Properties

Label 816.4.a.s.1.1
Level $816$
Weight $4$
Character 816.1
Self dual yes
Analytic conductor $48.146$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [816,4,Mod(1,816)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(816, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("816.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 816 = 2^{4} \cdot 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 816.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.1455585647\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.5912.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 14x - 10 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 51)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-2.75985\) of defining polynomial
Character \(\chi\) \(=\) 816.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{3} -7.65616 q^{5} +31.5852 q^{7} +9.00000 q^{9} +7.18910 q^{11} +84.3331 q^{13} +22.9685 q^{15} +17.0000 q^{17} +37.0838 q^{19} -94.7557 q^{21} -150.218 q^{23} -66.3832 q^{25} -27.0000 q^{27} -11.5846 q^{29} +53.2865 q^{31} -21.5673 q^{33} -241.822 q^{35} -99.2134 q^{37} -252.999 q^{39} +118.249 q^{41} +456.016 q^{43} -68.9054 q^{45} -571.014 q^{47} +654.627 q^{49} -51.0000 q^{51} +462.867 q^{53} -55.0409 q^{55} -111.251 q^{57} -48.0674 q^{59} +59.5236 q^{61} +284.267 q^{63} -645.668 q^{65} +740.787 q^{67} +450.653 q^{69} +930.437 q^{71} -697.419 q^{73} +199.150 q^{75} +227.070 q^{77} -1036.04 q^{79} +81.0000 q^{81} +22.2043 q^{83} -130.155 q^{85} +34.7537 q^{87} -369.726 q^{89} +2663.68 q^{91} -159.860 q^{93} -283.920 q^{95} +1139.56 q^{97} +64.7019 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 9 q^{3} + 8 q^{5} + 8 q^{7} + 27 q^{9} - 34 q^{11} + 36 q^{13} - 24 q^{15} + 51 q^{17} + 142 q^{19} - 24 q^{21} - 110 q^{23} - 193 q^{25} - 81 q^{27} + 90 q^{29} + 148 q^{31} + 102 q^{33} - 416 q^{35}+ \cdots - 306 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.00000 −0.577350
\(4\) 0 0
\(5\) −7.65616 −0.684788 −0.342394 0.939557i \(-0.611238\pi\)
−0.342394 + 0.939557i \(0.611238\pi\)
\(6\) 0 0
\(7\) 31.5852 1.70544 0.852721 0.522366i \(-0.174951\pi\)
0.852721 + 0.522366i \(0.174951\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) 7.18910 0.197054 0.0985271 0.995134i \(-0.468587\pi\)
0.0985271 + 0.995134i \(0.468587\pi\)
\(12\) 0 0
\(13\) 84.3331 1.79921 0.899607 0.436700i \(-0.143853\pi\)
0.899607 + 0.436700i \(0.143853\pi\)
\(14\) 0 0
\(15\) 22.9685 0.395362
\(16\) 0 0
\(17\) 17.0000 0.242536
\(18\) 0 0
\(19\) 37.0838 0.447769 0.223885 0.974616i \(-0.428126\pi\)
0.223885 + 0.974616i \(0.428126\pi\)
\(20\) 0 0
\(21\) −94.7557 −0.984638
\(22\) 0 0
\(23\) −150.218 −1.36185 −0.680925 0.732353i \(-0.738422\pi\)
−0.680925 + 0.732353i \(0.738422\pi\)
\(24\) 0 0
\(25\) −66.3832 −0.531066
\(26\) 0 0
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) −11.5846 −0.0741792 −0.0370896 0.999312i \(-0.511809\pi\)
−0.0370896 + 0.999312i \(0.511809\pi\)
\(30\) 0 0
\(31\) 53.2865 0.308727 0.154364 0.988014i \(-0.450667\pi\)
0.154364 + 0.988014i \(0.450667\pi\)
\(32\) 0 0
\(33\) −21.5673 −0.113769
\(34\) 0 0
\(35\) −241.822 −1.16787
\(36\) 0 0
\(37\) −99.2134 −0.440827 −0.220413 0.975407i \(-0.570741\pi\)
−0.220413 + 0.975407i \(0.570741\pi\)
\(38\) 0 0
\(39\) −252.999 −1.03878
\(40\) 0 0
\(41\) 118.249 0.450425 0.225213 0.974310i \(-0.427692\pi\)
0.225213 + 0.974310i \(0.427692\pi\)
\(42\) 0 0
\(43\) 456.016 1.61725 0.808626 0.588323i \(-0.200211\pi\)
0.808626 + 0.588323i \(0.200211\pi\)
\(44\) 0 0
\(45\) −68.9054 −0.228263
\(46\) 0 0
\(47\) −571.014 −1.77215 −0.886073 0.463545i \(-0.846577\pi\)
−0.886073 + 0.463545i \(0.846577\pi\)
\(48\) 0 0
\(49\) 654.627 1.90853
\(50\) 0 0
\(51\) −51.0000 −0.140028
\(52\) 0 0
\(53\) 462.867 1.19962 0.599809 0.800143i \(-0.295243\pi\)
0.599809 + 0.800143i \(0.295243\pi\)
\(54\) 0 0
\(55\) −55.0409 −0.134940
\(56\) 0 0
\(57\) −111.251 −0.258520
\(58\) 0 0
\(59\) −48.0674 −0.106065 −0.0530325 0.998593i \(-0.516889\pi\)
−0.0530325 + 0.998593i \(0.516889\pi\)
\(60\) 0 0
\(61\) 59.5236 0.124938 0.0624689 0.998047i \(-0.480103\pi\)
0.0624689 + 0.998047i \(0.480103\pi\)
\(62\) 0 0
\(63\) 284.267 0.568481
\(64\) 0 0
\(65\) −645.668 −1.23208
\(66\) 0 0
