116.4 12 273.194 even 6
637.2.r.d.324.3 12 273.38 even 6
637.2.r.d.324.4 12 21.17 even 6
637.2.r.e.116.3 12 21.2 odd 6
637.2.r.e.116.4 12 273.233 odd 6
637.2.r.e.324.3 12 273.116 odd 6
637.2.r.e.324.4 12 21.11 odd 6
819.2.c.b.64.3 6 13.12 even 2 inner
819.2.c.b.64.4 6 1.1 even 1 trivial
1183.2.a.h.1.2 3 39.5 even 4
1183.2.a.j.1.2 3 39.8 even 4
1456.2.k.c.337.5 6 12.11 even 2
1456.2.k.c.337.6 6 156.155 even 2
8281.2.a.be.1.2 3 273.83 odd 4
8281.2.a.bi.1.2 3 273.125 odd 4