Properties

Label 816.2.bq.a.49.1
Level $816$
Weight $2$
Character 816.49
Analytic conductor $6.516$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [816,2,Mod(49,816)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("816.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(816, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([0, 0, 0, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 816 = 2^{4} \cdot 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 816.bq (of order \(8\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,-8,0,0,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.51579280494\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{8})\)
Coefficient field: \(\Q(\zeta_{16})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 51)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 49.1
Root \(-0.382683 + 0.923880i\) of defining polynomial
Character \(\chi\) \(=\) 816.49
Dual form 816.2.bq.a.433.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.382683 - 0.923880i) q^{3} +(-1.92388 + 0.796897i) q^{5} +(1.14065 + 0.472474i) q^{7} +(-0.707107 + 0.707107i) q^{9} +(0.572726 - 1.38268i) q^{11} -4.10973i q^{13} +(1.47247 + 1.47247i) q^{15} +(-2.35743 + 3.38268i) q^{17} +(-4.81684 - 4.81684i) q^{19} -1.23463i q^{21} +(-1.26616 + 3.05679i) q^{23} +(-0.469266 + 0.469266i) q^{25} +(0.923880 + 0.382683i) q^{27} +(5.76745 - 2.38896i) q^{29} +(-3.93015 - 9.48822i) q^{31} -1.49661 q^{33} -2.57099 q^{35} +(-1.50660 - 3.63726i) q^{37} +(-3.79690 + 1.57273i) q^{39} +(-11.2132 - 4.64466i) q^{41} +(-2.43675 + 2.43675i) q^{43} +(0.796897 - 1.92388i) q^{45} +1.56940i q^{47} +(-3.87189 - 3.87189i) q^{49} +(4.02734 + 0.883480i) q^{51} +(-2.80109 - 2.80109i) q^{53} +3.11652i q^{55} +(-2.60685 + 6.29350i) q^{57} +(-5.70144 + 5.70144i) q^{59} +(3.02413 + 1.25264i) q^{61} +(-1.14065 + 0.472474i) q^{63} +(3.27503 + 7.90663i) q^{65} +2.11652 q^{67} +3.30864 q^{69} +(-0.0867259 - 0.209375i) q^{71} +(0.340203 - 0.140917i) q^{73} +(0.613126 + 0.253965i) q^{75} +(1.30656 - 1.30656i) q^{77} +(-1.03893 + 2.50819i) q^{79} -1.00000i q^{81} +(-10.1921 - 10.1921i) q^{83} +(1.83975 - 8.38650i) q^{85} +(-4.41421 - 4.41421i) q^{87} +13.6694i q^{89} +(1.94174 - 4.68777i) q^{91} +(-7.26197 + 7.26197i) q^{93} +(13.1055 + 5.42849i) q^{95} +(-2.48022 + 1.02734i) q^{97} +(0.572726 + 1.38268i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{5} - 8 q^{11} - 8 q^{17} + 8 q^{19} - 8 q^{23} - 16 q^{25} - 8 q^{31} + 8 q^{33} - 32 q^{35} - 8 q^{37} - 16 q^{39} - 24 q^{41} + 8 q^{43} - 8 q^{45} - 8 q^{49} - 32 q^{53} - 16 q^{57} - 16 q^{59}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/816\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(511\) \(545\) \(613\)
\(\chi(n)\) \(e\left(\frac{3}{8}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.382683 0.923880i −0.220942 0.533402i
\(4\) 0 0
\(5\) −1.92388 + 0.796897i −0.860385 + 0.356383i −0.768858 0.639419i \(-0.779175\pi\)
−0.0915270 + 0.995803i \(0.529175\pi\)
\(6\) 0 0
\(7\) 1.14065 + 0.472474i 0.431126 + 0.178578i 0.587684 0.809091i \(-0.300040\pi\)
−0.156558 + 0.987669i \(0.550040\pi\)
\(8\) 0 0
\(9\) −0.707107 + 0.707107i −0.235702 + 0.235702i
\(10\) 0 0
\(11\) 0.572726 1.38268i 0.172683 0.416895i −0.813716 0.581263i \(-0.802559\pi\)
0.986399 + 0.164369i \(0.0525586\pi\)
\(12\) 0 0
\(13\) 4.10973i 1.13983i −0.821702 0.569917i \(-0.806975\pi\)
0.821702 0.569917i \(-0.193025\pi\)
\(14\) 0 0
\(15\) 1.47247 + 1.47247i 0.380191 + 0.380191i
\(16\) 0 0
\(17\) −2.35743 + 3.38268i −0.571760 + 0.820421i
\(18\) 0 0
\(19\) −4.81684 4.81684i −1.10506 1.10506i −0.993790 0.111268i \(-0.964509\pi\)
−0.111268 0.993790i \(-0.535491\pi\)
\(20\) 0 0
\(21\) 1.23463i 0.269419i
\(22\) 0 0
\(23\) −1.26616 + 3.05679i −0.264013 + 0.637384i −0.999179 0.0405025i \(-0.987104\pi\)
0.735166 + 0.677887i \(0.237104\pi\)
\(24\) 0 0
\(25\) −0.469266 + 0.469266i −0.0938533 + 0.0938533i
\(26\) 0 0
\(27\) 0.923880 + 0.382683i 0.177801 + 0.0736475i
\(28\) 0 0
\(29\) 5.76745 2.38896i 1.07099 0.443618i 0.223649 0.974670i \(-0.428203\pi\)
0.847339 + 0.531052i \(0.178203\pi\)
\(30\) 0 0
\(31\) −3.93015 9.48822i −0.705876 1.70414i −0.710057 0.704144i \(-0.751331\pi\)
0.00418103 0.999991i \(-0.498669\pi\)
\(32\) 0 0
\(33\) −1.49661 −0.260526
\(34\) 0 0
\(35\) −2.57099 −0.434577
\(36\) 0 0