\(67\) 740.787 1.35077 0.675384 0.737466i \(-0.263978\pi\)
0.675384 + 0.737466i \(0.263978\pi\)
\(68\) 0 0
\(69\) 450.653 0.786265
\(70\) 0 0
\(71\) 930.437 1.55525 0.777623 0.628730i \(-0.216425\pi\)
0.777623 + 0.628730i \(0.216425\pi\)
\(72\) 0 0
\(73\) −697.419 −1.11817 −0.559087 0.829109i \(-0.688848\pi\)
−0.559087 + 0.829109i \(0.688848\pi\)
\(74\) 0 0
\(75\) 199.150 0.306611
\(76\) 0 0
\(77\) 227.070 0.336065
\(78\) 0 0
\(79\) −1036.04 −1.47549 −0.737747 0.675077i \(-0.764110\pi\)
−0.737747 + 0.675077i \(0.764110\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) 22.2043 0.0293643 0.0146822 0.999892i \(-0.495326\pi\)
0.0146822 + 0.999892i \(0.495326\pi\)
\(84\) 0 0
\(85\) −130.155 −0.166085
\(86\) 0 0
\(87\) 34.7537 0.0428274
\(88\) 0 0
\(89\) −369.726 −0.440346 −0.220173 0.975461i \(-0.570662\pi\)
−0.220173 + 0.975461i \(0.570662\pi\)
\(90\) 0 0
\(91\) 2663.68 3.06846
\(92\) 0 0
\(93\) −159.860 −0.178244
\(94\) 0 0
\(95\) −283.920 −0.306627
\(96\) 0 0
\(97\) 1139.56 1.19283 0.596415 0.802676i \(-0.296591\pi\)
0.596415 + 0.802676i \(0.296591\pi\)
\(98\) 0 0
\(99\) 64.7019 0.0656847
\(100\) 0 0
\(101\) 703.083 0.692667 0.346334 0.938111i \(-0.387427\pi\)
0.346334 + 0.938111i \(0.387427\pi\)
\(102\) 0 0
\(103\) 897.160 0.858250 0.429125 0.903245i \(-0.358822\pi\)
0.429125 + 0.903245i \(0.358822\pi\)
\(104\) 0 0
\(105\) 725.465 0.674268
\(106\) 0 0
\(107\) 1901.21 1.71773 0.858864 0.512203i \(-0.171171\pi\)
0.858864 + 0.512203i \(0.171171\pi\)
\(108\) 0 0
\(109\) 584.555 0.513671 0.256836 0.966455i \(-0.417320\pi\)
0.256836 + 0.966455i \(0.417320\pi\)
\(110\) 0 0
\(111\) 297.640 0.254511
\(112\) 0 0
\(113\) −63.4225 −0.0527990 −0.0263995 0.999651i \(-0.508404\pi\)
−0.0263995 + 0.999651i \(0.508404\pi\)
\(114\) 0 0
\(115\) 1150.09 0.932578
\(116\) 0 0
\(117\) 758.998 0.599738
\(118\) 0 0
\(119\) 536.949 0.413631
\(120\) 0 0
\(121\) −1279.32 −0.961170
\(122\) 0 0
\(123\) −354.748 −0.260053
\(124\) 0 0
\(125\) 1465.26 1.04845
\(126\) 0 0
\(127\) −175.543 −0.122653 −0.0613266 0.998118i \(-0.519533\pi\)
−0.0613266 + 0.998118i \(0.519533\pi\)
\(128\) 0 0
\(129\) −1368.05 −0.933721
\(130\) 0 0
\(131\) −1865.42 −1.24414 −0.622070 0.782961i \(-0.713708\pi\)
−0.622070 + 0.782961i \(0.713708\pi\)
\(132\) 0 0
\(133\) 1171.30 0.763644
\(134\) 0 0
\(135\) 206.716 0.131787
\(136\) 0 0
\(137\) 1057.57 0.659519 0.329760 0.944065i \(-0.393032\pi\)
0.329760 + 0.944065i \(0.393032\pi\)
\(138\) 0 0
\(139\) −904.833 −0.552136 −0.276068 0.961138i \(-0.589032\pi\)
−0.276068 + 0.961138i \(0.589032\pi\)
\(140\) 0 0
\(141\) 1713.04 1.02315
\(142\) 0 0
\(143\) 606.279 0.354543
\(144\) 0 0
\(145\) 88.6932 0.0507970
\(146\) 0 0
\(147\) −1963.88 −1.10189
\(148\) 0 0
\(149\) 809.001 0.444805 0.222402 0.974955i \(-0.428610\pi\)
0.222402 + 0.974955i \(0.428610\pi\)
\(150\) 0 0
\(151\) 352.121 0.189769 0.0948847 0.995488i \(-0.469752\pi\)
0.0948847 + 0.995488i \(0.469752\pi\)
\(152\) 0 0
\(153\) 153.000 0.0808452
\(154\) 0 0
\(155\) −407.970 −0.211413
\(156\) 0 0
\(157\) 537.882 0.273424 0.136712 0.990611i \(-0.456346\pi\)
0.136712 + 0.990611i \(0.456346\pi\)
\(158\) 0 0
\(159\) −1388.60 −0.692599
\(160\) 0 0
\(161\) −4744.66 −2.32256
\(162\) 0 0
\(163\) −1922.74 −0.923933 −0.461966 0.886897i \(-0.652856\pi\)
−0.461966 + 0.886897i \(0.652856\pi\)
\(164\) 0 0
\(165\) 165.123 0.0779078
\(166\) 0 0
\(167\) 2971.76 1.37702 0.688509 0.725228i \(-0.258266\pi\)
0.688509 + 0.725228i \(0.258266\pi\)
\(168\) 0 0
\(169\) 4915.07 2.23717
\(170\) 0 0
\(171\) 333.754 0.149256
\(172\) 0 0
\(173\) 988.564 0.434446 0.217223 0.976122i \(-0.430300\pi\)
0.217223 + 0.976122i \(0.430300\pi\)
\(174\) 0 0
\(175\) −2096.73 −0.905702
\(176\) 0 0
\(177\) 144.202 0.0612367
\(178\) 0 0
\(179\) 1937.65 0.809089 0.404545 0.914518i \(-0.367430\pi\)
0.404545 + 0.914518i \(0.367430\pi\)
\(180\) 0 0
\(181\) −2180.07 −0.895267 −0.447634 0.894217i \(-0.647733\pi\)
−0.447634 + 0.894217i \(0.647733\pi\)
\(182\) 0 0
\(183\) −178.571 −0.0721329
\(184\) 0 0
\(185\) 759.594 0.301873
\(186\) 0 0
\(187\) 122.215 0.0477927
\(188\) 0 0
\(189\) −852.801 −0.328213
\(190\) 0 0
\(191\) −1675.78 −0.634845 −0.317423 0.948284i \(-0.602817\pi\)
−0.317423 + 0.948284i \(0.602817\pi\)
\(192\) 0 0
