Properties

Label 816.4.a.s
Level $816$
Weight $4$
Character orbit 816.a
Self dual yes
Analytic conductor $48.146$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [816,4,Mod(1,816)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(816, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("816.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 816 = 2^{4} \cdot 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 816.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.1455585647\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.5912.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 14x - 10 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 51)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 3 q^{3} + ( - \beta_1 + 3) q^{5} + (\beta_{2} + 3 \beta_1 + 2) q^{7} + 9 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - 3 q^{3} + ( - \beta_1 + 3) q^{5} + (\beta_{2} + 3 \beta_1 + 2) q^{7} + 9 q^{9} + ( - 4 \beta_{2} + \beta_1 - 13) q^{11} + (5 \beta_{2} + 8 \beta_1 + 11) q^{13} + (3 \beta_1 - 9) q^{15} + 17 q^{17} + (5 \beta_{2} + 49) q^{19} + ( - 3 \beta_{2} - 9 \beta_1 - 6) q^{21} + ( - 11 \beta_1 - 33) q^{23} + (\beta_{2} - 64) q^{25} - 27 q^{27} + ( - 20 \beta_{2} - 8 \beta_1 + 26) q^{29} + ( - 12 \beta_{2} - 2 \beta_1 + 46) q^{31} + (12 \beta_{2} - 3 \beta_1 + 39) q^{33} + (5 \beta_{2} - 9 \beta_1 - 134) q^{35} + (26 \beta_{2} - 8 \beta_1 + 48) q^{37} + ( - 15 \beta_{2} - 24 \beta_1 - 33) q^{39} + (4 \beta_{2} - 11 \beta_1 + 245) q^{41} + (43 \beta_{2} + 48 \beta_1 + 47) q^{43} + ( - 9 \beta_1 + 27) q^{45} + (21 \beta_{2} - 35 \beta_1 - 148) q^{47} + ( - 16 \beta_{2} + 48 \beta_1 + 105) q^{49} - 51 q^{51} + ( - 41 \beta_{2} + 17 \beta_1 + 184) q^{53} + ( - 33 \beta_{2} + 2 \beta_1 - 155) q^{55} + ( - 15 \beta_{2} - 147) q^{57} + ( - 22 \beta_{2} - 16 \beta_1 + 70) q^{59} + ( - 37 \beta_{2} - \beta_1 - 18) q^{61} + (9 \beta_{2} + 27 \beta_1 + 18) q^{63} + (32 \beta_{2} - 25 \beta_1 - 303) q^{65} + (18 \beta_{2} + 30 \beta_1 + 464) q^{67} + (33 \beta_1 + 99) q^{69} + ( - 46 \beta_{2} + 50 \beta_1 + 288) q^{71} + (55 \beta_{2} - 31 \beta_1 - 236) q^{73} + ( - 3 \beta_{2} + 192) q^{75} + (33 \beta_{2} + 27 \beta_1 + 18) q^{77} + ( - 54 \beta_{2} - 120 \beta_1 + 114) q^{79} + 81 q^{81} + (25 \beta_{2} - 43 \beta_1 + 540) q^{83} + ( - 17 \beta_1 + 51) q^{85} + (60 \beta_{2} + 24 \beta_1 - 78) q^{87} + ( - 21 \beta_{2} - 85 \beta_1 + 486) q^{89} + ( - 65 \beta_{2} + 117 \beta_1 + 1262) q^{91} + (36 \beta_{2} + 6 \beta_1 - 138) q^{93} + (40 \beta_{2} - 39 \beta_1 + 227) q^{95} + ( - 133 \beta_{2} + 71 \beta_1 + 66) q^{97} + ( - 36 \beta_{2} + 9 \beta_1 - 117) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 9 q^{3} + 8 q^{5} + 8 q^{7} + 27 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q - 9 q^{3} + 8 q^{5} + 8 q^{7} + 27 q^{9} - 34 q^{11} + 36 q^{13} - 24 q^{15} + 51 q^{17} + 142 q^{19} - 24 q^{21} - 110 q^{23} - 193 q^{25} - 81 q^{27} + 90 q^{29} + 148 q^{31} + 102 q^{33} - 416 q^{35} + 110 q^{37} - 108 q^{39} + 720 q^{41} + 146 q^{43} + 72 q^{45} - 500 q^{47} + 379 q^{49} - 153 q^{51} + 610 q^{53} - 430 q^{55} - 426 q^{57} + 216 q^{59} - 18 q^{61} + 72 q^{63} - 966 q^{65} + 1404 q^{67} + 330 q^{69} + 960 q^{71} - 794 q^{73} + 579 q^{75} + 48 q^{77} + 276 q^{79} + 