\(37\) −1.50660 3.63726i −0.247684 0.597962i 0.750323 0.661072i \(-0.229898\pi\)
−0.998007 + 0.0631101i \(0.979898\pi\)
\(38\) 0 0
\(39\) −3.79690 + 1.57273i −0.607990 + 0.251838i
\(40\) 0 0
\(41\) −11.2132 4.64466i −1.75121 0.725373i −0.997689 0.0679453i \(-0.978356\pi\)
−0.753517 0.657428i \(-0.771644\pi\)
\(42\) 0 0
\(43\) −2.43675 + 2.43675i −0.371601 + 0.371601i −0.868060 0.496459i \(-0.834633\pi\)
0.496459 + 0.868060i \(0.334633\pi\)
\(44\) 0 0
\(45\) 0.796897 1.92388i 0.118794 0.286795i
\(46\) 0 0
\(47\) 1.56940i 0.228920i 0.993428 + 0.114460i \(0.0365138\pi\)
−0.993428 + 0.114460i \(0.963486\pi\)
\(48\) 0 0
\(49\) −3.87189 3.87189i −0.553127 0.553127i
\(50\) 0 0
\(51\) 4.02734 + 0.883480i 0.563940 + 0.123712i
\(52\) 0 0
\(53\) −2.80109 2.80109i −0.384759 0.384759i 0.488054 0.872813i \(-0.337707\pi\)
−0.872813 + 0.488054i \(0.837707\pi\)
\(54\) 0 0
\(55\) 3.11652i 0.420231i
\(56\) 0 0
\(57\) −2.60685 + 6.29350i −0.345286 + 0.833595i
\(58\) 0 0
\(59\) −5.70144 + 5.70144i −0.742265 + 0.742265i −0.973013 0.230749i \(-0.925883\pi\)
0.230749 + 0.973013i \(0.425883\pi\)
\(60\) 0 0
\(61\) 3.02413 + 1.25264i 0.387200 + 0.160384i 0.567787 0.823175i \(-0.307800\pi\)
−0.180587 + 0.983559i \(0.557800\pi\)
\(62\) 0 0
\(63\) −1.14065 + 0.472474i −0.143709 + 0.0595261i
\(64\) 0 0
\(65\) 3.27503 + 7.90663i 0.406218 + 0.980697i
\(66\) 0 0
\(67\) 2.11652 0.258574 0.129287 0.991607i \(-0.458731\pi\)
0.129287 + 0.991607i \(0.458731\pi\)
\(68\) 0 0
\(69\) 3.30864 0.398314
\(70\) 0 0
\(71\) −0.0867259 0.209375i −0.0102925 0.0248482i 0.918650 0.395073i \(-0.129281\pi\)
−0.928942 + 0.370225i \(0.879281\pi\)
\(72\) 0 0
\(73\) 0.340203 0.140917i 0.0398177 0.0164930i −0.362686 0.931912i \(-0.618140\pi\)
0.402503 + 0.915418i \(0.368140\pi\)
\(74\) 0 0
\(75\) 0.613126 + 0.253965i 0.0707977 + 0.0293254i
\(76\) 0 0
\(77\) 1.30656 1.30656i 0.148897 0.148897i
\(78\) 0 0
\(79\) −1.03893 + 2.50819i −0.116889 + 0.282194i −0.971486 0.237097i \(-0.923804\pi\)
0.854597 + 0.519291i \(0.173804\pi\)
\(80\) 0 0
\(81\) 1.00000i 0.111111i
\(82\) 0 0
\(83\) −10.1921 10.1921i −1.11873 1.11873i −0.991928 0.126803i \(-0.959528\pi\)
−0.126803 0.991928i \(-0.540472\pi\)
\(84\) 0 0
\(85\) 1.83975 8.38650i 0.199549 0.909644i
\(86\) 0 0
\(87\) −4.41421 4.41421i −0.473253 0.473253i
\(88\) 0 0
\(89\) 13.6694i 1.44895i 0.689299 + 0.724477i \(0.257918\pi\)
−0.689299 + 0.724477i \(0.742082\pi\)
\(90\) 0 0
\(91\) 1.94174 4.68777i 0.203550 0.491412i
\(92\) 0 0
\(93\) −7.26197 + 7.26197i −0.753031 + 0.753031i
\(94\) 0 0
\(95\) 13.1055 + 5.42849i 1.34460 + 0.556952i
\(96\) 0 0
\(97\) −2.48022 + 1.02734i −0.251828 + 0.104311i −0.505027 0.863104i \(-0.668517\pi\)
0.253199 + 0.967414i \(0.418517\pi\)
\(98\) 0 0
\(99\) 0.572726 + 1.38268i 0.0575612 + 0.138965i
\(100\) 0 0
\(101\) 2.38009 0.236827 0.118414 0.992964i \(-0.462219\pi\)
0.118414 + 0.992964i \(0.462219\pi\)
\(102\) 0 0
\(103\) 13.2909 1.30959 0.654796 0.755806i \(-0.272755\pi\)
0.654796 + 0.755806i \(0.272755\pi\)
\(104\) 0 0
\(105\) 0.983875 + 2.37529i 0.0960164 + 0.231804i
\(106\) 0 0
\(107\) 12.0773 5.00260i 1.16756 0.483619i 0.287175 0.957878i \(-0.407284\pi\)
0.880386 + 0.474259i \(0.157284\pi\)
\(108\) 0 0
\(109\) −0.883480 0.365949i −0.0846220 0.0350516i 0.339971 0.940436i \(-0.389583\pi\)
−0.424593 + 0.905384i \(0.639583\pi\)
\(110\) 0 0
\(111\) −2.78384 + 2.78384i −0.264230 + 0.264230i
\(112\) 0 0
\(113\) 3.30237 7.97263i 0.310661 0.750002i −0.689020 0.724742i \(-0.741959\pi\)
0.999681 0.0252597i \(-0.00804126\pi\)
\(114\) 0 0
\(115\) 6.88989i 0.642486i
\(116\) 0 0
\(117\) 2.90602 + 2.90602i 0.268662 + 0.268662i
\(118\) 0 0
\(119\) −4.28723 + 2.74464i −0.393010 + 0.251601i
\(120\) 0 0
\(121\) 6.19438 + 6.19438i 0.563125 + 0.563125i
\(122\) 0 0
\(123\) 12.1371i 1.09436i
\(124\) 0 0
\(125\) 4.51334 10.8962i 0.403685 0.974583i
\(126\) 0 0
\(127\) 10.0044 10.0044i 0.887749 0.887749i −0.106557 0.994307i \(-0.533983\pi\)
0.994307 + 0.106557i \(0.0339828\pi\)
\(128\) 0 0
\(129\) 3.18377 + 1.31876i 0.280315 + 0.116110i
\(130\) 0 0
\(131\) 2.39363 0.991476i 0.209133 0.0866256i −0.275658 0.961256i \(-0.588896\pi\)
0.484791 + 0.874630i \(0.338896\pi\)
\(132\) 0 0
\(133\) −3.21851 7.77017i −0.279080 0.673759i
\(134\) 0 0
\(135\) −2.08239 −0.179224
\(136\) 0 0
\(137\) 15.2684 1.30447 0.652233 0.758018i \(-0.273832\pi\)