\(193\) −257.961 −0.0962094 −0.0481047 0.998842i \(-0.515318\pi\)
−0.0481047 + 0.998842i \(0.515318\pi\)
\(194\) 0 0
\(195\) 1937.00 0.711342
\(196\) 0 0
\(197\) −693.466 −0.250799 −0.125399 0.992106i \(-0.540021\pi\)
−0.125399 + 0.992106i \(0.540021\pi\)
\(198\) 0 0
\(199\) 240.295 0.0855984 0.0427992 0.999084i \(-0.486372\pi\)
0.0427992 + 0.999084i \(0.486372\pi\)
\(200\) 0 0
\(201\) −2222.36 −0.779866
\(202\) 0 0
\(203\) −365.901 −0.126508
\(204\) 0 0
\(205\) −905.335 −0.308446
\(206\) 0 0
\(207\) −1351.96 −0.453950
\(208\) 0 0
\(209\) 266.599 0.0882348
\(210\) 0 0
\(211\) −268.114 −0.0874774 −0.0437387 0.999043i \(-0.513927\pi\)
−0.0437387 + 0.999043i \(0.513927\pi\)
\(212\) 0 0
\(213\) −2791.31 −0.897922
\(214\) 0 0
\(215\) −3491.33 −1.10747
\(216\) 0 0
\(217\) 1683.07 0.526516
\(218\) 0 0
\(219\) 2092.26 0.645578
\(220\) 0 0
\(221\) 1433.66 0.436374
\(222\) 0 0
\(223\) 5524.43 1.65894 0.829468 0.558554i \(-0.188643\pi\)
0.829468 + 0.558554i \(0.188643\pi\)
\(224\) 0 0
\(225\) −597.449 −0.177022
\(226\) 0 0
\(227\) 384.400 0.112394 0.0561972 0.998420i \(-0.482102\pi\)
0.0561972 + 0.998420i \(0.482102\pi\)
\(228\) 0 0
\(229\) 1395.48 0.402690 0.201345 0.979520i \(-0.435469\pi\)
0.201345 + 0.979520i \(0.435469\pi\)
\(230\) 0 0
\(231\) −681.209 −0.194027
\(232\) 0 0
\(233\) 3409.39 0.958613 0.479307 0.877648i \(-0.340888\pi\)
0.479307 + 0.877648i \(0.340888\pi\)
\(234\) 0 0
\(235\) 4371.77 1.21354
\(236\) 0 0
\(237\) 3108.13 0.851877
\(238\) 0 0
\(239\) 1509.18 0.408456 0.204228 0.978923i \(-0.434532\pi\)
0.204228 + 0.978923i \(0.434532\pi\)
\(240\) 0 0
\(241\) 3406.91 0.910615 0.455307 0.890334i \(-0.349529\pi\)
0.455307 + 0.890334i \(0.349529\pi\)
\(242\) 0 0
\(243\) −243.000 −0.0641500
\(244\) 0 0
\(245\) −5011.93 −1.30694
\(246\) 0 0
\(247\) 3127.39 0.805633
\(248\) 0 0
\(249\) −66.6129 −0.0169535
\(250\) 0 0
\(251\) −3394.43 −0.853605 −0.426802 0.904345i \(-0.640360\pi\)
−0.426802 + 0.904345i \(0.640360\pi\)
\(252\) 0 0
\(253\) −1079.93 −0.268358
\(254\) 0 0
\(255\) 390.464 0.0958894
\(256\) 0 0
\(257\) 1778.91 0.431772 0.215886 0.976419i \(-0.430736\pi\)
0.215886 + 0.976419i \(0.430736\pi\)
\(258\) 0 0
\(259\) −3133.68 −0.751804
\(260\) 0 0
\(261\) −104.261 −0.0247264
\(262\) 0 0
\(263\) 4316.88 1.01213 0.506065 0.862495i \(-0.331100\pi\)
0.506065 + 0.862495i \(0.331100\pi\)
\(264\) 0 0
\(265\) −3543.79 −0.821483
\(266\) 0 0
\(267\) 1109.18 0.254234
\(268\) 0 0
\(269\) 6546.31 1.48378 0.741888 0.670524i \(-0.233931\pi\)
0.741888 + 0.670524i \(0.233931\pi\)
\(270\) 0 0
\(271\) −3785.20 −0.848466 −0.424233 0.905553i \(-0.639456\pi\)
−0.424233 + 0.905553i \(0.639456\pi\)
\(272\) 0 0
\(273\) −7991.04 −1.77157
\(274\) 0 0
\(275\) −477.236 −0.104649
\(276\) 0 0
\(277\) −3521.06 −0.763755 −0.381878 0.924213i \(-0.624722\pi\)
−0.381878 + 0.924213i \(0.624722\pi\)
\(278\) 0 0
\(279\) 479.579 0.102909
\(280\) 0 0
\(281\) −2922.30 −0.620391 −0.310195 0.950673i \(-0.600394\pi\)
−0.310195 + 0.950673i \(0.600394\pi\)
\(282\) 0 0
\(283\) −735.075 −0.154402 −0.0772008 0.997016i \(-0.524598\pi\)
−0.0772008 + 0.997016i \(0.524598\pi\)
\(284\) 0 0
\(285\) 851.759 0.177031
\(286\) 0 0
\(287\) 3734.93 0.768175
\(288\) 0 0
\(289\) 289.000 0.0588235
\(290\) 0 0
\(291\) −3418.67 −0.688681
\(292\) 0 0
\(293\) −8702.92 −1.73526 −0.867628 0.497213i \(-0.834357\pi\)
−0.867628 + 0.497213i \(0.834357\pi\)
\(294\) 0 0
\(295\) 368.011 0.0726320
\(296\) 0 0
\(297\) −194.106 −0.0379231
\(298\) 0 0
\(299\) −12668.3 −2.45026
\(300\) 0 0
\(301\) 14403.4 2.75813
\(302\) 0 0
\(303\) −2109.25 −0.399912
\(304\) 0 0
\(305\) −455.722 −0.0855559
\(306\) 0 0
\(307\) −2516.95 −0.467916 −0.233958 0.972247i \(-0.575168\pi\)
−0.233958 + 0.972247i \(0.575168\pi\)
\(308\) 0 0
\(309\) −2691.48 −0.495511
\(310\) 0 0
\(311\) −6593.31 −1.20216 −0.601081 0.799188i \(-0.705263\pi\)
−0.601081 + 0.799188i \(0.705263\pi\)
\(312\) 0 0
\(313\) 4392.99 0.793312 0.396656 0.917967i \(-0.370171\pi\)
0.396656 + 0.917967i \(0.370171\pi\)
\(314\) 0 0
\(315\) −2176.39 −0.389289
\(316\) 0 0
\(317\) 2601.23 0.460882 0.230441 0.973086i \(-0.425983\pi\)
0.230441 + 0.973086i \(0.425983\pi\)
\(318\) 0 0
\(319\) −83.2825 −0.0146173
\(320\) 0 0
\(321\) −5703.63 −0.991731
