Properties

Label 816.4.a.a.1.1
Level $816$
Weight $4$
Character 816.1
Self dual yes
Analytic conductor $48.146$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [816,4,Mod(1,816)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(816, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("816.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 816 = 2^{4} \cdot 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 816.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.1455585647\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 51)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 816.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{3} -20.0000 q^{5} +2.00000 q^{7} +9.00000 q^{9} +48.0000 q^{11} -14.0000 q^{13} +60.0000 q^{15} -17.0000 q^{17} -92.0000 q^{19} -6.00000 q^{21} +122.000 q^{23} +275.000 q^{25} -27.0000 q^{27} -36.0000 q^{29} +182.000 q^{31} -144.000 q^{33} -40.0000 q^{35} +76.0000 q^{37} +42.0000 q^{39} +294.000 q^{41} +428.000 q^{43} -180.000 q^{45} +12.0000 q^{47} -339.000 q^{49} +51.0000 q^{51} -234.000 q^{53} -960.000 q^{55} +276.000 q^{57} +540.000 q^{59} -820.000 q^{61} +18.0000 q^{63} +280.000 q^{65} -700.000 q^{67} -366.000 q^{69} -794.000 q^{71} -1038.00 q^{73} -825.000 q^{75} +96.0000 q^{77} -858.000 q^{79} +81.0000 q^{81} -1052.00 q^{83} +340.000 q^{85} +108.000 q^{87} +1102.00 q^{89} -28.0000 q^{91} -546.000 q^{93} +1840.00 q^{95} +710.000 q^{97} +432.000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.00000 −0.577350
\(4\) 0 0
\(5\) −20.0000 −1.78885 −0.894427 0.447214i \(-0.852416\pi\)
−0.894427 + 0.447214i \(0.852416\pi\)
\(6\) 0 0
\(7\) 2.00000 0.107990 0.0539949 0.998541i \(-0.482805\pi\)
0.0539949 + 0.998541i \(0.482805\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) 48.0000 1.31569 0.657843 0.753155i \(-0.271469\pi\)
0.657843 + 0.753155i \(0.271469\pi\)
\(12\) 0 0
\(13\) −14.0000 −0.298685 −0.149342 0.988786i \(-0.547716\pi\)
−0.149342 + 0.988786i \(0.547716\pi\)
\(14\) 0 0
\(15\) 60.0000 1.03280
\(16\) 0 0
\(17\) −17.0000 −0.242536
\(18\) 0 0
\(19\) −92.0000 −1.11086 −0.555428 0.831565i \(-0.687445\pi\)
−0.555428 + 0.831565i \(0.687445\pi\)
\(20\) 0 0
\(21\) −6.00000 −0.0623480
\(22\) 0 0
\(23\) 122.000 1.10603 0.553016 0.833170i \(-0.313477\pi\)
0.553016 + 0.833170i \(0.313477\pi\)
\(24\) 0 0
\(25\) 275.000 2.20000
\(26\) 0 0
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) −36.0000 −0.230518 −0.115259 0.993335i \(-0.536770\pi\)
−0.115259 + 0.993335i \(0.536770\pi\)
\(30\) 0 0
\(31\) 182.000 1.05446 0.527228 0.849724i \(-0.323231\pi\)
0.527228 + 0.849724i \(0.323231\pi\)
\(32\) 0 0
\(33\) −144.000 −0.759612
\(34\) 0 0
\(35\) −40.0000 −0.193178
\(36\) 0 0
\(37\) 76.0000 0.337684 0.168842 0.985643i \(-0.445997\pi\)
0.168842 + 0.985643i \(0.445997\pi\)
\(38\) 0 0
\(39\) 42.0000 0.172446
\(40\) 0 0
\(41\) 294.000 1.11988 0.559940 0.828533i \(-0.310824\pi\)
0.559940 + 0.828533i \(0.310824\pi\)
\(42\) 0 0
\(43\) 428.000 1.51789 0.758946 0.651153i \(-0.225714\pi\)
0.758946 + 0.651153i \(0.225714\pi\)
\(44\) 0 0
\(45\) −180.000 −0.596285
\(46\) 0 0
\(47\) 12.0000 0.0372421 0.0186211 0.999827i \(-0.494072\pi\)
0.0186211 + 0.999827i \(0.494072\pi\)
\(48\) 0 0
\(49\) −339.000 −0.988338
\(50\) 0 0
\(51\) 51.0000 0.140028
\(52\) 0 0
\(53\) −234.000 −0.606460 −0.303230 0.952917i \(-0.598065\pi\)
−0.303230 + 0.952917i \(0.598065\pi\)
\(54\) 0 0
\(55\) −960.000 −2.35357
\(56\) 0 0
\(57\) 276.000 0.641353
\(58\) 0 0
\(59\) 540.000 1.19156 0.595780 0.803148i \(-0.296843\pi\)
0.595780 + 0.803148i \(0.296843\pi\)
\(60\) 0 0
\(61\) −820.000 −1.72115 −0.860576 0.509322i \(-0.829896\pi\)
−0.860576 + 0.509322i \(0.829896\pi\)
\(62\) 0 0
\(63\) 18.0000 0.0359966
\(64\) 0 0
\(65\) 280.000 0.534303
\(66\) 0 0
\(67\) −700.000 −1.27640 −0.638199 0.769872i \(-0.720320\pi\)
−0.638199 + 0.769872i \(0.720320\pi\)
\(68\) 0 0
\(69\) −366.000 −0.638568
\(70\) 0 0
\(71\) −794.000 −1.32719 −0.663595 0.748092i \(-0.730970\pi\)
−0.663595 + 0.748092i \(0.730970\pi\)
\(72\) 0 0
\(73\) −1038.00 −1.66423 −0.832114 0.554604i \(-0.812870\pi\)
−0.832114 + 0.554604i \(0.812870\pi\)
\(74\) 0 0
\(75\) −825.000 −1.27017
\(76\) 0 0