0.652233 + 0.758018i \(0.273832\pi\)
\(138\) 0 0
\(139\) 1.54686 + 3.73445i 0.131203 + 0.316752i 0.975805 0.218643i \(-0.0701630\pi\)
−0.844602 + 0.535394i \(0.820163\pi\)
\(140\) 0 0
\(141\) 1.44993 0.600582i 0.122106 0.0505782i
\(142\) 0 0
\(143\) −5.68246 2.35375i −0.475191 0.196831i
\(144\) 0 0
\(145\) −9.19212 + 9.19212i −0.763364 + 0.763364i
\(146\) 0 0
\(147\) −2.09545 + 5.05887i −0.172830 + 0.417249i
\(148\) 0 0
\(149\) 18.1219i 1.48460i 0.670065 + 0.742302i \(0.266266\pi\)
−0.670065 + 0.742302i \(0.733734\pi\)
\(150\) 0 0
\(151\) −3.72739 3.72739i −0.303331 0.303331i 0.538985 0.842316i \(-0.318808\pi\)
−0.842316 + 0.538985i \(0.818808\pi\)
\(152\) 0 0
\(153\) −0.724967 4.05887i −0.0586101 0.328140i
\(154\) 0 0
\(155\) 15.1223 + 15.1223i 1.21465 + 1.21465i
\(156\) 0 0
\(157\) 3.80334i 0.303540i −0.988416 0.151770i \(-0.951503\pi\)
0.988416 0.151770i \(-0.0484972\pi\)
\(158\) 0 0
\(159\) −1.51594 + 3.65980i −0.120222 + 0.290241i
\(160\) 0 0
\(161\) −2.88850 + 2.88850i −0.227646 + 0.227646i
\(162\) 0 0
\(163\) −8.37849 3.47049i −0.656254 0.271829i 0.0296072 0.999562i \(-0.490574\pi\)
−0.685861 + 0.727732i \(0.740574\pi\)
\(164\) 0 0
\(165\) 2.87929 1.19264i 0.224152 0.0928469i
\(166\) 0 0
\(167\) −3.40115 8.21111i −0.263189 0.635395i 0.735943 0.677043i \(-0.236739\pi\)
−0.999132 + 0.0416485i \(0.986739\pi\)
\(168\) 0 0
\(169\) −3.88989 −0.299223
\(170\) 0 0
\(171\) 6.81204 0.520930
\(172\) 0 0
\(173\) −4.68679 11.3149i −0.356330 0.860257i −0.995810 0.0914490i \(-0.970850\pi\)
0.639480 0.768808i \(-0.279150\pi\)
\(174\) 0 0
\(175\) −0.756986 + 0.313554i −0.0572227 + 0.0237024i
\(176\) 0 0
\(177\) 7.44930 + 3.08560i 0.559923 + 0.231928i
\(178\) 0 0
\(179\) −7.50756 + 7.50756i −0.561141 + 0.561141i −0.929632 0.368490i \(-0.879875\pi\)
0.368490 + 0.929632i \(0.379875\pi\)
\(180\) 0 0
\(181\) 6.32477 15.2693i 0.470116 1.13496i −0.493995 0.869465i \(-0.664464\pi\)
0.964112 0.265497i \(-0.0855360\pi\)
\(182\) 0 0
\(183\) 3.27330i 0.241969i
\(184\) 0 0
\(185\) 5.79704 + 5.79704i 0.426207 + 0.426207i
\(186\) 0 0
\(187\) 3.32702 + 5.19692i 0.243296 + 0.380037i
\(188\) 0 0
\(189\) 0.873017 + 0.873017i 0.0635027 + 0.0635027i
\(190\) 0 0
\(191\) 12.0167i 0.869498i 0.900552 + 0.434749i \(0.143163\pi\)
−0.900552 + 0.434749i \(0.856837\pi\)
\(192\) 0 0
\(193\) 4.10172 9.90244i 0.295249 0.712793i −0.704746 0.709460i \(-0.748939\pi\)
0.999994 0.00333326i \(-0.00106101\pi\)
\(194\) 0 0
\(195\) 6.05147 6.05147i 0.433355 0.433355i
\(196\) 0 0
\(197\) −2.92772 1.21270i −0.208592 0.0864015i 0.275941 0.961174i \(-0.411010\pi\)
−0.484533 + 0.874773i \(0.661010\pi\)
\(198\) 0 0
\(199\) 12.6337 5.23304i 0.895578 0.370960i 0.113060 0.993588i \(-0.463935\pi\)
0.782518 + 0.622628i \(0.213935\pi\)
\(200\) 0 0
\(201\) −0.809957 1.95541i −0.0571300 0.137924i
\(202\) 0 0
\(203\) 7.70737 0.540951
\(204\) 0 0
\(205\) 25.2741 1.76522
\(206\) 0 0
\(207\) −1.26616 3.05679i −0.0880044 0.212461i
\(208\) 0 0
\(209\) −9.41889 + 3.90143i −0.651518 + 0.269868i
\(210\) 0 0
\(211\) −5.47727 2.26876i −0.377071 0.156188i 0.186095 0.982532i \(-0.440417\pi\)
−0.563166 + 0.826344i \(0.690417\pi\)
\(212\) 0 0
\(213\) −0.160248 + 0.160248i −0.0109800 + 0.0109800i
\(214\) 0 0
\(215\) 2.74618 6.62986i 0.187288 0.452153i
\(216\) 0 0
\(217\) 12.6797i 0.860751i
\(218\) 0 0
\(219\) −0.260380 0.260380i −0.0175948 0.0175948i
\(220\) 0 0
\(221\) 13.9019 + 9.68838i 0.935144 + 0.651711i
\(222\) 0 0
\(223\) 18.4892 + 18.4892i 1.23813 + 1.23813i 0.960766 + 0.277361i \(0.0894599\pi\)
0.277361 + 0.960766i \(0.410540\pi\)
\(224\) 0 0
\(225\) 0.663643i 0.0442428i
\(226\) 0 0
\(227\) −4.19979 + 10.1392i −0.278750 + 0.672961i −0.999802 0.0199199i \(-0.993659\pi\)
0.721052 + 0.692881i \(0.243659\pi\)
\(228\) 0 0
\(229\) −10.2440 + 10.2440i −0.676942 + 0.676942i −0.959307 0.282365i \(-0.908881\pi\)
0.282365 + 0.959307i \(0.408881\pi\)
\(230\) 0 0
\(231\) −1.70711 0.707107i −0.112319 0.0465242i
\(232\) 0 0
\(233\) −17.6443 + 7.30850i −1.15592 + 0.478796i −0.876513 0.481378i \(-0.840136\pi\)
−0.279402 + 0.960174i \(0.590136\pi\)
\(234\) 0 0
\(235\) −1.25065 3.01933i −0.0815833 0.196959i
\(236\) 0 0
\(237\) 2.71485 0.176348
\(238\) 0 0
\(239\) −0.740970 −0.0479294 −0.0239647 0.999713i \(-0.507629\pi\)
−0.0239647 + 0.999713i \(0.507629\pi\)
\(240\) 0 0