\(322\) 0 0
\(323\) 630.425 0.108600
\(324\) 0 0
\(325\) −5598.30 −0.955502
\(326\) 0 0
\(327\) −1753.66 −0.296568
\(328\) 0 0
\(329\) −18035.6 −3.02229
\(330\) 0 0
\(331\) 4670.49 0.775568 0.387784 0.921750i \(-0.373241\pi\)
0.387784 + 0.921750i \(0.373241\pi\)
\(332\) 0 0
\(333\) −892.921 −0.146942
\(334\) 0 0
\(335\) −5671.58 −0.924989
\(336\) 0 0
\(337\) 1801.67 0.291226 0.145613 0.989342i \(-0.453485\pi\)
0.145613 + 0.989342i \(0.453485\pi\)
\(338\) 0 0
\(339\) 190.268 0.0304835
\(340\) 0 0
\(341\) 383.082 0.0608360
\(342\) 0 0
\(343\) 9842.83 1.54945
\(344\) 0 0
\(345\) −3450.27 −0.538424
\(346\) 0 0
\(347\) −168.340 −0.0260431 −0.0130216 0.999915i \(-0.504145\pi\)
−0.0130216 + 0.999915i \(0.504145\pi\)
\(348\) 0 0
\(349\) −4447.85 −0.682200 −0.341100 0.940027i \(-0.610799\pi\)
−0.341100 + 0.940027i \(0.610799\pi\)
\(350\) 0 0
\(351\) −2276.99 −0.346259
\(352\) 0 0
\(353\) −10509.5 −1.58460 −0.792298 0.610135i \(-0.791115\pi\)
−0.792298 + 0.610135i \(0.791115\pi\)
\(354\) 0 0
\(355\) −7123.57 −1.06501
\(356\) 0 0
\(357\) −1610.85 −0.238810
\(358\) 0 0
\(359\) −8342.99 −1.22654 −0.613268 0.789875i \(-0.710145\pi\)
−0.613268 + 0.789875i \(0.710145\pi\)
\(360\) 0 0
\(361\) −5483.79 −0.799503
\(362\) 0 0
\(363\) 3837.95 0.554932
\(364\) 0 0
\(365\) 5339.55 0.765712
\(366\) 0 0
\(367\) −352.402 −0.0501232 −0.0250616 0.999686i \(-0.507978\pi\)
−0.0250616 + 0.999686i \(0.507978\pi\)
\(368\) 0 0
\(369\) 1064.24 0.150142
\(370\) 0 0
\(371\) 14619.8 2.04588
\(372\) 0 0
\(373\) 12563.2 1.74397 0.871983 0.489537i \(-0.162834\pi\)
0.871983 + 0.489537i \(0.162834\pi\)
\(374\) 0 0
\(375\) −4395.78 −0.605326
\(376\) 0 0
\(377\) −976.961 −0.133464
\(378\) 0 0
\(379\) 1770.57 0.239969 0.119984 0.992776i \(-0.461716\pi\)
0.119984 + 0.992776i \(0.461716\pi\)
\(380\) 0 0
\(381\) 526.630 0.0708139
\(382\) 0 0
\(383\) −4330.57 −0.577759 −0.288880 0.957365i \(-0.593283\pi\)
−0.288880 + 0.957365i \(0.593283\pi\)
\(384\) 0 0
\(385\) −1738.48 −0.230133
\(386\) 0 0
\(387\) 4104.15 0.539084
\(388\) 0 0
\(389\) 10295.5 1.34191 0.670957 0.741496i \(-0.265883\pi\)
0.670957 + 0.741496i \(0.265883\pi\)
\(390\) 0 0
\(391\) −2553.70 −0.330297
\(392\) 0 0
\(393\) 5596.26 0.718305
\(394\) 0 0
\(395\) 7932.12 1.01040
\(396\) 0 0
\(397\) 93.1792 0.0117797 0.00588983 0.999983i \(-0.498125\pi\)
0.00588983 + 0.999983i \(0.498125\pi\)
\(398\) 0 0
\(399\) −3513.90 −0.440890
\(400\) 0 0
\(401\) −13320.9 −1.65889 −0.829443 0.558591i \(-0.811342\pi\)
−0.829443 + 0.558591i \(0.811342\pi\)
\(402\) 0 0
\(403\) 4493.82 0.555466
\(404\) 0 0
\(405\) −620.149 −0.0760875
\(406\) 0 0
\(407\) −713.255 −0.0868667
\(408\) 0 0
\(409\) 9272.21 1.12098 0.560491 0.828161i \(-0.310613\pi\)
0.560491 + 0.828161i \(0.310613\pi\)
\(410\) 0 0
\(411\) −3172.70 −0.380774
\(412\) 0 0
\(413\) −1518.22 −0.180888
\(414\) 0 0
\(415\) −170.000 −0.0201083
\(416\) 0 0
\(417\) 2714.50 0.318776
\(418\) 0 0
\(419\) −11325.4 −1.32049 −0.660244 0.751051i \(-0.729547\pi\)
−0.660244 + 0.751051i \(0.729547\pi\)
\(420\) 0 0
\(421\) 6934.54 0.802776 0.401388 0.915908i \(-0.368528\pi\)
0.401388 + 0.915908i \(0.368528\pi\)
\(422\) 0 0
\(423\) −5139.12 −0.590715
\(424\) 0 0
\(425\) −1128.52 −0.128802
\(426\) 0 0
\(427\) 1880.07 0.213074
\(428\) 0 0
\(429\) −1818.84 −0.204695
\(430\) 0 0
\(431\) 2776.55 0.310306 0.155153 0.987890i \(-0.450413\pi\)
0.155153 + 0.987890i \(0.450413\pi\)
\(432\) 0 0
\(433\) −3252.22 −0.360951 −0.180476 0.983579i \(-0.557764\pi\)
−0.180476 + 0.983579i \(0.557764\pi\)
\(434\) 0 0
\(435\) −266.080 −0.0293277
\(436\) 0 0
\(437\) −5570.65 −0.609795
\(438\) 0 0
\(439\) 13345.7 1.45093 0.725464 0.688260i \(-0.241625\pi\)
0.725464 + 0.688260i \(0.241625\pi\)
\(440\) 0 0
\(441\) 5891.65 0.636178
\(442\) 0 0
\(443\) −11639.6 −1.24834 −0.624169 0.781290i \(-0.714562\pi\)
−0.624169 + 0.781290i \(0.714562\pi\)
\(444\) 0 0
\(445\) 2830.68 0.301544
\(446\) 0 0
\(447\) −2427.00 −0.256808
\(448\) 0 0
\(449\) −6937.72 −0.729201 −0.364601 0.931164i \(-0.618794\pi\)
−0.364601 + 0.931164i \(0.618794\pi\)
\(450\) 0 0
\(451\) 850.106 0.0887582
\(452\) 0 0
\(453\) −1056.36 −0.109563
\(454\) 0 0
\(455\) −20393.6 −2.10124
\(456\) 0 0
\(457\) −10285.8 −1.05284 −0.526422 0.850224i \(-0.676467\pi\)