\(77\) 96.0000 0.142081
\(78\) 0 0
\(79\) −858.000 −1.22193 −0.610965 0.791657i \(-0.709219\pi\)
−0.610965 + 0.791657i \(0.709219\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) −1052.00 −1.39123 −0.695614 0.718415i \(-0.744868\pi\)
−0.695614 + 0.718415i \(0.744868\pi\)
\(84\) 0 0
\(85\) 340.000 0.433861
\(86\) 0 0
\(87\) 108.000 0.133090
\(88\) 0 0
\(89\) 1102.00 1.31249 0.656246 0.754547i \(-0.272143\pi\)
0.656246 + 0.754547i \(0.272143\pi\)
\(90\) 0 0
\(91\) −28.0000 −0.0322549
\(92\) 0 0
\(93\) −546.000 −0.608791
\(94\) 0 0
\(95\) 1840.00 1.98716
\(96\) 0 0
\(97\) 710.000 0.743192 0.371596 0.928395i \(-0.378811\pi\)
0.371596 + 0.928395i \(0.378811\pi\)
\(98\) 0 0
\(99\) 432.000 0.438562
\(100\) 0 0
\(101\) −1210.00 −1.19207 −0.596037 0.802957i \(-0.703259\pi\)
−0.596037 + 0.802957i \(0.703259\pi\)
\(102\) 0 0
\(103\) −644.000 −0.616070 −0.308035 0.951375i \(-0.599671\pi\)
−0.308035 + 0.951375i \(0.599671\pi\)
\(104\) 0 0
\(105\) 120.000 0.111531
\(106\) 0 0
\(107\) 256.000 0.231294 0.115647 0.993290i \(-0.463106\pi\)
0.115647 + 0.993290i \(0.463106\pi\)
\(108\) 0 0
\(109\) −1248.00 −1.09667 −0.548334 0.836260i \(-0.684738\pi\)
−0.548334 + 0.836260i \(0.684738\pi\)
\(110\) 0 0
\(111\) −228.000 −0.194962
\(112\) 0 0
\(113\) −350.000 −0.291374 −0.145687 0.989331i \(-0.546539\pi\)
−0.145687 + 0.989331i \(0.546539\pi\)
\(114\) 0 0
\(115\) −2440.00 −1.97853
\(116\) 0 0
\(117\) −126.000 −0.0995616
\(118\) 0 0
\(119\) −34.0000 −0.0261914
\(120\) 0 0
\(121\) 973.000 0.731029
\(122\) 0 0
\(123\) −882.000 −0.646563
\(124\) 0 0
\(125\) −3000.00 −2.14663
\(126\) 0 0
\(127\) 328.000 0.229176 0.114588 0.993413i \(-0.463445\pi\)
0.114588 + 0.993413i \(0.463445\pi\)
\(128\) 0 0
\(129\) −1284.00 −0.876356
\(130\) 0 0
\(131\) 1952.00 1.30189 0.650943 0.759127i \(-0.274374\pi\)
0.650943 + 0.759127i \(0.274374\pi\)
\(132\) 0 0
\(133\) −184.000 −0.119961
\(134\) 0 0
\(135\) 540.000 0.344265
\(136\) 0 0
\(137\) 2634.00 1.64261 0.821306 0.570488i \(-0.193246\pi\)
0.821306 + 0.570488i \(0.193246\pi\)
\(138\) 0 0
\(139\) −1864.00 −1.13743 −0.568714 0.822536i \(-0.692559\pi\)
−0.568714 + 0.822536i \(0.692559\pi\)
\(140\) 0 0
\(141\) −36.0000 −0.0215018
\(142\) 0 0
\(143\) −672.000 −0.392975
\(144\) 0 0
\(145\) 720.000 0.412364
\(146\) 0 0
\(147\) 1017.00 0.570617
\(148\) 0 0
\(149\) −286.000 −0.157249 −0.0786243 0.996904i \(-0.525053\pi\)
−0.0786243 + 0.996904i \(0.525053\pi\)
\(150\) 0 0
\(151\) 1624.00 0.875227 0.437613 0.899163i \(-0.355824\pi\)
0.437613 + 0.899163i \(0.355824\pi\)
\(152\) 0 0
\(153\) −153.000 −0.0808452
\(154\) 0 0
\(155\) −3640.00 −1.88627
\(156\) 0 0
\(157\) 2542.00 1.29219 0.646095 0.763257i \(-0.276401\pi\)
0.646095 + 0.763257i \(0.276401\pi\)
\(158\) 0 0
\(159\) 702.000 0.350140
\(160\) 0 0
\(161\) 244.000 0.119440
\(162\) 0 0
\(163\) −684.000 −0.328681 −0.164341 0.986404i \(-0.552550\pi\)
−0.164341 + 0.986404i \(0.552550\pi\)
\(164\) 0 0
\(165\) 2880.00 1.35883
\(166\) 0 0
\(167\) −542.000 −0.251145 −0.125573 0.992084i \(-0.540077\pi\)
−0.125573 + 0.992084i \(0.540077\pi\)
\(168\) 0 0
\(169\) −2001.00 −0.910787
\(170\) 0 0
\(171\) −828.000 −0.370285
\(172\) 0 0
\(173\) −836.000 −0.367398 −0.183699 0.982983i \(-0.558807\pi\)
−0.183699 + 0.982983i \(0.558807\pi\)
\(174\) 0 0
\(175\) 550.000 0.237578
\(176\) 0 0
\(177\) −1620.00 −0.687947
\(178\) 0 0
\(179\) 3444.00 1.43808 0.719041 0.694968i \(-0.244581\pi\)
0.719041 + 0.694968i \(0.244581\pi\)
\(180\) 0 0
\(181\) −3284.00 −1.34861 −0.674303 0.738454i \(-0.735556\pi\)
−0.674303 + 0.738454i \(0.735556\pi\)
\(182\) 0 0
\(183\) 2460.00 0.993707
\(184\) 0 0
\(185\) −1520.00 −0.604068
\(186\) 0 0
\(187\) −816.000 −0.319101
\(188\) 0 0
\(189\) −54.0000 −0.0207827
\(190\) 0 0
\(191\) 340.000 0.128804 0.0644019 0.997924i \(-0.479486\pi\)
0.0644019 + 0.997924i \(0.479486\pi\)
\(192\) 0 0
\(193\) −1498.00 −0.558696 −0.279348 0.960190i \(-0.590118\pi\)
−0.279348 + 0.960190i \(0.590118\pi\)
\(194\) 0 0
\(195\) −840.000 −0.308480
\(196\) 0 0
\(197\) −1176.00 −0.425312 −0.212656 0.977127i \(-0.568211\pi\)
−0.212656 + 0.977127i \(0.568211\pi\)
\(198\) 0 0
\(199\) 2450.00 0.872743 0.436372 0.899767i \(-0.356263\pi\)