\(241\) 8.17478 + 19.7357i 0.526584 + 1.27129i 0.933748 + 0.357931i \(0.116518\pi\)
−0.407164 + 0.913355i \(0.633482\pi\)
\(242\) 0 0
\(243\) −0.923880 + 0.382683i −0.0592669 + 0.0245492i
\(244\) 0 0
\(245\) 10.5346 + 4.36355i 0.673028 + 0.278777i
\(246\) 0 0
\(247\) −19.7959 + 19.7959i −1.25958 + 1.25958i
\(248\) 0 0
\(249\) −5.51594 + 13.3167i −0.349558 + 0.843909i
\(250\) 0 0
\(251\) 0.938819i 0.0592577i −0.999561 0.0296289i \(-0.990567\pi\)
0.999561 0.0296289i \(-0.00943254\pi\)
\(252\) 0 0
\(253\) 3.50141 + 3.50141i 0.220132 + 0.220132i
\(254\) 0 0
\(255\) −8.45216 + 1.50967i −0.529295 + 0.0945390i
\(256\) 0 0
\(257\) 11.1930 + 11.1930i 0.698199 + 0.698199i 0.964022 0.265823i \(-0.0856436\pi\)
−0.265823 + 0.964022i \(0.585644\pi\)
\(258\) 0 0
\(259\) 4.86068i 0.302028i
\(260\) 0 0
\(261\) −2.38896 + 5.76745i −0.147873 + 0.356996i
\(262\) 0 0
\(263\) −8.10152 + 8.10152i −0.499561 + 0.499561i −0.911301 0.411740i \(-0.864921\pi\)
0.411740 + 0.911301i \(0.364921\pi\)
\(264\) 0 0
\(265\) 7.62113 + 3.15678i 0.468163 + 0.193919i
\(266\) 0 0
\(267\) 12.6289 5.23105i 0.772875 0.320135i
\(268\) 0 0
\(269\) −7.33564 17.7098i −0.447262 1.07979i −0.973344 0.229351i \(-0.926339\pi\)
0.526082 0.850434i \(-0.323661\pi\)
\(270\) 0 0
\(271\) 6.82805 0.414775 0.207387 0.978259i \(-0.433504\pi\)
0.207387 + 0.978259i \(0.433504\pi\)
\(272\) 0 0
\(273\) −5.07401 −0.307093
\(274\) 0 0
\(275\) 0.380086 + 0.917608i 0.0229200 + 0.0553338i
\(276\) 0 0
\(277\) −7.50915 + 3.11039i −0.451181 + 0.186885i −0.596690 0.802472i \(-0.703518\pi\)
0.145509 + 0.989357i \(0.453518\pi\)
\(278\) 0 0
\(279\) 9.48822 + 3.93015i 0.568045 + 0.235292i
\(280\) 0 0
\(281\) −8.20741 + 8.20741i −0.489613 + 0.489613i −0.908184 0.418571i \(-0.862531\pi\)
0.418571 + 0.908184i \(0.362531\pi\)
\(282\) 0 0
\(283\) 2.32061 5.60244i 0.137946 0.333030i −0.839777 0.542932i \(-0.817314\pi\)
0.977723 + 0.209901i \(0.0673142\pi\)
\(284\) 0 0
\(285\) 14.1853i 0.840267i
\(286\) 0 0
\(287\) −10.5959 10.5959i −0.625455 0.625455i
\(288\) 0 0
\(289\) −5.88509 15.9488i −0.346182 0.938167i
\(290\) 0 0
\(291\) 1.89828 + 1.89828i 0.111279 + 0.111279i
\(292\) 0 0
\(293\) 6.87547i 0.401669i 0.979625 + 0.200835i \(0.0643654\pi\)
−0.979625 + 0.200835i \(0.935635\pi\)
\(294\) 0 0
\(295\) 6.42543 15.5124i 0.374103 0.903164i
\(296\) 0 0
\(297\) 1.05826 1.05826i 0.0614065 0.0614065i
\(298\) 0 0
\(299\) 12.5626 + 5.20359i 0.726513 + 0.300931i
\(300\) 0 0
\(301\) −3.93079 + 1.62819i −0.226567 + 0.0938471i
\(302\) 0 0
\(303\) −0.910819 2.19891i −0.0523252 0.126324i
\(304\) 0 0
\(305\) −6.81629 −0.390300
\(306\) 0 0
\(307\) −22.2451 −1.26959 −0.634797 0.772679i \(-0.718916\pi\)
−0.634797 + 0.772679i \(0.718916\pi\)
\(308\) 0 0
\(309\) −5.08621 12.2792i −0.289344 0.698539i
\(310\) 0 0
\(311\) −5.00208 + 2.07193i −0.283642 + 0.117488i −0.519969 0.854185i \(-0.674056\pi\)
0.236327 + 0.971674i \(0.424056\pi\)
\(312\) 0 0
\(313\) −10.4348 4.32222i −0.589808 0.244306i 0.0677602 0.997702i \(-0.478415\pi\)
−0.657568 + 0.753395i \(0.728415\pi\)
\(314\) 0 0
\(315\) 1.81796 1.81796i 0.102431 0.102431i
\(316\) 0 0
\(317\) 7.06127 17.0474i 0.396600 0.957477i −0.591866 0.806036i \(-0.701609\pi\)
0.988466 0.151441i \(-0.0483914\pi\)
\(318\) 0 0
\(319\) 9.34277i 0.523095i
\(320\) 0 0
\(321\) −9.24360 9.24360i −0.515927 0.515927i
\(322\) 0 0
\(323\) 27.6492 4.93850i 1.53844 0.274786i
\(324\) 0 0
\(325\) 1.92856 + 1.92856i 0.106977 + 0.106977i
\(326\) 0 0
\(327\) 0.956272i 0.0528819i
\(328\) 0 0
\(329\) −0.741499 + 1.79014i −0.0408802 + 0.0986934i
\(330\) 0 0
\(331\) −4.07722 + 4.07722i −0.224104 + 0.224104i −0.810224 0.586120i \(-0.800655\pi\)
0.586120 + 0.810224i \(0.300655\pi\)
\(332\) 0 0
\(333\) 3.63726 + 1.50660i 0.199321 + 0.0825613i
\(334\) 0 0
\(335\) −4.07193 + 1.68665i −0.222473 + 0.0921515i
\(336\) 0 0
\(337\) 6.22652 + 15.0321i 0.339180 + 0.818853i 0.997795 + 0.0663727i \(0.0211426\pi\)
−0.658615 + 0.752480i \(0.728857\pi\)
\(338\) 0 0
\(339\) −8.62951 −0.468691
\(340\) 0 0
\(341\) −15.3701 −0.832338
\(342\) 0 0
\(343\) −5.89443 14.2304i −0.318269 0.768370i
\(344\) 0 0
\(345\) −6.36543 + 2.63665i −0.342703 + 0.141952i
\(346\) 0 0
\(347\) −3.96379 1.64186i −0.212787 0.0881394i 0.273744 0.961803i \(-0.411738\pi\)
−0.486531 + 0.873663i \(0.661738\pi\)
\(348\) 0 0
\(349\) −10.0093 + 10.0093i −0.535787 + 0.535787i −0.922289 0.386501i \(-0.873683\pi\)