−0.526422 + 0.850224i \(0.676467\pi\)
\(458\) 0 0
\(459\) −459.000 −0.0466760
\(460\) 0 0
\(461\) −625.833 −0.0632277 −0.0316138 0.999500i \(-0.510065\pi\)
−0.0316138 + 0.999500i \(0.510065\pi\)
\(462\) 0 0
\(463\) 6055.97 0.607872 0.303936 0.952692i \(-0.401699\pi\)
0.303936 + 0.952692i \(0.401699\pi\)
\(464\) 0 0
\(465\) 1223.91 0.122059
\(466\) 0 0
\(467\) 815.966 0.0808531 0.0404265 0.999183i \(-0.487128\pi\)
0.0404265 + 0.999183i \(0.487128\pi\)
\(468\) 0 0
\(469\) 23397.9 2.30366
\(470\) 0 0
\(471\) −1613.65 −0.157862
\(472\) 0 0
\(473\) 3278.35 0.318686
\(474\) 0 0
\(475\) −2461.74 −0.237795
\(476\) 0 0
\(477\) 4165.81 0.399872
\(478\) 0 0
\(479\) 16219.1 1.54712 0.773559 0.633724i \(-0.218475\pi\)
0.773559 + 0.633724i \(0.218475\pi\)
\(480\) 0 0
\(481\) −8366.97 −0.793142
\(482\) 0 0
\(483\) 14234.0 1.34093
\(484\) 0 0
\(485\) −8724.63 −0.816835
\(486\) 0 0
\(487\) −2725.13 −0.253568 −0.126784 0.991930i \(-0.540465\pi\)
−0.126784 + 0.991930i \(0.540465\pi\)
\(488\) 0 0
\(489\) 5768.23 0.533433
\(490\) 0 0
\(491\) 8344.13 0.766935 0.383468 0.923554i \(-0.374730\pi\)
0.383468 + 0.923554i \(0.374730\pi\)
\(492\) 0 0
\(493\) −196.937 −0.0179911
\(494\) 0 0
\(495\) −495.368 −0.0449801
\(496\) 0 0
\(497\) 29388.1 2.65238
\(498\) 0 0
\(499\) −13762.0 −1.23461 −0.617306 0.786723i \(-0.711776\pi\)
−0.617306 + 0.786723i \(0.711776\pi\)
\(500\) 0 0
\(501\) −8915.29 −0.795022
\(502\) 0 0
\(503\) 11909.5 1.05570 0.527852 0.849336i \(-0.322997\pi\)
0.527852 + 0.849336i \(0.322997\pi\)
\(504\) 0 0
\(505\) −5382.92 −0.474330
\(506\) 0 0
\(507\) −14745.2 −1.29163
\(508\) 0 0
\(509\) 742.666 0.0646721 0.0323360 0.999477i \(-0.489705\pi\)
0.0323360 + 0.999477i \(0.489705\pi\)
\(510\) 0 0
\(511\) −22028.1 −1.90698
\(512\) 0 0
\(513\) −1001.26 −0.0861732
\(514\) 0 0
\(515\) −6868.80 −0.587719
\(516\) 0 0
\(517\) −4105.07 −0.349209
\(518\) 0 0
\(519\) −2965.69 −0.250827
\(520\) 0 0
\(521\) −4815.73 −0.404953 −0.202477 0.979287i \(-0.564899\pi\)
−0.202477 + 0.979287i \(0.564899\pi\)
\(522\) 0 0
\(523\) 16249.5 1.35858 0.679291 0.733869i \(-0.262287\pi\)
0.679291 + 0.733869i \(0.262287\pi\)
\(524\) 0 0
\(525\) 6290.19 0.522908
\(526\) 0 0
\(527\) 905.871 0.0748773
\(528\) 0 0
\(529\) 10398.4 0.854637
\(530\) 0 0
\(531\) −432.606 −0.0353550
\(532\) 0 0
\(533\) 9972.33 0.810412
\(534\) 0 0
\(535\) −14556.0 −1.17628
\(536\) 0 0
\(537\) −5812.96 −0.467128
\(538\) 0 0
\(539\) 4706.18 0.376085
\(540\) 0 0
\(541\) −5458.04 −0.433751 −0.216876 0.976199i \(-0.569587\pi\)
−0.216876 + 0.976199i \(0.569587\pi\)
\(542\) 0 0
\(543\) 6540.21 0.516883
\(544\) 0 0
\(545\) −4475.44 −0.351756
\(546\) 0 0
\(547\) −17237.0 −1.34735 −0.673677 0.739026i \(-0.735286\pi\)
−0.673677 + 0.739026i \(0.735286\pi\)
\(548\) 0 0
\(549\) 535.712 0.0416460
\(550\) 0 0
\(551\) −429.600 −0.0332152
\(552\) 0 0
\(553\) −32723.7 −2.51637
\(554\) 0 0
\(555\) −2278.78 −0.174286
\(556\) 0 0
\(557\) −8452.71 −0.643003 −0.321502 0.946909i \(-0.604188\pi\)
−0.321502 + 0.946909i \(0.604188\pi\)
\(558\) 0 0
\(559\) 38457.3 2.90978
\(560\) 0 0
\(561\) −366.644 −0.0275931
\(562\) 0 0
\(563\) 8547.32 0.639834 0.319917 0.947446i \(-0.396345\pi\)
0.319917 + 0.947446i \(0.396345\pi\)
\(564\) 0 0
\(565\) 485.573 0.0361561
\(566\) 0 0
\(567\) 2558.40 0.189494
\(568\) 0 0
\(569\) 19464.8 1.43411 0.717055 0.697017i \(-0.245490\pi\)
0.717055 + 0.697017i \(0.245490\pi\)
\(570\) 0 0
\(571\) 3839.06 0.281366 0.140683 0.990055i \(-0.455070\pi\)
0.140683 + 0.990055i \(0.455070\pi\)
\(572\) 0 0
\(573\) 5027.35 0.366528
\(574\) 0 0
\(575\) 9971.94 0.723232
\(576\) 0 0
\(577\) −18797.7 −1.35625 −0.678127 0.734945i \(-0.737208\pi\)
−0.678127 + 0.734945i \(0.737208\pi\)
\(578\) 0 0
\(579\) 773.882 0.0555465
\(580\) 0 0
\(581\) 701.328 0.0500791
\(582\) 0 0
\(583\) 3327.60 0.236390
\(584\) 0 0
\(585\) −5811.01 −0.410693
\(586\) 0 0
\(587\) −4217.92 −0.296580 −0.148290 0.988944i \(-0.547377\pi\)
−0.148290 + 0.988944i \(0.547377\pi\)
\(588\) 0 0
\(589\) 1976.07 0.138238
\(590\) 0 0
\(591\) 2080.40 0.144799
\(592\) 0 0
\(593\) −3011.92 −0.208575 −0.104287 0.994547i \(-0.533256\pi\)
−0.104287 + 0.994547i \(0.533256\pi\)
\(594\) 0 0
\(595\) −4110.97 −0.283249
\(596\) 0 0
\(597\) −720.886 −0.0494203