0.436372 + 0.899767i \(0.356263\pi\)
\(200\) 0 0
\(201\) 2100.00 0.736928
\(202\) 0 0
\(203\) −72.0000 −0.0248936
\(204\) 0 0
\(205\) −5880.00 −2.00330
\(206\) 0 0
\(207\) 1098.00 0.368678
\(208\) 0 0
\(209\) −4416.00 −1.46154
\(210\) 0 0
\(211\) −1064.00 −0.347151 −0.173575 0.984821i \(-0.555532\pi\)
−0.173575 + 0.984821i \(0.555532\pi\)
\(212\) 0 0
\(213\) 2382.00 0.766253
\(214\) 0 0
\(215\) −8560.00 −2.71529
\(216\) 0 0
\(217\) 364.000 0.113871
\(218\) 0 0
\(219\) 3114.00 0.960843
\(220\) 0 0
\(221\) 238.000 0.0724417
\(222\) 0 0
\(223\) 2244.00 0.673854 0.336927 0.941531i \(-0.390613\pi\)
0.336927 + 0.941531i \(0.390613\pi\)
\(224\) 0 0
\(225\) 2475.00 0.733333
\(226\) 0 0
\(227\) −516.000 −0.150873 −0.0754364 0.997151i \(-0.524035\pi\)
−0.0754364 + 0.997151i \(0.524035\pi\)
\(228\) 0 0
\(229\) −2922.00 −0.843193 −0.421596 0.906784i \(-0.638530\pi\)
−0.421596 + 0.906784i \(0.638530\pi\)
\(230\) 0 0
\(231\) −288.000 −0.0820303
\(232\) 0 0
\(233\) 3114.00 0.875558 0.437779 0.899083i \(-0.355765\pi\)
0.437779 + 0.899083i \(0.355765\pi\)
\(234\) 0 0
\(235\) −240.000 −0.0666207
\(236\) 0 0
\(237\) 2574.00 0.705482
\(238\) 0 0
\(239\) −4124.00 −1.11615 −0.558074 0.829791i \(-0.688459\pi\)
−0.558074 + 0.829791i \(0.688459\pi\)
\(240\) 0 0
\(241\) −2034.00 −0.543658 −0.271829 0.962346i \(-0.587628\pi\)
−0.271829 + 0.962346i \(0.587628\pi\)
\(242\) 0 0
\(243\) −243.000 −0.0641500
\(244\) 0 0
\(245\) 6780.00 1.76799
\(246\) 0 0
\(247\) 1288.00 0.331795
\(248\) 0 0
\(249\) 3156.00 0.803226
\(250\) 0 0
\(251\) −996.000 −0.250466 −0.125233 0.992127i \(-0.539968\pi\)
−0.125233 + 0.992127i \(0.539968\pi\)
\(252\) 0 0
\(253\) 5856.00 1.45519
\(254\) 0 0
\(255\) −1020.00 −0.250490
\(256\) 0 0
\(257\) −3246.00 −0.787860 −0.393930 0.919141i \(-0.628885\pi\)
−0.393930 + 0.919141i \(0.628885\pi\)
\(258\) 0 0
\(259\) 152.000 0.0364665
\(260\) 0 0
\(261\) −324.000 −0.0768395
\(262\) 0 0
\(263\) −932.000 −0.218516 −0.109258 0.994013i \(-0.534847\pi\)
−0.109258 + 0.994013i \(0.534847\pi\)
\(264\) 0 0
\(265\) 4680.00 1.08487
\(266\) 0 0
\(267\) −3306.00 −0.757767
\(268\) 0 0
\(269\) −3884.00 −0.880341 −0.440170 0.897914i \(-0.645082\pi\)
−0.440170 + 0.897914i \(0.645082\pi\)
\(270\) 0 0
\(271\) 1936.00 0.433962 0.216981 0.976176i \(-0.430379\pi\)
0.216981 + 0.976176i \(0.430379\pi\)
\(272\) 0 0
\(273\) 84.0000 0.0186224
\(274\) 0 0
\(275\) 13200.0 2.89451
\(276\) 0 0
\(277\) 872.000 0.189146 0.0945729 0.995518i \(-0.469851\pi\)
0.0945729 + 0.995518i \(0.469851\pi\)
\(278\) 0 0
\(279\) 1638.00 0.351486
\(280\) 0 0
\(281\) 3198.00 0.678921 0.339460 0.940620i \(-0.389756\pi\)
0.339460 + 0.940620i \(0.389756\pi\)
\(282\) 0 0
\(283\) 1936.00 0.406655 0.203327 0.979111i \(-0.434824\pi\)
0.203327 + 0.979111i \(0.434824\pi\)
\(284\) 0 0
\(285\) −5520.00 −1.14729
\(286\) 0 0
\(287\) 588.000 0.120936
\(288\) 0 0
\(289\) 289.000 0.0588235
\(290\) 0 0
\(291\) −2130.00 −0.429082
\(292\) 0 0
\(293\) −5718.00 −1.14010 −0.570050 0.821610i \(-0.693076\pi\)
−0.570050 + 0.821610i \(0.693076\pi\)
\(294\) 0 0
\(295\) −10800.0 −2.13153
\(296\) 0 0
\(297\) −1296.00 −0.253204
\(298\) 0 0
\(299\) −1708.00 −0.330355
\(300\) 0 0
\(301\) 856.000 0.163917
\(302\) 0 0
\(303\) 3630.00 0.688244
\(304\) 0 0
\(305\) 16400.0 3.07889
\(306\) 0 0
\(307\) −684.000 −0.127159 −0.0635797 0.997977i \(-0.520252\pi\)
−0.0635797 + 0.997977i \(0.520252\pi\)
\(308\) 0 0
\(309\) 1932.00 0.355688
\(310\) 0 0
\(311\) 290.000 0.0528759 0.0264379 0.999650i \(-0.491584\pi\)
0.0264379 + 0.999650i \(0.491584\pi\)
\(312\) 0 0
\(313\) −11050.0 −1.99547 −0.997736 0.0672478i \(-0.978578\pi\)
−0.997736 + 0.0672478i \(0.978578\pi\)
\(314\) 0 0
\(315\) −360.000 −0.0643927
\(316\) 0 0
\(317\) 992.000 0.175761 0.0878806 0.996131i \(-0.471991\pi\)
0.0878806 + 0.996131i \(0.471991\pi\)
\(318\) 0 0
\(319\) −1728.00 −0.303290
\(320\) 0 0
\(321\) −768.000 −0.133538
\(322\) 0 0
\(323\) 1564.00 0.269422
\(324\) 0 0
\(325\) −3850.00 −0.657106
\(326\) 0 0
\(327\) 3744.00 0.633161
\(328\) 0 0
\(329\) 24.0000 0.00402177
\(330\) 0 0
\(331\) −2860.00 −0.474924 −0.237462 0.971397i \(-0.576316\pi\)
−0.237462 + 0.971397i \(0.576316\pi\)
