Properties

Label 819.2.bm.a
Level $819$
Weight $2$
Character orbit 819.bm
Analytic conductor $6.540$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 819 = 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 819.bm (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.53974792554\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 91)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -1 + 2 \zeta_{6} ) q^{2} - q^{4} + ( -2 + \zeta_{6} ) q^{5} + ( -3 + 2 \zeta_{6} ) q^{7} + ( -1 + 2 \zeta_{6} ) q^{8} +O(q^{10})\) \( q + ( -1 + 2 \zeta_{6} ) q^{2} - q^{4} + ( -2 + \zeta_{6} ) q^{5} + ( -3 + 2 \zeta_{6} ) q^{7} + ( -1 + 2 \zeta_{6} ) q^{8} -3 \zeta_{6} q^{10} + ( 6 - 3 \zeta_{6} ) q^{11} + ( -3 + 4 \zeta_{6} ) q^{13} + ( -1 - 4 \zeta_{6} ) q^{14} -5 q^{16} -6 q^{17} + ( -1 - \zeta_{6} ) q^{19} + ( 2 - \zeta_{6} ) q^{20} + 9 \zeta_{6} q^{22} + ( -2 + 2 \zeta_{6} ) q^{25} + ( -5 - 2 \zeta_{6} ) q^{26} + ( 3 - 2 \zeta_{6} ) q^{28} + ( 3 - 3 \zeta_{6} ) q^{29} + ( -1 - \zeta_{6} ) q^{31} + ( 3 - 6 \zeta_{6} ) q^{32} + ( 6 - 12 \zeta_{6} ) q^{34} + ( 4 - 5 \zeta_{6} ) q^{35} + ( 3 - 3 \zeta_{6} ) q^{38} -3 \zeta_{6} q^{40} + ( 3 + 3 \zeta_{6} ) q^{41} -11 \zeta_{6} q^{43} + ( -6 + 3 \zeta_{6} ) q^{44} + ( -10 + 5 \zeta_{6} ) q^{47} + ( 5 - 8 \zeta_{6} ) q^{49} + ( -2 - 2 \zeta_{6} ) q^{50} + ( 3 - 4 \zeta_{6} ) q^{52} + ( -9 + 9 \zeta_{6} ) q^{53} + ( -9 + 9 \zeta_{6} ) q^{55} + ( -1 - 4 \zeta_{6} ) q^{56} + ( 3 + 3 \zeta_{6} ) q^{58} + ( 2 - 4 \zeta_{6} ) q^{59} + ( -7 + 7 \zeta_{6} ) q^{61} + ( 3 - 3 \zeta_{6} ) q^{62} - q^{64} + ( 2 - 7 \zeta_{6} ) q^{65} + ( 10 - 5 \zeta_{6} ) q^{67} + 6 q^{68} + ( 6 + 3 \zeta_{6} ) q^{70} + ( -2 + \zeta_{6} ) q^{71} + ( 5 + 5 \zeta_{6} ) q^{73} + ( 1 + \zeta_{6} ) q^{76} + ( -12 + 15 \zeta_{6} ) q^{77} + 5 \zeta_{6} q^{79} + ( 10 - 5 \zeta_{6} ) q^{80} + ( -9 + 9 \zeta_{6} ) q^{82} + ( -2 + 4 \zeta_{6} ) q^{83} + ( 12 - 6 \zeta_{6} ) q^{85} + ( 22 - 11 \zeta_{6} ) q^{86} + 9 \zeta_{6} q^{88} + ( -4 + 8 \zeta_{6} ) q^{89} + ( 1 - 10 \zeta_{6} ) q^{91} -15 \zeta_{6} q^{94} + 3 q^{95} + ( -6 + 3 \zeta_{6} ) q^{97} + ( 11 + 2 \zeta_{6} ) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 2q^{4} - 3q^{5} - 4q^{7} + O(q^{10}) \) \( 2q - 2q^{4} - 3q^{5} - 4q^{7} - 3q^{10} + 9q^{11} - 2q^{13} - 6q^{14} - 10q^{16} - 12q^{17} - 3q^{19} + 3q^{20} + 9q^{22} - 2q^{25} - 12q^{26} + 4q^{28} + 3q^{29} - 3q^{31} + 3q^{35} + 3q^{38} - 3q^{40} + 9q^{41} - 11q^{43} - 9q^{44} - 15q^{47} + 2q^{49} - 6q^{50} + 2q^{52} - 9q^{53} - 9q^{55} - 6q^{56} + 9q^{58} - 7q^{61} + 3q^{62} - 2q^{64} - 3q^{65} + 15q^{67} + 12q^{68} + 15q^{70} - 3q^{71} + 15q^{73} + 3q^{76} - 9q^{77} + 5q^{79} + 15q^{80} - 9q^{82} + 18q^{85} + 33q^{86} + 9q^{88} - 8q^{91} - 15q^{94} + 6q^{95} - 9q^{97} + 24q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/819\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(379\) \(703\)