243 q^{81} + 1552 q^{83} + 136 q^{85} - 270 q^{87} + 1394 q^{89} + 3968 q^{91} - 444 q^{93} + 602 q^{95} + 402 q^{97} - 306 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 14x - 10 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{2} - 4\nu - 8 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 10 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} - \beta _1 + 2 ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 10 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.75985
−0.795427
4.55528
0 −3.00000 0 −7.65616 0 31.5852 0 9.00000 0
1.2 0 −3.00000 0 7.18559 0 −19.9241 0 9.00000 0
1.3 0 −3.00000 0 8.47057 0 −3.66117 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(17\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 816.4.a.s 3
3.b odd 2 1 2448.4.a.bd 3
4.b odd 2 1 51.4.a.e 3
12.b even 2 1 153.4.a.f 3
20.d odd 2 1 1275.4.a.q 3
28.d even 2 1 2499.4.a.n 3
68.d odd 2 1 867.4.a.k 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
51.4.a.e 3 4.b odd 2 1
153.4.a.f 3 12.b even 2 1
816.4.a.s 3 1.a even 1 1 trivial
867.4.a.k 3 68.d odd 2 1
1275.4.a.q 3 20.d odd 2 1
2448.4.a.bd 3 3.b odd 2 1
2499.4.a.n 3 28.d even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(816))\):

\( T_{5}^{3} - 8T_{5}^{2} - 59T_{5} + 466 \) Copy content Toggle raw display
\( T_{7}^{3} - 8T_{7}^{2} - 672T_{7} - 2304 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( (T + 3)^{3} \) Copy content Toggle raw display
$5$ \( T^{3} - 8 T^{2} + \cdots + 466 \) Copy content Toggle raw display
$7$ \( T^{3} - 8 T^{2} + \cdots - 2304 \) Copy content Toggle raw display
$11$ \( T^{3} + 34 T^{2} + \cdots + 8964 \) Copy content Toggle raw display
$13$ \( T^{3} - 36 T^{2} + \cdots + 122698 \) Copy content Toggle raw display
$17$ \( (T - 17)^{3} \) Copy content Toggle raw display
$19$ \( T^{3} - 142 T^{2} + \cdots - 8244 \) Copy content Toggle raw display
$23$ \( T^{3} + 110 T^{2} + \cdots + 53240 \) Copy content Toggle raw display
$29$ \( T^{3} - 90 T^{2} + \cdots - 415320 \) Copy content Toggle raw display
$31$ \( T^{3} - 148 T^{2} + \cdots + 640448 \) Copy content Toggle raw display
$37$ \( T^{3} - 110 T^{2} + \cdots - 5969792 \) Copy content Toggle raw display
$41$ \( T^{3} - 720 T^{2} + \cdots - 10440042 \) Copy content Toggle raw display
$43$ \( T^{3} - 146 T^{2} + \cdots + 62624916 \) Copy content Toggle raw display
$47$ \( T^{3} + 500 T^{2} + \cdots - 30472896 \) Copy content Toggle raw display
$53$ \( T^{3} - 610 T^{2} + \cdots + 80447688 \) Copy content Toggle raw display
$59$ \( T^{3} - 216 T^{2} + \cdots - 1302384 \) Copy content Toggle raw display
$61$ \( T^{3} + 18 T^{2} + \cdots + 8127200 \) Copy content Toggle raw display
$67$ \( T^{3} - 1404 T^{2} + \cdots - 62069312 \) Copy content Toggle raw display
$71$ \( T^{3} - 960 T^{2} + \cdots + 227624576 \) Copy content Toggle raw display
$73$ \( T^{3} + 794 T^{2} + \cdots - 227482344 \) Copy content Toggle raw display
$79$ \( T^{3} - 276 T^{2} + \cdots + 220814208 \) Copy content Toggle raw display
$83$ \( T^{3} - 1552 T^{2} + \cdots - 11261392 \) Copy content Toggle raw display
$89$ \( T^{3} - 1394 T^{2} + \cdots + 278458912 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots + 2026068032 \) Copy content Toggle raw display
show more
show less