\(332\) 0 0
\(333\) 684.000 0.112561
\(334\) 0 0
\(335\) 14000.0 2.28329
\(336\) 0 0
\(337\) 6298.00 1.01802 0.509012 0.860760i \(-0.330011\pi\)
0.509012 + 0.860760i \(0.330011\pi\)
\(338\) 0 0
\(339\) 1050.00 0.168225
\(340\) 0 0
\(341\) 8736.00 1.38733
\(342\) 0 0
\(343\) −1364.00 −0.214720
\(344\) 0 0
\(345\) 7320.00 1.14231
\(346\) 0 0
\(347\) 3508.00 0.542707 0.271353 0.962480i \(-0.412529\pi\)
0.271353 + 0.962480i \(0.412529\pi\)
\(348\) 0 0
\(349\) −2406.00 −0.369026 −0.184513 0.982830i \(-0.559071\pi\)
−0.184513 + 0.982830i \(0.559071\pi\)
\(350\) 0 0
\(351\) 378.000 0.0574819
\(352\) 0 0
\(353\) −1842.00 −0.277733 −0.138867 0.990311i \(-0.544346\pi\)
−0.138867 + 0.990311i \(0.544346\pi\)
\(354\) 0 0
\(355\) 15880.0 2.37415
\(356\) 0 0
\(357\) 102.000 0.0151216
\(358\) 0 0
\(359\) −3264.00 −0.479853 −0.239927 0.970791i \(-0.577123\pi\)
−0.239927 + 0.970791i \(0.577123\pi\)
\(360\) 0 0
\(361\) 1605.00 0.233999
\(362\) 0 0
\(363\) −2919.00 −0.422060
\(364\) 0 0
\(365\) 20760.0 2.97706
\(366\) 0 0
\(367\) −7354.00 −1.04598 −0.522991 0.852338i \(-0.675184\pi\)
−0.522991 + 0.852338i \(0.675184\pi\)
\(368\) 0 0
\(369\) 2646.00 0.373293
\(370\) 0 0
\(371\) −468.000 −0.0654915
\(372\) 0 0
\(373\) 11322.0 1.57166 0.785832 0.618440i \(-0.212235\pi\)
0.785832 + 0.618440i \(0.212235\pi\)
\(374\) 0 0
\(375\) 9000.00 1.23935
\(376\) 0 0
\(377\) 504.000 0.0688523
\(378\) 0 0
\(379\) −12796.0 −1.73426 −0.867132 0.498078i \(-0.834039\pi\)
−0.867132 + 0.498078i \(0.834039\pi\)
\(380\) 0 0
\(381\) −984.000 −0.132315
\(382\) 0 0
\(383\) 420.000 0.0560339 0.0280170 0.999607i \(-0.491081\pi\)
0.0280170 + 0.999607i \(0.491081\pi\)
\(384\) 0 0
\(385\) −1920.00 −0.254162
\(386\) 0 0
\(387\) 3852.00 0.505964
\(388\) 0 0
\(389\) 6426.00 0.837561 0.418780 0.908088i \(-0.362458\pi\)
0.418780 + 0.908088i \(0.362458\pi\)
\(390\) 0 0
\(391\) −2074.00 −0.268252
\(392\) 0 0
\(393\) −5856.00 −0.751644
\(394\) 0 0
\(395\) 17160.0 2.18586
\(396\) 0 0
\(397\) −13212.0 −1.67026 −0.835128 0.550056i \(-0.814606\pi\)
−0.835128 + 0.550056i \(0.814606\pi\)
\(398\) 0 0
\(399\) 552.000 0.0692596
\(400\) 0 0
\(401\) −6242.00 −0.777333 −0.388667 0.921378i \(-0.627064\pi\)
−0.388667 + 0.921378i \(0.627064\pi\)
\(402\) 0 0
\(403\) −2548.00 −0.314950
\(404\) 0 0
\(405\) −1620.00 −0.198762
\(406\) 0 0
\(407\) 3648.00 0.444287
\(408\) 0 0
\(409\) −5194.00 −0.627938 −0.313969 0.949433i \(-0.601659\pi\)
−0.313969 + 0.949433i \(0.601659\pi\)
\(410\) 0 0
\(411\) −7902.00 −0.948362
\(412\) 0 0
\(413\) 1080.00 0.128676
\(414\) 0 0
\(415\) 21040.0 2.48871
\(416\) 0 0
\(417\) 5592.00 0.656694
\(418\) 0 0
\(419\) −15956.0 −1.86039 −0.930193 0.367071i \(-0.880361\pi\)
−0.930193 + 0.367071i \(0.880361\pi\)
\(420\) 0 0
\(421\) −15254.0 −1.76588 −0.882939 0.469488i \(-0.844438\pi\)
−0.882939 + 0.469488i \(0.844438\pi\)
\(422\) 0 0
\(423\) 108.000 0.0124140
\(424\) 0 0
\(425\) −4675.00 −0.533578
\(426\) 0 0
\(427\) −1640.00 −0.185867
\(428\) 0 0
\(429\) 2016.00 0.226884
\(430\) 0 0
\(431\) 5538.00 0.618924 0.309462 0.950912i \(-0.399851\pi\)
0.309462 + 0.950912i \(0.399851\pi\)
\(432\) 0 0
\(433\) 11342.0 1.25880 0.629402 0.777080i \(-0.283300\pi\)
0.629402 + 0.777080i \(0.283300\pi\)
\(434\) 0 0
\(435\) −2160.00 −0.238078
\(436\) 0 0
\(437\) −11224.0 −1.22864
\(438\) 0 0
\(439\) −982.000 −0.106762 −0.0533808 0.998574i \(-0.517000\pi\)
−0.0533808 + 0.998574i \(0.517000\pi\)
\(440\) 0 0
\(441\) −3051.00 −0.329446
\(442\) 0 0
\(443\) 2492.00 0.267265 0.133633 0.991031i \(-0.457336\pi\)
0.133633 + 0.991031i \(0.457336\pi\)
\(444\) 0 0
\(445\) −22040.0 −2.34786
\(446\) 0 0
\(447\) 858.000 0.0907875
\(448\) 0 0
\(449\) −5498.00 −0.577877 −0.288938 0.957348i \(-0.593302\pi\)
−0.288938 + 0.957348i \(0.593302\pi\)
\(450\) 0 0
\(451\) 14112.0 1.47341
\(452\) 0 0
\(453\) −4872.00 −0.505312
\(454\) 0 0
\(455\) 560.000 0.0576994
\(456\) 0 0
\(457\) 4998.00 0.511590 0.255795 0.966731i \(-0.417663\pi\)
0.255795 + 0.966731i \(0.417663\pi\)
\(458\) 0 0
\(459\) 459.000 0.0466760
\(460\) 0 0
\(461\) −7586.00 −0.766411 −0.383205 0.923663i \(-0.625180\pi\)
−0.383205 + 0.923663i \(0.625180\pi\)
\(462\) 0 0