0.386501 + 0.922289i \(0.373683\pi\)
\(350\) 0 0
\(351\) 1.57273 3.79690i 0.0839459 0.202663i
\(352\) 0 0
\(353\) 23.8142i 1.26750i −0.773536 0.633752i \(-0.781514\pi\)
0.773536 0.633752i \(-0.218486\pi\)
\(354\) 0 0
\(355\) 0.333700 + 0.333700i 0.0177110 + 0.0177110i
\(356\) 0 0
\(357\) 4.17637 + 2.91056i 0.221037 + 0.154043i
\(358\) 0 0
\(359\) −24.9380 24.9380i −1.31618 1.31618i −0.916777 0.399400i \(-0.869219\pi\)
−0.399400 0.916777i \(-0.630781\pi\)
\(360\) 0 0
\(361\) 27.4039i 1.44231i
\(362\) 0 0
\(363\) 3.35237 8.09334i 0.175954 0.424790i
\(364\) 0 0
\(365\) −0.542213 + 0.542213i −0.0283807 + 0.0283807i
\(366\) 0 0
\(367\) 15.0788 + 6.24585i 0.787108 + 0.326031i 0.739780 0.672849i \(-0.234930\pi\)
0.0473275 + 0.998879i \(0.484930\pi\)
\(368\) 0 0
\(369\) 11.2132 4.64466i 0.583735 0.241791i
\(370\) 0 0
\(371\) −1.87163 4.51851i −0.0971700 0.234589i
\(372\) 0 0
\(373\) 25.0156 1.29526 0.647630 0.761955i \(-0.275760\pi\)
0.647630 + 0.761955i \(0.275760\pi\)
\(374\) 0 0
\(375\) −11.7939 −0.609036
\(376\) 0 0
\(377\) −9.81796 23.7027i −0.505651 1.22075i
\(378\) 0 0
\(379\) −30.1444 + 12.4862i −1.54842 + 0.641375i −0.983029 0.183451i \(-0.941273\pi\)
−0.565387 + 0.824826i \(0.691273\pi\)
\(380\) 0 0
\(381\) −13.0714 5.41436i −0.669669 0.277386i
\(382\) 0 0
\(383\) −0.413840 + 0.413840i −0.0211462 + 0.0211462i −0.717601 0.696455i \(-0.754760\pi\)
0.696455 + 0.717601i \(0.254760\pi\)
\(384\) 0 0
\(385\) −1.47247 + 3.55487i −0.0750442 + 0.181173i
\(386\) 0 0
\(387\) 3.44609i 0.175175i
\(388\) 0 0
\(389\) −15.6455 15.6455i −0.793258 0.793258i 0.188765 0.982022i \(-0.439552\pi\)
−0.982022 + 0.188765i \(0.939552\pi\)
\(390\) 0 0
\(391\) −7.35526 11.4892i −0.371972 0.581033i
\(392\) 0 0
\(393\) −1.83201 1.83201i −0.0924126 0.0924126i
\(394\) 0 0
\(395\) 5.65338i 0.284453i
\(396\) 0 0
\(397\) −2.23116 + 5.38650i −0.111979 + 0.270341i −0.969927 0.243395i \(-0.921739\pi\)
0.857948 + 0.513736i \(0.171739\pi\)
\(398\) 0 0
\(399\) −5.94703 + 5.94703i −0.297724 + 0.297724i
\(400\) 0 0
\(401\) 4.79513 + 1.98621i 0.239458 + 0.0991865i 0.499185 0.866495i \(-0.333633\pi\)
−0.259728 + 0.965682i \(0.583633\pi\)
\(402\) 0 0
\(403\) −38.9941 + 16.1519i −1.94243 + 0.804582i
\(404\) 0 0
\(405\) 0.796897 + 1.92388i 0.0395981 + 0.0955983i
\(406\) 0 0
\(407\) −5.89205 −0.292058
\(408\) 0 0
\(409\) −27.2400 −1.34693 −0.673465 0.739219i \(-0.735195\pi\)
−0.673465 + 0.739219i \(0.735195\pi\)
\(410\) 0 0
\(411\) −5.84296 14.1062i −0.288212 0.695805i
\(412\) 0 0
\(413\) −9.19715 + 3.80958i −0.452562 + 0.187457i
\(414\) 0 0
\(415\) 27.7305 + 11.4863i 1.36124 + 0.563843i
\(416\) 0 0
\(417\) 2.85822 2.85822i 0.139968 0.139968i
\(418\) 0 0
\(419\) 5.36909 12.9621i 0.262297 0.633242i −0.736782 0.676130i \(-0.763656\pi\)
0.999080 + 0.0428878i \(0.0136558\pi\)
\(420\) 0 0
\(421\) 15.3811i 0.749627i −0.927100 0.374814i \(-0.877707\pi\)
0.927100 0.374814i \(-0.122293\pi\)
\(422\) 0 0
\(423\) −1.10973 1.10973i −0.0539570 0.0539570i
\(424\) 0 0
\(425\) −0.481119 2.69364i −0.0233377 0.130661i
\(426\) 0 0
\(427\) 2.85765 + 2.85765i 0.138291 + 0.138291i
\(428\) 0 0
\(429\) 6.15065i 0.296956i
\(430\) 0 0
\(431\) 6.27243 15.1430i 0.302133 0.729413i −0.697782 0.716311i \(-0.745829\pi\)
0.999914 0.0131020i \(-0.00417060\pi\)
\(432\) 0 0
\(433\) 15.3517 15.3517i 0.737757 0.737757i −0.234386 0.972144i \(-0.575308\pi\)
0.972144 + 0.234386i \(0.0753080\pi\)
\(434\) 0 0
\(435\) 12.0101 + 4.97474i 0.575840 + 0.238521i
\(436\) 0 0
\(437\) 20.8230 8.62515i 0.996097 0.412597i
\(438\) 0 0
\(439\) 9.00469 + 21.7392i 0.429770 + 1.03756i 0.979360 + 0.202123i \(0.0647841\pi\)
−0.549590 + 0.835435i \(0.685216\pi\)
\(440\) 0 0
\(441\) 5.47568 0.260747
\(442\) 0 0
\(443\) 15.4238 0.732808 0.366404 0.930456i \(-0.380589\pi\)
0.366404 + 0.930456i \(0.380589\pi\)
\(444\) 0 0
\(445\) −10.8931 26.2983i −0.516383 1.24666i
\(446\) 0 0
\(447\) 16.7425 6.93495i 0.791891 0.328012i
\(448\) 0 0
\(449\) 12.5181 + 5.18515i 0.590764 + 0.244702i 0.657979 0.753036i \(-0.271411\pi\)
−0.0672154 + 0.997738i \(0.521411\pi\)
\(450\) 0 0
\(451\) −12.8442 + 12.8442i −0.604809 + 0.604809i
\(452\) 0 0
\(453\) −2.01725 + 4.87007i −0.0947787 + 0.228816i
\(454\) 0 0
\(455\) 10.5661i 0.495346i
\(456\) 0 0
\(457\) −10.8806 10.8806i −0.508972 0.508972i 0.405239 0.914211i \(-0.367188\pi\)
