Properties

Label 816.4.a.o
Level $816$
Weight $4$
Character orbit 816.a
Self dual yes
Analytic conductor $48.146$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [816,4,Mod(1,816)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(816, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("816.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 816 = 2^{4} \cdot 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 816.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.1455585647\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 3 \)
Twist minimal: no (minimal twist has level 51)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 12\sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 3 q^{3} + (\beta + 3) q^{5} + (\beta + 4) q^{7} + 9 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 3 q^{3} + (\beta + 3) q^{5} + (\beta + 4) q^{7} + 9 q^{9} + (\beta - 33) q^{11} + ( - 2 \beta - 1) q^{13} + (3 \beta + 9) q^{15} - 17 q^{17} + (4 \beta + 13) q^{19} + (3 \beta + 12) q^{21} + (\beta + 99) q^{23} + (6 \beta + 172) q^{25} + 27 q^{27} + ( - 4 \beta + 222) q^{29} + ( - 2 \beta - 266) q^{31} + (3 \beta - 99) q^{33} + (7 \beta + 300) q^{35} + (16 \beta + 44) q^{37} + ( - 6 \beta - 3) q^{39} + ( - 9 \beta + 285) q^{41} + ( - 4 \beta + 91) q^{43} + (9 \beta + 27) q^{45} + ( - 3 \beta - 210) q^{47} + (8 \beta - 39) q^{49} - 51 q^{51} + ( - 31 \beta - 150) q^{53} + ( - 30 \beta + 189) q^{55} + (12 \beta + 39) q^{57} + ( - 24 \beta - 222) q^{59} + ( - 39 \beta + 200) q^{61} + (9 \beta + 36) q^{63} + ( - 7 \beta - 579) q^{65} + (18 \beta + 484) q^{67} + (3 \beta + 297) q^{69} + ( - 14 \beta + 924) q^{71} + (3 \beta + 434) q^{73} + (18 \beta + 516) q^{75} + ( - 29 \beta + 156) q^{77} - 254 q^{79} + 81 q^{81} + ( - 3 \beta - 498) q^{83} + ( - 17 \beta - 51) q^{85} + ( - 12 \beta + 666) q^{87} + (63 \beta - 144) q^{89} + ( - 9 \beta - 580) q^{91} + ( - 6 \beta - 798) q^{93} + (25 \beta + 1191) q^{95} + (13 \beta + 512) q^{97} + (9 \beta - 297) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 6 q^{3} + 6 q^{5} + 8 q^{7} + 18 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 6 q^{3} + 6 q^{5} + 8 q^{7} + 18 q^{9} - 66 q^{11} - 2 q^{13} + 18 q^{15} - 34 q^{17} + 26 q^{19} + 24 q^{21} + 198 q^{23} + 344 q^{25} + 54 q^{27} + 444 q^{29} - 532 q^{31} - 198 q^{33} + 600 q^{35} + 88 q^{37} - 6 q^{39} + 570 q^{41} + 182 q^{43} + 54 q^{45} - 420 q^{47} - 78 q^{49} - 102 q^{51} - 300 q^{53} + 378 q^{55} + 78 q^{57} - 444 q^{59} + 400 q^{61} + 72 q^{63} - 1158 q^{65} + 968 q^{67} + 594 q^{69} + 1848 q^{71} + 868 q^{73} + 1032 q^{75} + 312 q^{77} - 508 q^{79} + 162 q^{81} - 996 q^{83} - 102 q^{85} + 1332 q^{87} - 288 q^{89} - 1160 q^{91} - 1596 q^{93} + 2382 q^{95} + 1024 q^{97} - 594 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
0 3.00000 0 −13.9706 0 −12.9706 0 9.00000 0
1.2 0 3.00000 0 19.9706 0 20.9706 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 816.4.a.o 2
3.b odd 2 1 2448.4.a.v 2
4.b odd 2 1 51.4.a.d 2
12.b even 2 1 153.4.a.e 2
20.d odd 2 1 1275.4.a.m 2
28.d even 2 1 2499.4.a.l 2
68.d odd 2 1 867.4.a.j 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
51.4.a.d 2 4.b odd 2 1
153.4.a.e 2 12.b even 2 1
816.4.a.o 2 1.a even 1 1 trivial
867.4.a.j 2 68.d odd 2 1
1275.4.a.m 2 20.d odd 2 1
2448.4.a.v 2 3.b odd 2 1
2499.4.a.l 2 28.d even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(816))\):

\( T_{5}^{2} - 6T_{5} - 279 \) Copy content Toggle raw display
\( T_{7}^{2} - 8T_{7} - 272 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T - 3)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 6T - 279 \) Copy content Toggle raw display
$7$ \( T^{2} - 8T - 272 \) Copy content Toggle raw display
$11$ \( T^{2} + 66T + 801 \) Copy content Toggle raw display
$13$ \( T^{2} + 2T - 1151 \) Copy content Toggle raw display
$17$ \( (T + 17)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} - 26T - 4439 \) Copy content Toggle raw display
$23$ \( T^{2} - 198T + 9513 \) Copy content Toggle raw display
$29$ \( T^{2} - 444T + 44676 \) Copy content Toggle raw display
$31$ \( T^{2} + 532T + 69604 \) Copy content Toggle raw display
$37$ \( T^{2} - 88T - 71792 \) Copy content Toggle raw display
$41$ \( T^{2} - 570T + 57897 \) Copy content Toggle raw display
$43$ \( T^{2} - 182T + 3673 \) Copy content Toggle raw display
$47$ \( T^{2} + 420T + 41508 \) Copy content Toggle raw display
$53$ \( T^{2} + 300T - 254268 \) Copy content Toggle raw display
$59$ \( T^{2} + 444T - 116604 \) Copy content Toggle raw display
$61$ \( T^{2} - 400T - 398048 \) Copy content Toggle raw display
$67$ \( T^{2} - 968T + 140944 \) Copy content Toggle raw display
$71$ \( T^{2} - 1848 T + 797328 \) Copy content Toggle raw display
$73$ \( T^{2} - 868T + 185764 \) Copy content Toggle raw display
$79$ \( (T + 254)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 996T + 245412 \) Copy content Toggle raw display
$89$ \( T^{2} + 288 T - 1122336 \) Copy content Toggle raw display
$97$ \( T^{2} - 1024 T + 213472 \) Copy content Toggle raw display
show more
show less