\(463\) −5900.00 −0.592217 −0.296108 0.955154i \(-0.595689\pi\)
−0.296108 + 0.955154i \(0.595689\pi\)
\(464\) 0 0
\(465\) 10920.0 1.08904
\(466\) 0 0
\(467\) 19404.0 1.92272 0.961360 0.275295i \(-0.0887755\pi\)
0.961360 + 0.275295i \(0.0887755\pi\)
\(468\) 0 0
\(469\) −1400.00 −0.137838
\(470\) 0 0
\(471\) −7626.00 −0.746046
\(472\) 0 0
\(473\) 20544.0 1.99707
\(474\) 0 0
\(475\) −25300.0 −2.44388
\(476\) 0 0
\(477\) −2106.00 −0.202153
\(478\) 0 0
\(479\) −2586.00 −0.246675 −0.123338 0.992365i \(-0.539360\pi\)
−0.123338 + 0.992365i \(0.539360\pi\)
\(480\) 0 0
\(481\) −1064.00 −0.100861
\(482\) 0 0
\(483\) −732.000 −0.0689589
\(484\) 0 0
\(485\) −14200.0 −1.32946
\(486\) 0 0
\(487\) −10106.0 −0.940342 −0.470171 0.882575i \(-0.655808\pi\)
−0.470171 + 0.882575i \(0.655808\pi\)
\(488\) 0 0
\(489\) 2052.00 0.189764
\(490\) 0 0
\(491\) 76.0000 0.00698540 0.00349270 0.999994i \(-0.498888\pi\)
0.00349270 + 0.999994i \(0.498888\pi\)
\(492\) 0 0
\(493\) 612.000 0.0559089
\(494\) 0 0
\(495\) −8640.00 −0.784523
\(496\) 0 0
\(497\) −1588.00 −0.143323
\(498\) 0 0
\(499\) −8096.00 −0.726306 −0.363153 0.931730i \(-0.618300\pi\)
−0.363153 + 0.931730i \(0.618300\pi\)
\(500\) 0 0
\(501\) 1626.00 0.144999
\(502\) 0 0
\(503\) −15942.0 −1.41316 −0.706579 0.707634i \(-0.749763\pi\)
−0.706579 + 0.707634i \(0.749763\pi\)
\(504\) 0 0
\(505\) 24200.0 2.13245
\(506\) 0 0
\(507\) 6003.00 0.525843
\(508\) 0 0
\(509\) −13742.0 −1.19667 −0.598333 0.801247i \(-0.704170\pi\)
−0.598333 + 0.801247i \(0.704170\pi\)
\(510\) 0 0
\(511\) −2076.00 −0.179720
\(512\) 0 0
\(513\) 2484.00 0.213784
\(514\) 0 0
\(515\) 12880.0 1.10206
\(516\) 0 0
\(517\) 576.000 0.0489989
\(518\) 0 0
\(519\) 2508.00 0.212117
\(520\) 0 0
\(521\) 11942.0 1.00420 0.502100 0.864809i \(-0.332561\pi\)
0.502100 + 0.864809i \(0.332561\pi\)
\(522\) 0 0
\(523\) 6012.00 0.502651 0.251325 0.967903i \(-0.419134\pi\)
0.251325 + 0.967903i \(0.419134\pi\)
\(524\) 0 0
\(525\) −1650.00 −0.137166
\(526\) 0 0
\(527\) −3094.00 −0.255743
\(528\) 0 0
\(529\) 2717.00 0.223309
\(530\) 0 0
\(531\) 4860.00 0.397187
\(532\) 0 0
\(533\) −4116.00 −0.334491
\(534\) 0 0
\(535\) −5120.00 −0.413751
\(536\) 0 0
\(537\) −10332.0 −0.830277
\(538\) 0 0
\(539\) −16272.0 −1.30034
\(540\) 0 0
\(541\) 6420.00 0.510198 0.255099 0.966915i \(-0.417892\pi\)
0.255099 + 0.966915i \(0.417892\pi\)
\(542\) 0 0
\(543\) 9852.00 0.778618
\(544\) 0 0
\(545\) 24960.0 1.96178
\(546\) 0 0
\(547\) −1576.00 −0.123190 −0.0615950 0.998101i \(-0.519619\pi\)
−0.0615950 + 0.998101i \(0.519619\pi\)
\(548\) 0 0
\(549\) −7380.00 −0.573717
\(550\) 0 0
\(551\) 3312.00 0.256072
\(552\) 0 0
\(553\) −1716.00 −0.131956
\(554\) 0 0
\(555\) 4560.00 0.348759
\(556\) 0 0
\(557\) 15318.0 1.16525 0.582625 0.812741i \(-0.302026\pi\)
0.582625 + 0.812741i \(0.302026\pi\)
\(558\) 0 0
\(559\) −5992.00 −0.453371
\(560\) 0 0
\(561\) 2448.00 0.184233
\(562\) 0 0
\(563\) −13220.0 −0.989621 −0.494810 0.869001i \(-0.664763\pi\)
−0.494810 + 0.869001i \(0.664763\pi\)
\(564\) 0 0
\(565\) 7000.00 0.521225
\(566\) 0 0
\(567\) 162.000 0.0119989
\(568\) 0 0
\(569\) 2794.00 0.205853 0.102927 0.994689i \(-0.467179\pi\)
0.102927 + 0.994689i \(0.467179\pi\)
\(570\) 0 0
\(571\) 14756.0 1.08147 0.540735 0.841193i \(-0.318146\pi\)
0.540735 + 0.841193i \(0.318146\pi\)
\(572\) 0 0
\(573\) −1020.00 −0.0743649
\(574\) 0 0
\(575\) 33550.0 2.43327
\(576\) 0 0
\(577\) −2846.00 −0.205339 −0.102669 0.994716i \(-0.532738\pi\)
−0.102669 + 0.994716i \(0.532738\pi\)
\(578\) 0 0
\(579\) 4494.00 0.322563
\(580\) 0 0
\(581\) −2104.00 −0.150239
\(582\) 0 0
\(583\) −11232.0 −0.797911
\(584\) 0 0
\(585\) 2520.00 0.178101
\(586\) 0 0
\(587\) 16820.0 1.18268 0.591342 0.806421i \(-0.298598\pi\)
0.591342 + 0.806421i \(0.298598\pi\)
\(588\) 0 0
\(589\) −16744.0 −1.17135
\(590\) 0 0
\(591\) 3528.00 0.245554
\(592\) 0 0
\(593\) 13314.0 0.921991 0.460995 0.887403i \(-0.347492\pi\)
0.460995 + 0.887403i \(0.347492\pi\)
\(594\) 0 0
\(595\) 680.000 0.0468526
\(596\) 0 0
\(597\) −7350.00 −0.503879
\(598\) 0 0
\(599\) −2880.00 −0.196450 −0.0982250 0.995164i \(-0.531317\pi\)
−0.0982250 + 0.995164i \(0.531317\pi\)
\(600\) 0 0
\(601\) −24854.0 −1.68688 −0.843441 0.537222i \(-0.819474\pi\)
