Properties

Label 816.4.a
Level $816$
Weight $4$
Character orbit 816.a
Rep. character $\chi_{816}(1,\cdot)$
Character field $\Q$
Dimension $48$
Newform subspaces $24$
Sturm bound $576$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 816 = 2^{4} \cdot 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 816.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 24 \)
Sturm bound: \(576\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(5\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(816))\).

Total New Old
Modular forms 444 48 396
Cusp forms 420 48 372
Eisenstein series 24 0 24

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(17\)FrickeDim
\(+\)\(+\)\(+\)\(+\)\(7\)
\(+\)\(+\)\(-\)\(-\)\(4\)
\(+\)\(-\)\(+\)\(-\)\(5\)
\(+\)\(-\)\(-\)\(+\)\(8\)
\(-\)\(+\)\(+\)\(-\)\(6\)
\(-\)\(+\)\(-\)\(+\)\(6\)
\(-\)\(-\)\(+\)\(+\)\(6\)
\(-\)\(-\)\(-\)\(-\)\(6\)
Plus space\(+\)\(27\)
Minus space\(-\)\(21\)

Trace form

\( 48 q + 6 q^{3} - 64 q^{7} + 432 q^{9} + 40 q^{11} - 180 q^{19} + 328 q^{23} + 1032 q^{25} + 54 q^{27} + 400 q^{29} - 312 q^{31} + 24 q^{33} - 456 q^{35} + 16 q^{37} - 732 q^{39} - 592 q^{41} + 292 q^{43}+ \cdots + 360 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(816))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 17
816.4.a.a 816.a 1.a $1$ $48.146$ \(\Q\) None 51.4.a.b \(0\) \(-3\) \(-20\) \(2\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-3q^{3}-20q^{5}+2q^{7}+9q^{9}+48q^{11}+\cdots\)
816.4.a.b 816.a 1.a $1$ $48.146$ \(\Q\) None 408.4.a.b \(0\) \(-3\) \(-7\) \(-4\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-3q^{3}-7q^{5}-4q^{7}+9q^{9}+21q^{11}+\cdots\)
816.4.a.c 816.a 1.a $1$ $48.146$ \(\Q\) None 102.4.a.b \(0\) \(-3\) \(-5\) \(32\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-3q^{3}-5q^{5}+2^{5}q^{7}+9q^{9}-3^{3}q^{11}+\cdots\)
816.4.a.d 816.a 1.a $1$ $48.146$ \(\Q\) None 204.4.a.a \(0\) \(-3\) \(-3\) \(16\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-3q^{3}-3q^{5}+2^{4}q^{7}+9q^{9}+57q^{11}+\cdots\)
816.4.a.e 816.a 1.a $1$ $48.146$ \(\Q\) None 102.4.a.c \(0\) \(3\) \(-12\) \(22\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+3q^{3}-12q^{5}+22q^{7}+9q^{9}+48q^{11}+\cdots\)
816.4.a.f 816.a 1.a $1$ $48.146$ \(\Q\) None 51.4.a.c \(0\) \(3\) \(-10\) \(8\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+3q^{3}-10q^{5}+8q^{7}+9q^{9}-12q^{11}+\cdots\)
816.4.a.g 816.a 1.a $1$ $48.146$ \(\Q\) None 102.4.a.a \(0\) \(3\) \(-3\) \(-20\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+3q^{3}-3q^{5}-20q^{7}+9q^{9}+51q^{11}+\cdots\)
816.4.a.h 816.a 1.a $1$ $48.146$ \(\Q\) None 102.4.a.d \(0\) \(3\) \(5\) \(-12\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+3q^{3}+5q^{5}-12q^{7}+9q^{9}-37q^{11}+\cdots\)
816.4.a.i 816.a 1.a $1$ $48.146$ \(\Q\) None 408.4.a.a \(0\) \(3\) \(6\) \(24\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+3q^{3}+6q^{5}+24q^{7}+9q^{9}-44q^{11}+\cdots\)
816.4.a.j 816.a 1.a $1$ $48.146$ \(\Q\) None 51.4.a.a \(0\) \(3\) \(16\) \(-34\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+3q^{3}+2^{4}q^{5}-34q^{7}+9q^{9}+48q^{11}+\cdots\)
816.4.a.k 816.a 1.a $2$ $48.146$ \(\Q(\sqrt{393}) \) None 102.4.a.f \(0\) \(-6\) \(3\) \(-22\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-3q^{3}+(1+\beta )q^{5}+(-12+2\beta )q^{7}+\cdots\)