\(598\) 0 0
\(599\) −15137.1 −1.03253 −0.516266 0.856428i \(-0.672678\pi\)
−0.516266 + 0.856428i \(0.672678\pi\)
\(600\) 0 0
\(601\) −18980.1 −1.28821 −0.644104 0.764938i \(-0.722770\pi\)
−0.644104 + 0.764938i \(0.722770\pi\)
\(602\) 0 0
\(603\) 6667.08 0.450256
\(604\) 0 0
\(605\) 9794.65 0.658197
\(606\) 0 0
\(607\) 4593.63 0.307166 0.153583 0.988136i \(-0.450919\pi\)
0.153583 + 0.988136i \(0.450919\pi\)
\(608\) 0 0
\(609\) 1097.70 0.0730397
\(610\) 0 0
\(611\) −48155.3 −3.18847
\(612\) 0 0
\(613\) −25654.3 −1.69032 −0.845160 0.534513i \(-0.820495\pi\)
−0.845160 + 0.534513i \(0.820495\pi\)
\(614\) 0 0
\(615\) 2716.01 0.178081
\(616\) 0 0
\(617\) −7170.97 −0.467897 −0.233948 0.972249i \(-0.575165\pi\)
−0.233948 + 0.972249i \(0.575165\pi\)
\(618\) 0 0
\(619\) 13560.6 0.880525 0.440263 0.897869i \(-0.354885\pi\)
0.440263 + 0.897869i \(0.354885\pi\)
\(620\) 0 0
\(621\) 4055.88 0.262088
\(622\) 0 0
\(623\) −11677.9 −0.750985
\(624\) 0 0
\(625\) −2920.36 −0.186903
\(626\) 0 0
\(627\) −799.798 −0.0509424
\(628\) 0 0
\(629\) −1686.63 −0.106916
\(630\) 0 0
\(631\) 1414.98 0.0892700 0.0446350 0.999003i \(-0.485788\pi\)
0.0446350 + 0.999003i \(0.485788\pi\)
\(632\) 0 0
\(633\) 804.342 0.0505051
\(634\) 0 0
\(635\) 1343.99 0.0839914
\(636\) 0 0
\(637\) 55206.7 3.43386
\(638\) 0 0
\(639\) 8373.93 0.518416
\(640\) 0 0
\(641\) −21708.4 −1.33764 −0.668822 0.743422i \(-0.733201\pi\)
−0.668822 + 0.743422i \(0.733201\pi\)
\(642\) 0 0
\(643\) −7537.23 −0.462270 −0.231135 0.972922i \(-0.574244\pi\)
−0.231135 + 0.972922i \(0.574244\pi\)
\(644\) 0 0
\(645\) 10474.0 0.639401
\(646\) 0 0
\(647\) 32667.3 1.98498 0.992491 0.122316i \(-0.0390320\pi\)
0.992491 + 0.122316i \(0.0390320\pi\)
\(648\) 0 0
\(649\) −345.561 −0.0209006
\(650\) 0 0
\(651\) −5049.20 −0.303984
\(652\) 0 0
\(653\) −25845.8 −1.54889 −0.774443 0.632644i \(-0.781970\pi\)
−0.774443 + 0.632644i \(0.781970\pi\)
\(654\) 0 0
\(655\) 14281.9 0.851972
\(656\) 0 0
\(657\) −6276.77 −0.372725
\(658\) 0 0
\(659\) 15741.2 0.930485 0.465243 0.885183i \(-0.345967\pi\)
0.465243 + 0.885183i \(0.345967\pi\)
\(660\) 0 0
\(661\) 23495.2 1.38254 0.691269 0.722598i \(-0.257052\pi\)
0.691269 + 0.722598i \(0.257052\pi\)
\(662\) 0 0
\(663\) −4300.99 −0.251940
\(664\) 0 0
\(665\) −8967.67 −0.522934
\(666\) 0 0
\(667\) 1740.21 0.101021
\(668\) 0 0
\(669\) −16573.3 −0.957788
\(670\) 0 0
\(671\) 427.921 0.0246195
\(672\) 0 0
\(673\) −7057.34 −0.404221 −0.202110 0.979363i \(-0.564780\pi\)
−0.202110 + 0.979363i \(0.564780\pi\)
\(674\) 0 0
\(675\) 1792.35 0.102204
\(676\) 0 0
\(677\) 20756.4 1.17833 0.589167 0.808011i \(-0.299456\pi\)
0.589167 + 0.808011i \(0.299456\pi\)
\(678\) 0 0
\(679\) 35993.2 2.03430
\(680\) 0 0
\(681\) −1153.20 −0.0648909
\(682\) 0 0
\(683\) 7013.65 0.392928 0.196464 0.980511i \(-0.437054\pi\)
0.196464 + 0.980511i \(0.437054\pi\)
\(684\) 0 0
\(685\) −8096.91 −0.451631
\(686\) 0 0
\(687\) −4186.44 −0.232493
\(688\) 0 0
\(689\) 39035.0 2.15837
\(690\) 0 0
\(691\) 4897.47 0.269622 0.134811 0.990871i \(-0.456957\pi\)
0.134811 + 0.990871i \(0.456957\pi\)
\(692\) 0 0
\(693\) 2043.63 0.112022
\(694\) 0 0
\(695\) 6927.54 0.378096
\(696\) 0 0
\(697\) 2010.24 0.109244
\(698\) 0 0
\(699\) −10228.2 −0.553456
\(700\) 0 0
\(701\) 17525.5 0.944264 0.472132 0.881528i \(-0.343485\pi\)
0.472132 + 0.881528i \(0.343485\pi\)
\(702\) 0 0
\(703\) −3679.21 −0.197388
\(704\) 0 0
\(705\) −13115.3 −0.700640
\(706\) 0 0
\(707\) 22207.1 1.18130
\(708\) 0 0
\(709\) 32564.3 1.72493 0.862466 0.506115i \(-0.168919\pi\)
0.862466 + 0.506115i \(0.168919\pi\)
\(710\) 0 0
\(711\) −9324.40 −0.491832
\(712\) 0 0
\(713\) −8004.58 −0.420440
\(714\) 0 0
\(715\) −4641.77 −0.242786
\(716\) 0 0
\(717\) −4527.55 −0.235822
\(718\) 0 0
\(719\) −14498.2 −0.752007 −0.376004 0.926618i \(-0.622702\pi\)
−0.376004 + 0.926618i \(0.622702\pi\)
\(720\) 0 0
\(721\) 28337.0 1.46370
\(722\) 0 0
\(723\) −10220.7 −0.525744
\(724\) 0 0
\(725\) 769.020 0.0393941
\(726\) 0 0
\(727\) 25787.6 1.31556 0.657778 0.753212i \(-0.271497\pi\)
0.657778 + 0.753212i \(0.271497\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 7752.28 0.392241
\(732\) 0 0
\(733\) −4177.45 −0.210502 −0.105251 0.994446i \(-0.533565\pi\)
−0.105251 + 0.994446i \(0.533565\pi\)