−0.843441 + 0.537222i \(0.819474\pi\)
\(602\) 0 0
\(603\) −6300.00 −0.425466
\(604\) 0 0
\(605\) −19460.0 −1.30770
\(606\) 0 0
\(607\) −6122.00 −0.409365 −0.204682 0.978828i \(-0.565616\pi\)
−0.204682 + 0.978828i \(0.565616\pi\)
\(608\) 0 0
\(609\) 216.000 0.0143724
\(610\) 0 0
\(611\) −168.000 −0.0111237
\(612\) 0 0
\(613\) 17398.0 1.14633 0.573164 0.819441i \(-0.305716\pi\)
0.573164 + 0.819441i \(0.305716\pi\)
\(614\) 0 0
\(615\) 17640.0 1.15661
\(616\) 0 0
\(617\) 2922.00 0.190657 0.0953284 0.995446i \(-0.469610\pi\)
0.0953284 + 0.995446i \(0.469610\pi\)
\(618\) 0 0
\(619\) −9660.00 −0.627251 −0.313625 0.949547i \(-0.601544\pi\)
−0.313625 + 0.949547i \(0.601544\pi\)
\(620\) 0 0
\(621\) −3294.00 −0.212856
\(622\) 0 0
\(623\) 2204.00 0.141736
\(624\) 0 0
\(625\) 25625.0 1.64000
\(626\) 0 0
\(627\) 13248.0 0.843818
\(628\) 0 0
\(629\) −1292.00 −0.0819005
\(630\) 0 0
\(631\) −2788.00 −0.175893 −0.0879465 0.996125i \(-0.528030\pi\)
−0.0879465 + 0.996125i \(0.528030\pi\)
\(632\) 0 0
\(633\) 3192.00 0.200428
\(634\) 0 0
\(635\) −6560.00 −0.409962
\(636\) 0 0
\(637\) 4746.00 0.295202
\(638\) 0 0
\(639\) −7146.00 −0.442397
\(640\) 0 0
\(641\) −16290.0 −1.00377 −0.501885 0.864934i \(-0.667360\pi\)
−0.501885 + 0.864934i \(0.667360\pi\)
\(642\) 0 0
\(643\) 16588.0 1.01737 0.508683 0.860954i \(-0.330132\pi\)
0.508683 + 0.860954i \(0.330132\pi\)
\(644\) 0 0
\(645\) 25680.0 1.56767
\(646\) 0 0
\(647\) −22364.0 −1.35892 −0.679459 0.733714i \(-0.737785\pi\)
−0.679459 + 0.733714i \(0.737785\pi\)
\(648\) 0 0
\(649\) 25920.0 1.56772
\(650\) 0 0
\(651\) −1092.00 −0.0657432
\(652\) 0 0
\(653\) −19356.0 −1.15997 −0.579984 0.814628i \(-0.696941\pi\)
−0.579984 + 0.814628i \(0.696941\pi\)
\(654\) 0 0
\(655\) −39040.0 −2.32888
\(656\) 0 0
\(657\) −9342.00 −0.554743
\(658\) 0 0
\(659\) 4220.00 0.249450 0.124725 0.992191i \(-0.460195\pi\)
0.124725 + 0.992191i \(0.460195\pi\)
\(660\) 0 0
\(661\) −12070.0 −0.710240 −0.355120 0.934821i \(-0.615560\pi\)
−0.355120 + 0.934821i \(0.615560\pi\)
\(662\) 0 0
\(663\) −714.000 −0.0418242
\(664\) 0 0
\(665\) 3680.00 0.214593
\(666\) 0 0
\(667\) −4392.00 −0.254961
\(668\) 0 0
\(669\) −6732.00 −0.389050
\(670\) 0 0
\(671\) −39360.0 −2.26449
\(672\) 0 0
\(673\) −5914.00 −0.338734 −0.169367 0.985553i \(-0.554172\pi\)
−0.169367 + 0.985553i \(0.554172\pi\)
\(674\) 0 0
\(675\) −7425.00 −0.423390
\(676\) 0 0
\(677\) −27624.0 −1.56821 −0.784104 0.620630i \(-0.786877\pi\)
−0.784104 + 0.620630i \(0.786877\pi\)
\(678\) 0 0
\(679\) 1420.00 0.0802571
\(680\) 0 0
\(681\) 1548.00 0.0871064
\(682\) 0 0
\(683\) −29132.0 −1.63207 −0.816036 0.578001i \(-0.803833\pi\)
−0.816036 + 0.578001i \(0.803833\pi\)
\(684\) 0 0
\(685\) −52680.0 −2.93839
\(686\) 0 0
\(687\) 8766.00 0.486818
\(688\) 0 0
\(689\) 3276.00 0.181140
\(690\) 0 0
\(691\) 20336.0 1.11956 0.559781 0.828640i \(-0.310885\pi\)
0.559781 + 0.828640i \(0.310885\pi\)
\(692\) 0 0
\(693\) 864.000 0.0473602
\(694\) 0 0
\(695\) 37280.0 2.03469
\(696\) 0 0
\(697\) −4998.00 −0.271611
\(698\) 0 0
\(699\) −9342.00 −0.505503
\(700\) 0 0
\(701\) 17142.0 0.923601 0.461801 0.886984i \(-0.347204\pi\)
0.461801 + 0.886984i \(0.347204\pi\)
\(702\) 0 0
\(703\) −6992.00 −0.375118
\(704\) 0 0
\(705\) 720.000 0.0384635
\(706\) 0 0
\(707\) −2420.00 −0.128732
\(708\) 0 0
\(709\) 22784.0 1.20687 0.603435 0.797412i \(-0.293798\pi\)
0.603435 + 0.797412i \(0.293798\pi\)
\(710\) 0 0
\(711\) −7722.00 −0.407310
\(712\) 0 0
\(713\) 22204.0 1.16626
\(714\) 0 0
\(715\) 13440.0 0.702976
\(716\) 0 0
\(717\) 12372.0 0.644408
\(718\) 0 0
\(719\) −58.0000 −0.00300839 −0.00150420 0.999999i \(-0.500479\pi\)
−0.00150420 + 0.999999i \(0.500479\pi\)
\(720\) 0 0
\(721\) −1288.00 −0.0665293
\(722\) 0 0
\(723\) 6102.00 0.313881
\(724\) 0 0
\(725\) −9900.00 −0.507140
\(726\) 0 0
\(727\) −712.000 −0.0363227 −0.0181614 0.999835i \(-0.505781\pi\)
−0.0181614 + 0.999835i \(0.505781\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −7276.00 −0.368143
\(732\) 0 0
\(733\) 23050.0 1.16149 0.580744 0.814086i \(-0.302762\pi\)
0.580744 + 0.814086i \(0.302762\pi\)
\(734\) 0 0
\(735\) −20340.0 −1.02075
\(736\) 0 0
\(737\) −33600.0 −1.67934
\(738\) 0 0