−0.914211 + 0.405239i \(0.867188\pi\)
\(458\) 0 0
\(459\) −3.47247 + 2.22304i −0.162081 + 0.103763i
\(460\) 0 0
\(461\) 14.7082 + 14.7082i 0.685031 + 0.685031i 0.961129 0.276099i \(-0.0890416\pi\)
−0.276099 + 0.961129i \(0.589042\pi\)
\(462\) 0 0
\(463\) 26.4325i 1.22842i 0.789141 + 0.614212i \(0.210526\pi\)
−0.789141 + 0.614212i \(0.789474\pi\)
\(464\) 0 0
\(465\) 8.18412 19.7582i 0.379529 0.916265i
\(466\) 0 0
\(467\) 5.07058 5.07058i 0.234638 0.234638i −0.579987 0.814626i \(-0.696942\pi\)
0.814626 + 0.579987i \(0.196942\pi\)
\(468\) 0 0
\(469\) 2.41421 + 1.00000i 0.111478 + 0.0461757i
\(470\) 0 0
\(471\) −3.51383 + 1.45548i −0.161909 + 0.0670648i
\(472\) 0 0
\(473\) 1.97367 + 4.76485i 0.0907492 + 0.219088i
\(474\) 0 0
\(475\) 4.52076 0.207427
\(476\) 0 0
\(477\) 3.96134 0.181377
\(478\) 0 0
\(479\) −1.12279 2.71066i −0.0513017 0.123853i 0.896151 0.443749i \(-0.146352\pi\)
−0.947453 + 0.319896i \(0.896352\pi\)
\(480\) 0 0
\(481\) −14.9482 + 6.19173i −0.681577 + 0.282319i
\(482\) 0 0
\(483\) 3.77401 + 1.56325i 0.171724 + 0.0711302i
\(484\) 0 0
\(485\) 3.95295 3.95295i 0.179494 0.179494i
\(486\) 0 0
\(487\) 8.89432 21.4728i 0.403040 0.973025i −0.583884 0.811837i \(-0.698468\pi\)
0.986924 0.161188i \(-0.0515324\pi\)
\(488\) 0 0
\(489\) 9.06882i 0.410106i
\(490\) 0 0
\(491\) −9.65807 9.65807i −0.435863 0.435863i 0.454754 0.890617i \(-0.349727\pi\)
−0.890617 + 0.454754i \(0.849727\pi\)
\(492\) 0 0
\(493\) −5.51525 + 25.1412i −0.248394 + 1.13230i
\(494\) 0 0
\(495\) −2.20371 2.20371i −0.0990495 0.0990495i
\(496\) 0 0
\(497\) 0.279799i 0.0125507i
\(498\) 0 0
\(499\) 2.88245 6.95884i 0.129036 0.311521i −0.846137 0.532966i \(-0.821077\pi\)
0.975173 + 0.221445i \(0.0710774\pi\)
\(500\) 0 0
\(501\) −6.28451 + 6.28451i −0.280771 + 0.280771i
\(502\) 0 0
\(503\) −23.7585 9.84111i −1.05934 0.438794i −0.216124 0.976366i \(-0.569341\pi\)
−0.843218 + 0.537572i \(0.819341\pi\)
\(504\) 0 0
\(505\) −4.57900 + 1.89668i −0.203763 + 0.0844013i
\(506\) 0 0
\(507\) 1.48860 + 3.59379i 0.0661110 + 0.159606i
\(508\) 0 0
\(509\) −34.7796 −1.54158 −0.770789 0.637090i \(-0.780138\pi\)
−0.770789 + 0.637090i \(0.780138\pi\)
\(510\) 0 0
\(511\) 0.454632 0.0201117
\(512\) 0 0
\(513\) −2.60685 6.29350i −0.115095 0.277865i
\(514\) 0 0
\(515\) −25.5701 + 10.5915i −1.12675 + 0.466716i
\(516\) 0 0
\(517\) 2.16998 + 0.898835i 0.0954356 + 0.0395307i
\(518\) 0 0
\(519\) −8.66006 + 8.66006i −0.380135 + 0.380135i
\(520\) 0 0
\(521\) 17.0594 41.1851i 0.747387 1.80435i 0.174617 0.984637i \(-0.444131\pi\)
0.572771 0.819716i \(-0.305869\pi\)
\(522\) 0 0
\(523\) 19.8918i 0.869808i 0.900477 + 0.434904i \(0.143218\pi\)
−0.900477 + 0.434904i \(0.856782\pi\)
\(524\) 0 0
\(525\) 0.579372 + 0.579372i 0.0252859 + 0.0252859i
\(526\) 0 0
\(527\) 41.3607 + 9.07332i 1.80170 + 0.395240i
\(528\) 0 0
\(529\) 8.52267 + 8.52267i 0.370551 + 0.370551i
\(530\) 0 0
\(531\) 8.06306i 0.349907i
\(532\) 0 0
\(533\) −19.0883 + 46.0832i −0.826806 + 1.99609i
\(534\) 0 0
\(535\) −19.2488 + 19.2488i −0.832198 + 0.832198i
\(536\) 0 0
\(537\) 9.80910 + 4.06306i 0.423294 + 0.175334i
\(538\) 0 0
\(539\) −7.57113 + 3.13607i −0.326112 + 0.135080i
\(540\) 0 0
\(541\) −0.299022 0.721903i −0.0128560 0.0310370i 0.917321 0.398148i \(-0.130347\pi\)
−0.930177 + 0.367111i \(0.880347\pi\)
\(542\) 0 0
\(543\) −16.5274 −0.709259
\(544\) 0 0
\(545\) 1.99133 0.0852993
\(546\) 0 0
\(547\) −14.9463 36.0835i −0.639057 1.54282i −0.827938 0.560819i \(-0.810486\pi\)
0.188882 0.982000i \(-0.439514\pi\)
\(548\) 0 0
\(549\) −3.02413 + 1.25264i −0.129067 + 0.0534612i
\(550\) 0 0
\(551\) −39.2881 16.2737i −1.67373 0.693281i
\(552\) 0 0
\(553\) −2.37011 + 2.37011i −0.100787 + 0.100787i
\(554\) 0 0
\(555\) 3.13734 7.57420i 0.133172 0.321507i
\(556\) 0 0
\(557\) 13.0371i 0.552398i 0.961100 + 0.276199i \(0.0890750\pi\)
−0.961100 + 0.276199i \(0.910925\pi\)
\(558\) 0 0
\(559\) 10.0144 + 10.0144i 0.423564 + 0.423564i
\(560\) 0 0
\(561\) 3.52814 5.06254i 0.148958 0.213741i
\(562\) 0 0
\(563\) 7.93150 + 7.93150i 0.334273 + 0.334273i 0.854207 0.519934i \(-0.174043\pi\)
−0.519934 + 0.854207i \(0.674043\pi\)
\(564\) 0 0
\(565\) 17.9700i 0.756005i
\(566\) 0 0
\(567\) 0.472474 1.14065i 0.0198420 0.0479029i
\(568\) 0 0
\(569\) 25.7878 25.7878i 1.08108 1.08108i 0.0846732 0.996409i \(-0.473015\pi\)
0.996409 0.0846732i \(-0.0269846\pi\)