816.4.a.l 816.a 1.a $2$ $48.146$ \(\Q(\sqrt{15}) \) None 102.4.a.e \(0\) \(-6\) \(12\) \(-16\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-3q^{3}+(6+\beta )q^{5}+(-8+\beta )q^{7}+9q^{9}+\cdots\)
816.4.a.m 816.a 1.a $2$ $48.146$ \(\Q(\sqrt{217}) \) None 204.4.a.c \(0\) \(-6\) \(19\) \(-18\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q-3q^{3}+(10-\beta )q^{5}+(-10+2\beta )q^{7}+\cdots\)
816.4.a.n 816.a 1.a $2$ $48.146$ \(\Q(\sqrt{201}) \) None 204.4.a.b \(0\) \(6\) \(3\) \(2\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+3q^{3}+(1+\beta )q^{5}+2\beta q^{7}+9q^{9}+\cdots\)
816.4.a.o 816.a 1.a $2$ $48.146$ \(\Q(\sqrt{2}) \) None 51.4.a.d \(0\) \(6\) \(6\) \(8\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+3q^{3}+(3+\beta )q^{5}+(4+\beta )q^{7}+9q^{9}+\cdots\)
816.4.a.p 816.a 1.a $2$ $48.146$ \(\Q(\sqrt{241}) \) None 408.4.a.c \(0\) \(6\) \(7\) \(-18\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+3q^{3}+(4-\beta )q^{5}+(-10+2\beta )q^{7}+\cdots\)
816.4.a.q 816.a 1.a $3$ $48.146$ 3.3.17717.1 None 408.4.a.f \(0\) \(-9\) \(-10\) \(22\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-3q^{3}+(-3-\beta _{1})q^{5}+(8-\beta _{1}+\beta _{2})q^{7}+\cdots\)
816.4.a.r 816.a 1.a $3$ $48.146$ 3.3.23321.1 None 408.4.a.g \(0\) \(-9\) \(5\) \(-20\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-3q^{3}+(2+\beta _{2})q^{5}+(-7+\beta _{1})q^{7}+\cdots\)
816.4.a.s 816.a 1.a $3$ $48.146$ 3.3.5912.1 None 51.4.a.e \(0\) \(-9\) \(8\) \(8\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q-3q^{3}+(3-\beta _{1})q^{5}+(2+3\beta _{1}+\beta _{2})q^{7}+\cdots\)
816.4.a.t 816.a 1.a $3$ $48.146$ 3.3.21324.1 None 204.4.a.d \(0\) \(9\) \(-19\) \(8\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+3q^{3}+(-7-\beta _{1}+\beta _{2})q^{5}+(3-\beta _{1}+\cdots)q^{7}+\cdots\)
816.4.a.u 816.a 1.a $3$ $48.146$ 3.3.4481.1 None 408.4.a.d \(0\) \(9\) \(-5\) \(4\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q+3q^{3}+(-1+\beta _{1}+\beta _{2})q^{5}+(2+2\beta _{1}+\cdots)q^{7}+\cdots\)
816.4.a.v 816.a 1.a $3$ $48.146$ 3.3.12821.1 None 408.4.a.e \(0\) \(9\) \(-4\) \(-28\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+3q^{3}+(-1-\beta _{1}+2\beta _{2})q^{5}+(-9+\cdots)q^{7}+\cdots\)
816.4.a.w 816.a 1.a $4$ $48.146$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 408.4.a.i \(0\) \(-12\) \(-2\) \(-32\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-3q^{3}+\beta _{1}q^{5}+(-9-\beta _{1}+\beta _{2})q^{7}+\cdots\)
816.4.a.x 816.a 1.a $4$ $48.146$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 408.4.a.h \(0\) \(12\) \(10\) \(4\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q+3q^{3}+(2-\beta _{1})q^{5}+(1+\beta _{2}+\beta _{3})q^{7}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(816))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(816)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(12))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(34))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(48))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(51))\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(68))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(102))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(136))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(204))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(272))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(408))\)\(^{\oplus 2}\)