\(739\) 38708.0 1.92679 0.963394 0.268088i \(-0.0863919\pi\)
0.963394 + 0.268088i \(0.0863919\pi\)
\(740\) 0 0
\(741\) −3864.00 −0.191562
\(742\) 0 0
\(743\) 11034.0 0.544816 0.272408 0.962182i \(-0.412180\pi\)
0.272408 + 0.962182i \(0.412180\pi\)
\(744\) 0 0
\(745\) 5720.00 0.281295
\(746\) 0 0
\(747\) −9468.00 −0.463743
\(748\) 0 0
\(749\) 512.000 0.0249774
\(750\) 0 0
\(751\) −7502.00 −0.364516 −0.182258 0.983251i \(-0.558341\pi\)
−0.182258 + 0.983251i \(0.558341\pi\)
\(752\) 0 0
\(753\) 2988.00 0.144607
\(754\) 0 0
\(755\) −32480.0 −1.56565
\(756\) 0 0
\(757\) −20954.0 −1.00606 −0.503029 0.864269i \(-0.667781\pi\)
−0.503029 + 0.864269i \(0.667781\pi\)
\(758\) 0 0
\(759\) −17568.0 −0.840155
\(760\) 0 0
\(761\) 8186.00 0.389937 0.194969 0.980809i \(-0.437539\pi\)
0.194969 + 0.980809i \(0.437539\pi\)
\(762\) 0 0
\(763\) −2496.00 −0.118429
\(764\) 0 0
\(765\) 3060.00 0.144620
\(766\) 0 0
\(767\) −7560.00 −0.355901
\(768\) 0 0
\(769\) −5798.00 −0.271887 −0.135944 0.990717i \(-0.543407\pi\)
−0.135944 + 0.990717i \(0.543407\pi\)
\(770\) 0 0
\(771\) 9738.00 0.454871
\(772\) 0 0
\(773\) −39950.0 −1.85886 −0.929432 0.368994i \(-0.879702\pi\)
−0.929432 + 0.368994i \(0.879702\pi\)
\(774\) 0 0
\(775\) 50050.0 2.31981
\(776\) 0 0
\(777\) −456.000 −0.0210539
\(778\) 0 0
\(779\) −27048.0 −1.24402
\(780\) 0 0
\(781\) −38112.0 −1.74616
\(782\) 0 0
\(783\) 972.000 0.0443633
\(784\) 0 0
\(785\) −50840.0 −2.31154
\(786\) 0 0
\(787\) −20656.0 −0.935587 −0.467793 0.883838i \(-0.654951\pi\)
−0.467793 + 0.883838i \(0.654951\pi\)
\(788\) 0 0
\(789\) 2796.00 0.126160
\(790\) 0 0
\(791\) −700.000 −0.0314654
\(792\) 0 0
\(793\) 11480.0 0.514082
\(794\) 0 0
\(795\) −14040.0 −0.626349
\(796\) 0 0
\(797\) −3722.00 −0.165420 −0.0827102 0.996574i \(-0.526358\pi\)
−0.0827102 + 0.996574i \(0.526358\pi\)
\(798\) 0 0
\(799\) −204.000 −0.00903254
\(800\) 0 0
\(801\) 9918.00 0.437497
\(802\) 0 0
\(803\) −49824.0 −2.18960
\(804\) 0 0
\(805\) −4880.00 −0.213661
\(806\) 0 0
\(807\) 11652.0 0.508265
\(808\) 0 0
\(809\) 6518.00 0.283264 0.141632 0.989919i \(-0.454765\pi\)
0.141632 + 0.989919i \(0.454765\pi\)
\(810\) 0 0
\(811\) 33068.0 1.43178 0.715891 0.698212i \(-0.246021\pi\)
0.715891 + 0.698212i \(0.246021\pi\)
\(812\) 0 0
\(813\) −5808.00 −0.250548
\(814\) 0 0
\(815\) 13680.0 0.587963
\(816\) 0 0
\(817\) −39376.0 −1.68616
\(818\) 0 0
\(819\) −252.000 −0.0107516
\(820\) 0 0
\(821\) −5328.00 −0.226490 −0.113245 0.993567i \(-0.536125\pi\)
−0.113245 + 0.993567i \(0.536125\pi\)
\(822\) 0 0
\(823\) −25874.0 −1.09588 −0.547941 0.836517i \(-0.684588\pi\)
−0.547941 + 0.836517i \(0.684588\pi\)
\(824\) 0 0
\(825\) −39600.0 −1.67115
\(826\) 0 0
\(827\) −29184.0 −1.22712 −0.613559 0.789649i \(-0.710263\pi\)
−0.613559 + 0.789649i \(0.710263\pi\)
\(828\) 0 0
\(829\) −9394.00 −0.393567 −0.196784 0.980447i \(-0.563050\pi\)
−0.196784 + 0.980447i \(0.563050\pi\)
\(830\) 0 0
\(831\) −2616.00 −0.109203
\(832\) 0 0
\(833\) 5763.00 0.239707
\(834\) 0 0
\(835\) 10840.0 0.449262
\(836\) 0 0
\(837\) −4914.00 −0.202930
\(838\) 0 0
\(839\) 32062.0 1.31931 0.659656 0.751567i \(-0.270702\pi\)
0.659656 + 0.751567i \(0.270702\pi\)
\(840\) 0 0
\(841\) −23093.0 −0.946861
\(842\) 0 0
\(843\) −9594.00 −0.391975
\(844\) 0 0
\(845\) 40020.0 1.62927
\(846\) 0 0
\(847\) 1946.00 0.0789437
\(848\) 0 0
\(849\) −5808.00 −0.234782
\(850\) 0 0
\(851\) 9272.00 0.373490
\(852\) 0 0
\(853\) 9152.00 0.367361 0.183680 0.982986i \(-0.441199\pi\)
0.183680 + 0.982986i \(0.441199\pi\)
\(854\) 0 0
\(855\) 16560.0 0.662386
\(856\) 0 0
\(857\) −19706.0 −0.785466 −0.392733 0.919653i \(-0.628470\pi\)
−0.392733 + 0.919653i \(0.628470\pi\)
\(858\) 0 0
\(859\) −28684.0 −1.13933 −0.569666 0.821877i \(-0.692927\pi\)
−0.569666 + 0.821877i \(0.692927\pi\)
\(860\) 0 0
\(861\) −1764.00 −0.0698223
\(862\) 0 0
\(863\) 6320.00 0.249288 0.124644 0.992202i \(-0.460221\pi\)
0.124644 + 0.992202i \(0.460221\pi\)
\(864\) 0 0
\(865\) 16720.0 0.657222
\(866\) 0 0
\(867\) −867.000 −0.0339618
\(868\) 0 0
\(869\) −41184.0 −1.60768
\(870\) 0 0
\(871\) 9800.00 0.381240
\(872\) 0 0
\(873\) 6390.00 0.247731
\(874\) 0 0
\(875\) −6000.00 −0.231814
\(876\) 0 0