\(570\) 0 0
\(571\) 12.5140 + 5.18346i 0.523693 + 0.216921i 0.628838 0.777536i \(-0.283531\pi\)
−0.105145 + 0.994457i \(0.533531\pi\)
\(572\) 0 0
\(573\) 11.1020 4.59859i 0.463792 0.192109i
\(574\) 0 0
\(575\) −0.840280 2.02862i −0.0350421 0.0845991i
\(576\) 0 0
\(577\) 7.10617 0.295834 0.147917 0.989000i \(-0.452743\pi\)
0.147917 + 0.989000i \(0.452743\pi\)
\(578\) 0 0
\(579\) −10.7183 −0.445438
\(580\) 0 0
\(581\) −6.81016 16.4412i −0.282533 0.682095i
\(582\) 0 0
\(583\) −5.47727 + 2.26876i −0.226846 + 0.0939625i
\(584\) 0 0
\(585\) −7.90663 3.27503i −0.326899 0.135406i
\(586\) 0 0
\(587\) 28.4929 28.4929i 1.17603 1.17603i 0.195281 0.980747i \(-0.437438\pi\)
0.980747 0.195281i \(-0.0625619\pi\)
\(588\) 0 0
\(589\) −26.7723 + 64.6341i −1.10314 + 2.66320i
\(590\) 0 0
\(591\) 3.16895i 0.130353i
\(592\) 0 0
\(593\) −26.7582 26.7582i −1.09883 1.09883i −0.994548 0.104280i \(-0.966746\pi\)
−0.104280 0.994548i \(-0.533254\pi\)
\(594\) 0 0
\(595\) 6.06092 8.69685i 0.248473 0.356536i
\(596\) 0 0
\(597\) −9.66940 9.66940i −0.395742 0.395742i
\(598\) 0 0
\(599\) 10.1505i 0.414739i 0.978263 + 0.207369i \(0.0664902\pi\)
−0.978263 + 0.207369i \(0.933510\pi\)
\(600\) 0 0
\(601\) 13.4910 32.5702i 0.550311 1.32857i −0.366935 0.930247i \(-0.619593\pi\)
0.917246 0.398321i \(-0.130407\pi\)
\(602\) 0 0
\(603\) −1.49661 + 1.49661i −0.0609465 + 0.0609465i
\(604\) 0 0
\(605\) −16.8535 6.98095i −0.685193 0.283816i
\(606\) 0 0
\(607\) 43.9654 18.2111i 1.78450 0.739164i 0.792974 0.609255i \(-0.208532\pi\)
0.991526 0.129909i \(-0.0414685\pi\)
\(608\) 0 0
\(609\) −2.94948 7.12068i −0.119519 0.288545i
\(610\) 0 0
\(611\) 6.44980 0.260931
\(612\) 0 0
\(613\) −26.9812 −1.08976 −0.544880 0.838514i \(-0.683425\pi\)
−0.544880 + 0.838514i \(0.683425\pi\)
\(614\) 0 0
\(615\) −9.67200 23.3503i −0.390013 0.941573i
\(616\) 0 0
\(617\) 13.8507 5.73717i 0.557610 0.230970i −0.0860373 0.996292i \(-0.527420\pi\)
0.643647 + 0.765322i \(0.277420\pi\)
\(618\) 0 0
\(619\) 2.03477 + 0.842828i 0.0817841 + 0.0338761i 0.423200 0.906036i \(-0.360907\pi\)
−0.341416 + 0.939912i \(0.610907\pi\)
\(620\) 0 0
\(621\) −2.33956 + 2.33956i −0.0938835 + 0.0938835i
\(622\) 0 0
\(623\) −6.45843 + 15.5920i −0.258752 + 0.624681i
\(624\) 0 0
\(625\) 21.2414i 0.849655i
\(626\) 0 0
\(627\) 7.20891 + 7.20891i 0.287896 + 0.287896i
\(628\) 0 0
\(629\) 15.8554 + 3.47821i 0.632196 + 0.138685i
\(630\) 0 0
\(631\) 24.5529 + 24.5529i 0.977435 + 0.977435i 0.999751 0.0223155i \(-0.00710383\pi\)
−0.0223155 + 0.999751i \(0.507104\pi\)
\(632\) 0 0
\(633\) 5.92856i 0.235639i
\(634\) 0 0
\(635\) −11.2748 + 27.2198i −0.447427 + 1.08019i
\(636\) 0 0
\(637\) −15.9124 + 15.9124i −0.630474 + 0.630474i
\(638\) 0 0
\(639\) 0.209375 + 0.0867259i 0.00828274 + 0.00343082i
\(640\) 0 0
\(641\) −23.0324 + 9.54032i −0.909724 + 0.376820i −0.787951 0.615738i \(-0.788858\pi\)
−0.121773 + 0.992558i \(0.538858\pi\)
\(642\) 0 0
\(643\) −13.4557 32.4849i −0.530641 1.28108i −0.931100 0.364765i \(-0.881149\pi\)
0.400459 0.916315i \(-0.368851\pi\)
\(644\) 0 0
\(645\) −7.17611 −0.282559
\(646\) 0 0
\(647\) 28.0142 1.10135 0.550677 0.834719i \(-0.314370\pi\)
0.550677 + 0.834719i \(0.314370\pi\)
\(648\) 0 0
\(649\) 4.61793 + 11.1487i 0.181269 + 0.437623i
\(650\) 0 0
\(651\) −11.7145 + 4.85229i −0.459127 + 0.190176i
\(652\) 0 0
\(653\) 34.8057 + 14.4170i 1.36205 + 0.564181i 0.939622 0.342213i \(-0.111177\pi\)
0.422432 + 0.906395i \(0.361177\pi\)
\(654\) 0 0
\(655\) −3.81496 + 3.81496i −0.149063 + 0.149063i
\(656\) 0 0
\(657\) −0.140917 + 0.340203i −0.00549768 + 0.0132726i
\(658\) 0 0
\(659\) 13.5356i 0.527272i −0.964622 0.263636i \(-0.915078\pi\)
0.964622 0.263636i \(-0.0849217\pi\)
\(660\) 0 0
\(661\) −1.41864 1.41864i −0.0551787 0.0551787i 0.678979 0.734158i \(-0.262423\pi\)
−0.734158 + 0.678979i \(0.762423\pi\)
\(662\) 0 0
\(663\) 3.63087 16.5513i 0.141011 0.642799i
\(664\) 0 0
\(665\) 12.3840 + 12.3840i 0.480233 + 0.480233i
\(666\) 0 0
\(667\) 20.6547i 0.799752i
\(668\) 0 0
\(669\) 10.0063 24.1573i 0.386865 0.933974i
\(670\) 0 0
\(671\) 3.46400 3.46400i 0.133726 0.133726i
\(672\) 0 0
\(673\) 15.4873 + 6.41506i 0.596992 + 0.247282i 0.660656 0.750689i \(-0.270278\pi\)
−0.0636633 + 0.997971i \(0.520278\pi\)
\(674\) 0 0
\(675\) −0.613126 + 0.253965i −0.0235992 + 0.00977512i
\(676\) 0 0