\(734\) 0 0
\(735\) 15035.8 0.754563
\(736\) 0 0
\(737\) 5325.59 0.266175
\(738\) 0 0
\(739\) −14115.5 −0.702636 −0.351318 0.936256i \(-0.614266\pi\)
−0.351318 + 0.936256i \(0.614266\pi\)
\(740\) 0 0
\(741\) −9382.18 −0.465132
\(742\) 0 0
\(743\) −17992.0 −0.888376 −0.444188 0.895934i \(-0.646508\pi\)
−0.444188 + 0.895934i \(0.646508\pi\)
\(744\) 0 0
\(745\) −6193.84 −0.304597
\(746\) 0 0
\(747\) 199.839 0.00978810
\(748\) 0 0
\(749\) 60050.2 2.92949
\(750\) 0 0
\(751\) −2055.99 −0.0998989 −0.0499495 0.998752i \(-0.515906\pi\)
−0.0499495 + 0.998752i \(0.515906\pi\)
\(752\) 0 0
\(753\) 10183.3 0.492829
\(754\) 0 0
\(755\) −2695.89 −0.129952
\(756\) 0 0
\(757\) 12132.4 0.582508 0.291254 0.956646i \(-0.405927\pi\)
0.291254 + 0.956646i \(0.405927\pi\)
\(758\) 0 0
\(759\) 3239.79 0.154937
\(760\) 0 0
\(761\) 9319.01 0.443908 0.221954 0.975057i \(-0.428757\pi\)
0.221954 + 0.975057i \(0.428757\pi\)
\(762\) 0 0
\(763\) 18463.3 0.876037
\(764\) 0 0
\(765\) −1171.39 −0.0553618
\(766\) 0 0
\(767\) −4053.67 −0.190834
\(768\) 0 0
\(769\) 38790.8 1.81903 0.909514 0.415672i \(-0.136454\pi\)
0.909514 + 0.415672i \(0.136454\pi\)
\(770\) 0 0
\(771\) −5336.73 −0.249284
\(772\) 0 0
\(773\) 12857.4 0.598252 0.299126 0.954214i \(-0.403305\pi\)
0.299126 + 0.954214i \(0.403305\pi\)
\(774\) 0 0
\(775\) −3537.33 −0.163954
\(776\) 0 0
\(777\) 9401.04 0.434054
\(778\) 0 0
\(779\) 4385.14 0.201687
\(780\) 0 0
\(781\) 6689.00 0.306468
\(782\) 0 0
\(783\) 312.783 0.0142758
\(784\) 0 0
\(785\) −4118.11 −0.187238
\(786\) 0 0
\(787\) 26862.0 1.21668 0.608339 0.793677i \(-0.291836\pi\)
0.608339 + 0.793677i \(0.291836\pi\)
\(788\) 0 0
\(789\) −12950.6 −0.584353
\(790\) 0 0
\(791\) −2003.22 −0.0900457
\(792\) 0 0
\(793\) 5019.81 0.224790
\(794\) 0 0
\(795\) 10631.4 0.474284
\(796\) 0 0
\(797\) −12471.5 −0.554285 −0.277142 0.960829i \(-0.589387\pi\)
−0.277142 + 0.960829i \(0.589387\pi\)
\(798\) 0 0
\(799\) −9707.23 −0.429809
\(800\) 0 0
\(801\) −3327.53 −0.146782
\(802\) 0 0
\(803\) −5013.82 −0.220341
\(804\) 0 0
\(805\) 36325.9 1.59046
\(806\) 0 0
\(807\) −19638.9 −0.856658
\(808\) 0 0
\(809\) −24760.8 −1.07607 −0.538037 0.842921i \(-0.680834\pi\)
−0.538037 + 0.842921i \(0.680834\pi\)
\(810\) 0 0
\(811\) −11237.3 −0.486556 −0.243278 0.969957i \(-0.578223\pi\)
−0.243278 + 0.969957i \(0.578223\pi\)
\(812\) 0 0
\(813\) 11355.6 0.489862
\(814\) 0 0
\(815\) 14720.8 0.632698
\(816\) 0 0
\(817\) 16910.8 0.724156
\(818\) 0 0
\(819\) 23973.1 1.02282
\(820\) 0 0
\(821\) 39976.4 1.69937 0.849687 0.527287i \(-0.176791\pi\)
0.849687 + 0.527287i \(0.176791\pi\)
\(822\) 0 0
\(823\) −36877.0 −1.56191 −0.780955 0.624588i \(-0.785267\pi\)
−0.780955 + 0.624588i \(0.785267\pi\)
\(824\) 0 0
\(825\) 1431.71 0.0604190
\(826\) 0 0
\(827\) 14311.9 0.601781 0.300890 0.953659i \(-0.402716\pi\)
0.300890 + 0.953659i \(0.402716\pi\)
\(828\) 0 0
\(829\) −12629.7 −0.529130 −0.264565 0.964368i \(-0.585228\pi\)
−0.264565 + 0.964368i \(0.585228\pi\)
\(830\) 0 0
\(831\) 10563.2 0.440954
\(832\) 0 0
\(833\) 11128.7 0.462888
\(834\) 0 0
\(835\) −22752.3 −0.942965
\(836\) 0 0
\(837\) −1438.74 −0.0594146
\(838\) 0 0
\(839\) 18683.1 0.768786 0.384393 0.923170i \(-0.374411\pi\)
0.384393 + 0.923170i \(0.374411\pi\)
\(840\) 0 0
\(841\) −24254.8 −0.994497
\(842\) 0 0
\(843\) 8766.90 0.358183
\(844\) 0 0
\(845\) −37630.6 −1.53199
\(846\) 0 0
\(847\) −40407.5 −1.63922
\(848\) 0 0
\(849\) 2205.22 0.0891438
\(850\) 0 0
\(851\) 14903.6 0.600340
\(852\) 0 0
\(853\) −35648.7 −1.43094 −0.715468 0.698646i \(-0.753786\pi\)
−0.715468 + 0.698646i \(0.753786\pi\)
\(854\) 0 0
\(855\) −2555.28 −0.102209
\(856\) 0 0
\(857\) −49860.8 −1.98741 −0.993707 0.112010i \(-0.964271\pi\)
−0.993707 + 0.112010i \(0.964271\pi\)
\(858\) 0 0
\(859\) −21487.0 −0.853466 −0.426733 0.904378i \(-0.640336\pi\)
−0.426733 + 0.904378i \(0.640336\pi\)
\(860\) 0 0
\(861\) −11204.8 −0.443506
\(862\) 0 0
\(863\) 15067.6 0.594330 0.297165 0.954826i \(-0.403959\pi\)
0.297165 + 0.954826i \(0.403959\pi\)
\(864\) 0 0
\(865\) −7568.60 −0.297503
\(866\) 0 0
\(867\) −867.000 −0.0339618
\(868\) 0 0
\(869\) −7448.23 −0.290752
\(870\) 0 0
\(871\) 62472.8 2.43032
\(872\) 0 0
\(873\) 10256.0 0.397610
\(874\) 0 0
\(875\) 46280.6 1.78808