\(\chi(n)\) \(1\) \(\zeta_{6}\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
478.1
0.500000 0.866025i
0.500000 + 0.866025i
1.73205i 0 −1.00000 −1.50000 0.866025i 0 −2.00000 1.73205i 1.73205i 0 −1.50000 + 2.59808i
550.1 1.73205i 0 −1.00000 −1.50000 + 0.866025i 0 −2.00000 + 1.73205i 1.73205i 0 −1.50000 2.59808i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
91.k even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 819.2.bm.a 2
3.b odd 2 1 91.2.k.a 2
7.c even 3 1 819.2.do.c 2
13.e even 6 1 819.2.do.c 2
21.c even 2 1 637.2.k.b 2
21.g even 6 1 637.2.q.b 2
21.g even 6 1 637.2.u.a 2
21.h odd 6 1 91.2.u.a yes 2
21.h odd 6 1 637.2.q.c 2
39.h odd 6 1 91.2.u.a yes 2
39.k even 12 2 1183.2.e.e 4
91.k even 6 1 inner 819.2.bm.a 2
273.u even 6 1 637.2.u.a 2
273.x odd 6 1 637.2.q.c 2
273.y even 6 1 637.2.q.b 2
273.bp odd 6 1 91.2.k.a 2
273.br even 6 1 637.2.k.b 2
273.bs odd 12 2 8281.2.a.w 2
273.bv even 12 2 8281.2.a.s 2
273.bw even 12 2 1183.2.e.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
91.2.k.a 2 3.b odd 2 1
91.2.k.a 2 273.bp odd 6 1
91.2.u.a yes 2 21.h odd 6 1
91.2.u.a yes 2 39.h odd 6 1
637.2.k.b 2 21.c even 2 1
637.2.k.b 2 273.br even 6 1
637.2.q.b 2 21.g even 6 1
637.2.q.b 2 273.y even 6 1
637.2.q.c 2 21.h odd 6 1
637.2.q.c 2 273.x odd 6 1
637.2.u.a 2 21.g even 6 1
637.2.u.a 2 273.u even 6 1
819.2.bm.a 2 1.a even 1 1 trivial
819.2.bm.a 2 91.k even 6 1 inner
819.2.do.c 2 7.c even 3 1
819.2.do.c 2 13.e even 6 1
1183.2.e.e 4 39.k even 12 2
1183.2.e.e 4 273.bw even 12 2
8281.2.a.s 2 273.bv even 12 2
8281.2.a.w 2 273.bs odd 12 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(819, [\chi])\):

\( T_{2}^{2} + 3 \)
\( T_{5}^{2} + 3 T_{5} + 3 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 3 + T^{2} \)
$3$ \( T^{2} \)
$5$ \( 3 + 3 T + T^{2} \)
$7$ \( 7 + 4 T + T^{2} \)
$11$ \( 27 - 9 T + T^{2} \)
$13$ \( 13 + 2 T + T^{2} \)
$17$ \( ( 6 + T )^{2} \)
$19$ \( 3 + 3 T + T^{2} \)
$23$ \( T^{2} \)
$29$ \( 9 - 3 T + T^{2} \)
$31$ \( 3 + 3 T + T^{2} \)
$37$ \( T^{2} \)
$41$ \( 27 - 9 T + T^{2} \)
$43$ \( 121 + 11 T + T^{2} \)
$47$ \( 75 + 15 T + T^{2} \)
$53$ \( 81 + 9 T + T^{2} \)
$59$ \( 12 + T^{2} \)
$61$ \( 49 + 7 T + T^{2} \)
$67$ \( 75 - 15 T + T^{2} \)
$71$ \( 3 + 3 T + T^{2} \)
$73$ \( 75 - 15 T + T^{2} \)
$79$ \( 25 - 5 T + T^{2} \)
$83$ \( 12 + T^{2} \)
$89$ \( 48 + T^{2} \)
$97$ \( 27 + 9 T + T^{2} \)
show more
show less