\(877\) 49272.0 1.89715 0.948573 0.316558i \(-0.102527\pi\)
0.948573 + 0.316558i \(0.102527\pi\)
\(878\) 0 0
\(879\) 17154.0 0.658237
\(880\) 0 0
\(881\) −16462.0 −0.629533 −0.314767 0.949169i \(-0.601926\pi\)
−0.314767 + 0.949169i \(0.601926\pi\)
\(882\) 0 0
\(883\) −21300.0 −0.811780 −0.405890 0.913922i \(-0.633038\pi\)
−0.405890 + 0.913922i \(0.633038\pi\)
\(884\) 0 0
\(885\) 32400.0 1.23064
\(886\) 0 0
\(887\) 16590.0 0.628002 0.314001 0.949423i \(-0.398330\pi\)
0.314001 + 0.949423i \(0.398330\pi\)
\(888\) 0 0
\(889\) 656.000 0.0247486
\(890\) 0 0
\(891\) 3888.00 0.146187
\(892\) 0 0
\(893\) −1104.00 −0.0413706
\(894\) 0 0
\(895\) −68880.0 −2.57252
\(896\) 0 0
\(897\) 5124.00 0.190731
\(898\) 0 0
\(899\) −6552.00 −0.243072
\(900\) 0 0
\(901\) 3978.00 0.147088
\(902\) 0 0
\(903\) −2568.00 −0.0946375
\(904\) 0 0
\(905\) 65680.0 2.41246
\(906\) 0 0
\(907\) 36184.0 1.32466 0.662332 0.749211i \(-0.269567\pi\)
0.662332 + 0.749211i \(0.269567\pi\)
\(908\) 0 0
\(909\) −10890.0 −0.397358
\(910\) 0 0
\(911\) −15626.0 −0.568290 −0.284145 0.958781i \(-0.591710\pi\)
−0.284145 + 0.958781i \(0.591710\pi\)
\(912\) 0 0
\(913\) −50496.0 −1.83042
\(914\) 0 0
\(915\) −49200.0 −1.77760
\(916\) 0 0
\(917\) 3904.00 0.140590
\(918\) 0 0
\(919\) −36672.0 −1.31632 −0.658160 0.752878i \(-0.728665\pi\)
−0.658160 + 0.752878i \(0.728665\pi\)
\(920\) 0 0
\(921\) 2052.00 0.0734155
\(922\) 0 0
\(923\) 11116.0 0.396411
\(924\) 0 0
\(925\) 20900.0 0.742906
\(926\) 0 0
\(927\) −5796.00 −0.205357
\(928\) 0 0
\(929\) −15810.0 −0.558352 −0.279176 0.960240i \(-0.590061\pi\)
−0.279176 + 0.960240i \(0.590061\pi\)
\(930\) 0 0
\(931\) 31188.0 1.09790
\(932\) 0 0
\(933\) −870.000 −0.0305279
\(934\) 0 0
\(935\) 16320.0 0.570825
\(936\) 0 0
\(937\) 48646.0 1.69605 0.848023 0.529959i \(-0.177793\pi\)
0.848023 + 0.529959i \(0.177793\pi\)
\(938\) 0 0
\(939\) 33150.0 1.15209
\(940\) 0 0
\(941\) 43872.0 1.51986 0.759929 0.650006i \(-0.225234\pi\)
0.759929 + 0.650006i \(0.225234\pi\)
\(942\) 0 0
\(943\) 35868.0 1.23862
\(944\) 0 0
\(945\) 1080.00 0.0371771
\(946\) 0 0
\(947\) −38552.0 −1.32288 −0.661442 0.749996i \(-0.730055\pi\)
−0.661442 + 0.749996i \(0.730055\pi\)
\(948\) 0 0
\(949\) 14532.0 0.497080
\(950\) 0 0
\(951\) −2976.00 −0.101476
\(952\) 0 0
\(953\) −52954.0 −1.79995 −0.899973 0.435946i \(-0.856414\pi\)
−0.899973 + 0.435946i \(0.856414\pi\)
\(954\) 0 0
\(955\) −6800.00 −0.230411
\(956\) 0 0
\(957\) 5184.00 0.175104
\(958\) 0 0
\(959\) 5268.00 0.177385
\(960\) 0 0
\(961\) 3333.00 0.111879
\(962\) 0 0
\(963\) 2304.00 0.0770980
\(964\) 0 0
\(965\) 29960.0 0.999426
\(966\) 0 0
\(967\) 46428.0 1.54398 0.771988 0.635638i \(-0.219263\pi\)
0.771988 + 0.635638i \(0.219263\pi\)
\(968\) 0 0
\(969\) −4692.00 −0.155551
\(970\) 0 0
\(971\) 40980.0 1.35439 0.677194 0.735804i \(-0.263196\pi\)
0.677194 + 0.735804i \(0.263196\pi\)
\(972\) 0 0
\(973\) −3728.00 −0.122831
\(974\) 0 0
\(975\) 11550.0 0.379381
\(976\) 0 0
\(977\) −10206.0 −0.334206 −0.167103 0.985939i \(-0.553441\pi\)
−0.167103 + 0.985939i \(0.553441\pi\)
\(978\) 0 0
\(979\) 52896.0 1.72683
\(980\) 0 0
\(981\) −11232.0 −0.365556
\(982\) 0 0
\(983\) 44934.0 1.45796 0.728979 0.684536i \(-0.239995\pi\)
0.728979 + 0.684536i \(0.239995\pi\)
\(984\) 0 0
\(985\) 23520.0 0.760822
\(986\) 0 0
\(987\) −72.0000 −0.00232197
\(988\) 0 0
\(989\) 52216.0 1.67884
\(990\) 0 0
\(991\) −20526.0 −0.657951 −0.328976 0.944338i \(-0.606703\pi\)
−0.328976 + 0.944338i \(0.606703\pi\)
\(992\) 0 0
\(993\) 8580.00 0.274197
\(994\) 0 0
\(995\) −49000.0 −1.56121
\(996\) 0 0
\(997\) 29260.0 0.929462 0.464731 0.885452i \(-0.346151\pi\)
0.464731 + 0.885452i \(0.346151\pi\)
\(998\) 0 0
\(999\) −2052.00 −0.0649874
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 816.4.a.a.1.1 1
3.2 odd 2 2448.4.a.r.1.1 1
4.3 odd 2 51.4.a.b.1.1 1
12.11 even 2 153.4.a.c.1.1 1
20.19 odd 2 1275.4.a.e.1.1 1
28.27 even 2 2499.4.a.d.1.1 1
68.67 odd 2 867.4.a.c.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.4.a.b.1.1 1 4.3 odd 2
153.4.a.c.1.1 1 12.11 even 2
816.4.a.a.1.1 1 1.1 even 1 trivial
867.4.a.c.1.1 1 68.67 odd 2
1275.4.a.e.1.1 1 20.19 odd 2
2448.4.a.r.1.1 1 3.2 odd 2
2499.4.a.d.1.1 1 28.27 even 2