\(876\) 0 0
\(877\) −24852.6 −0.956912 −0.478456 0.878111i \(-0.658803\pi\)
−0.478456 + 0.878111i \(0.658803\pi\)
\(878\) 0 0
\(879\) 26108.8 1.00185
\(880\) 0 0
\(881\) 1840.51 0.0703842 0.0351921 0.999381i \(-0.488796\pi\)
0.0351921 + 0.999381i \(0.488796\pi\)
\(882\) 0 0
\(883\) −49803.7 −1.89811 −0.949054 0.315115i \(-0.897957\pi\)
−0.949054 + 0.315115i \(0.897957\pi\)
\(884\) 0 0
\(885\) −1104.03 −0.0419341
\(886\) 0 0
\(887\) −36314.7 −1.37467 −0.687333 0.726342i \(-0.741219\pi\)
−0.687333 + 0.726342i \(0.741219\pi\)
\(888\) 0 0
\(889\) −5544.58 −0.209178
\(890\) 0 0
\(891\) 582.317 0.0218949
\(892\) 0 0
\(893\) −21175.4 −0.793512
\(894\) 0 0
\(895\) −14835.0 −0.554054
\(896\) 0 0
\(897\) 38005.0 1.41466
\(898\) 0 0
\(899\) −617.300 −0.0229011
\(900\) 0 0
\(901\) 7868.75 0.290950
\(902\) 0 0
\(903\) −43210.2 −1.59241
\(904\) 0 0
\(905\) 16691.0 0.613068
\(906\) 0 0
\(907\) −33679.5 −1.23297 −0.616487 0.787365i \(-0.711445\pi\)
−0.616487 + 0.787365i \(0.711445\pi\)
\(908\) 0 0
\(909\) 6327.75 0.230889
\(910\) 0 0
\(911\) −32437.2 −1.17968 −0.589841 0.807519i \(-0.700810\pi\)
−0.589841 + 0.807519i \(0.700810\pi\)
\(912\) 0 0
\(913\) 159.629 0.00578636
\(914\) 0 0
\(915\) 1367.17 0.0493957
\(916\) 0 0
\(917\) −58919.7 −2.12181
\(918\) 0 0
\(919\) 3511.45 0.126042 0.0630208 0.998012i \(-0.479927\pi\)
0.0630208 + 0.998012i \(0.479927\pi\)
\(920\) 0 0
\(921\) 7550.86 0.270151
\(922\) 0 0
\(923\) 78466.6 2.79822
\(924\) 0 0
\(925\) 6586.11 0.234108
\(926\) 0 0
\(927\) 8074.44 0.286083
\(928\) 0 0
\(929\) 13527.2 0.477733 0.238866 0.971052i \(-0.423224\pi\)
0.238866 + 0.971052i \(0.423224\pi\)
\(930\) 0 0
\(931\) 24276.1 0.854583
\(932\) 0 0
\(933\) 19779.9 0.694069
\(934\) 0 0
\(935\) −935.695 −0.0327278
\(936\) 0 0
\(937\) −8862.80 −0.309002 −0.154501 0.987993i \(-0.549377\pi\)
−0.154501 + 0.987993i \(0.549377\pi\)
\(938\) 0 0
\(939\) −13179.0 −0.458019
\(940\) 0 0
\(941\) 22824.0 0.790693 0.395346 0.918532i \(-0.370625\pi\)
0.395346 + 0.918532i \(0.370625\pi\)
\(942\) 0 0
\(943\) −17763.1 −0.613412
\(944\) 0 0
\(945\) 6529.18 0.224756
\(946\) 0 0
\(947\) 26308.4 0.902754 0.451377 0.892333i \(-0.350933\pi\)
0.451377 + 0.892333i \(0.350933\pi\)
\(948\) 0 0
\(949\) −58815.5 −2.01184
\(950\) 0 0
\(951\) −7803.68 −0.266090
\(952\) 0 0
\(953\) 11947.5 0.406106 0.203053 0.979168i \(-0.434914\pi\)
0.203053 + 0.979168i \(0.434914\pi\)
\(954\) 0 0
\(955\) 12830.1 0.434734
\(956\) 0 0
\(957\) 249.848 0.00843932
\(958\) 0 0
\(959\) 33403.5 1.12477
\(960\) 0 0
\(961\) −26951.5 −0.904688
\(962\) 0 0
\(963\) 17110.9 0.572576
\(964\) 0 0
\(965\) 1974.99 0.0658830
\(966\) 0 0
\(967\) −21505.3 −0.715163 −0.357581 0.933882i \(-0.616399\pi\)
−0.357581 + 0.933882i \(0.616399\pi\)
\(968\) 0 0
\(969\) −1891.27 −0.0627002
\(970\) 0 0
\(971\) −45685.3 −1.50990 −0.754950 0.655783i \(-0.772339\pi\)
−0.754950 + 0.655783i \(0.772339\pi\)
\(972\) 0 0
\(973\) −28579.4 −0.941636
\(974\) 0 0
\(975\) 16794.9 0.551659
\(976\) 0 0
\(977\) 31710.3 1.03839 0.519193 0.854657i \(-0.326233\pi\)
0.519193 + 0.854657i \(0.326233\pi\)
\(978\) 0 0
\(979\) −2657.99 −0.0867721
\(980\) 0 0
\(981\) 5260.99 0.171224
\(982\) 0 0
\(983\) −46038.9 −1.49381 −0.746904 0.664932i \(-0.768460\pi\)
−0.746904 + 0.664932i \(0.768460\pi\)
\(984\) 0 0
\(985\) 5309.28 0.171744
\(986\) 0 0
\(987\) 54106.8 1.74492
\(988\) 0 0
\(989\) −68501.8 −2.20246
\(990\) 0 0
\(991\) −14394.9 −0.461420 −0.230710 0.973023i \(-0.574105\pi\)
−0.230710 + 0.973023i \(0.574105\pi\)
\(992\) 0 0
\(993\) −14011.5 −0.447775
\(994\) 0 0
\(995\) −1839.74 −0.0586167
\(996\) 0 0
\(997\) −33473.4 −1.06330 −0.531652 0.846963i \(-0.678428\pi\)
−0.531652 + 0.846963i \(0.678428\pi\)
\(998\) 0 0
\(999\) 2678.76 0.0848371
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 816.4.a.s.1.1 3
3.2 odd 2 2448.4.a.bd.1.3 3
4.3 odd 2 51.4.a.e.1.3 3
12.11 even 2 153.4.a.f.1.1 3
20.19 odd 2 1275.4.a.q.1.1 3
28.27 even 2 2499.4.a.n.1.3 3
68.67 odd 2 867.4.a.k.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.4.a.e.1.3 3 4.3 odd 2
153.4.a.f.1.1 3 12.11 even 2
816.4.a.s.1.1 3 1.1 even 1 trivial
867.4.a.k.1.3 3 68.67 odd 2
1275.4.a.q.1.1 3 20.19 odd 2
2448.4.a.bd.1.3 3 3.2 odd 2
2499.4.a.n.1.3 3 28.27 even 2