\(677\) 8.82649 + 21.3090i 0.339230 + 0.818973i 0.997790 + 0.0664448i \(0.0211656\pi\)
−0.658561 + 0.752528i \(0.728834\pi\)
\(678\) 0 0
\(679\) −3.31446 −0.127197
\(680\) 0 0
\(681\) 10.9746 0.420546
\(682\) 0 0
\(683\) −10.7220 25.8852i −0.410265 0.990468i −0.985066 0.172175i \(-0.944921\pi\)
0.574801 0.818293i \(-0.305079\pi\)
\(684\) 0 0
\(685\) −29.3745 + 12.1673i −1.12234 + 0.464890i
\(686\) 0 0
\(687\) 13.3844 + 5.54401i 0.510647 + 0.211517i
\(688\) 0 0
\(689\) −11.5117 + 11.5117i −0.438562 + 0.438562i
\(690\) 0 0
\(691\) −10.2085 + 24.6455i −0.388350 + 0.937560i 0.601940 + 0.798542i \(0.294395\pi\)
−0.990290 + 0.139019i \(0.955605\pi\)
\(692\) 0 0
\(693\) 1.84776i 0.0701906i
\(694\) 0 0
\(695\) −5.95194 5.95194i −0.225770 0.225770i
\(696\) 0 0
\(697\) 42.1457 26.9812i 1.59638 1.02199i
\(698\) 0 0
\(699\) 13.5043 + 13.5043i 0.510781 + 0.510781i
\(700\) 0 0
\(701\) 9.75054i 0.368273i −0.982901 0.184136i \(-0.941051\pi\)
0.982901 0.184136i \(-0.0589488\pi\)
\(702\) 0 0
\(703\) −10.2630 + 24.7771i −0.387077 + 0.934488i
\(704\) 0 0
\(705\) −2.31090 + 2.31090i −0.0870334 + 0.0870334i
\(706\) 0 0
\(707\) 2.71485 + 1.12453i 0.102102 + 0.0422922i
\(708\) 0 0
\(709\) 26.5647 11.0035i 0.997659 0.413244i 0.176721 0.984261i \(-0.443451\pi\)
0.820938 + 0.571017i \(0.193451\pi\)
\(710\) 0 0
\(711\) −1.03893 2.50819i −0.0389628 0.0940646i
\(712\) 0 0
\(713\) 33.9797 1.27255
\(714\) 0 0
\(715\) 12.8081 0.478994
\(716\) 0 0
\(717\) 0.283557 + 0.684567i 0.0105896 + 0.0255656i
\(718\) 0 0
\(719\) −43.6299 + 18.0721i −1.62712 + 0.673976i −0.994905 0.100816i \(-0.967855\pi\)
−0.632216 + 0.774792i \(0.717855\pi\)
\(720\) 0 0
\(721\) 15.1603 + 6.27960i 0.564599 + 0.233865i
\(722\) 0 0
\(723\) 15.1050 15.1050i 0.561762 0.561762i
\(724\) 0 0
\(725\) −1.58541 + 3.82752i −0.0588808 + 0.142151i
\(726\) 0 0
\(727\) 27.7790i 1.03027i −0.857110 0.515134i \(-0.827742\pi\)
0.857110 0.515134i \(-0.172258\pi\)
\(728\) 0 0
\(729\) 0.707107 + 0.707107i 0.0261891 + 0.0261891i
\(730\) 0 0
\(731\) −2.49830 13.9872i −0.0924030 0.517336i
\(732\) 0 0
\(733\) 3.81122 + 3.81122i 0.140770 + 0.140770i 0.773980 0.633210i \(-0.218263\pi\)
−0.633210 + 0.773980i \(0.718263\pi\)
\(734\) 0 0
\(735\) 11.4025i 0.420588i
\(736\) 0 0
\(737\) 1.21219 2.92648i 0.0446515 0.107798i
\(738\) 0 0
\(739\) 2.55818 2.55818i 0.0941043 0.0941043i −0.658487 0.752592i \(-0.728803\pi\)
0.752592 + 0.658487i \(0.228803\pi\)
\(740\) 0 0
\(741\) 25.8646 + 10.7135i 0.950160 + 0.393569i
\(742\) 0 0
\(743\) 5.71326 2.36651i 0.209599 0.0868188i −0.275414 0.961326i \(-0.588815\pi\)
0.485013 + 0.874507i \(0.338815\pi\)
\(744\) 0 0
\(745\) −14.4413 34.8644i −0.529088 1.27733i
\(746\) 0 0
\(747\) 14.4138 0.527375
\(748\) 0 0
\(749\) 16.1396 0.589730
\(750\) 0 0
\(751\) 19.6438 + 47.4243i 0.716812 + 1.73054i 0.682233 + 0.731135i \(0.261009\pi\)
0.0345787 + 0.999402i \(0.488991\pi\)
\(752\) 0 0
\(753\) −0.867355 + 0.359270i −0.0316082 + 0.0130925i
\(754\) 0 0
\(755\) 10.1414 + 4.20071i 0.369084 + 0.152879i
\(756\) 0 0
\(757\) −2.71352 + 2.71352i −0.0986246 + 0.0986246i −0.754698 0.656073i \(-0.772216\pi\)
0.656073 + 0.754698i \(0.272216\pi\)
\(758\) 0 0
\(759\) 1.89495 4.57481i 0.0687822 0.166055i
\(760\) 0 0
\(761\) 16.5850i 0.601206i 0.953749 + 0.300603i \(0.0971878\pi\)
−0.953749 + 0.300603i \(0.902812\pi\)
\(762\) 0 0
\(763\) −0.834842 0.834842i −0.0302233 0.0302233i
\(764\) 0 0
\(765\) 4.62925 + 7.23105i 0.167371 + 0.261439i
\(766\) 0 0
\(767\) 23.4314 + 23.4314i 0.846059 + 0.846059i
\(768\) 0 0
\(769\) 27.7826i 1.00187i −0.865486 0.500933i \(-0.832990\pi\)
0.865486 0.500933i \(-0.167010\pi\)
\(770\) 0 0
\(771\) 6.05760 14.6243i 0.218159 0.526683i
\(772\) 0 0
\(773\) −9.86475 + 9.86475i −0.354810 + 0.354810i −0.861896 0.507085i \(-0.830723\pi\)
0.507085 + 0.861896i \(0.330723\pi\)
\(774\) 0 0
\(775\) 6.29679 + 2.60822i 0.226187 + 0.0936899i
\(776\) 0 0
\(777\) −4.49068 + 1.86010i −0.161102 + 0.0667307i
\(778\) 0 0
\(779\) 31.6396 + 76.3847i 1.13361 + 2.73677i
\(780\) 0 0
\(781\) −0.339169 −0.0121364
\(782\) 0 0
\(783\) 6.24264 0.223094
\(784\) 0 0
\(785\) 3.03087 + 7.31717i 0.108176 + 0.261161i
\(786\) 0 0
\(787\) −3.90992 + 1.61954i −0.139373 + 0.0577304i −0.451280 0.892382i \(-0.649032\pi\)
0.311907 + 0.950113i \(0.399032\pi\)
\(788\) 0 0
\(789\) 10.5851 + 4.38451i 0.376841 + 0.156093i
\(790\) 0 0
\(791\) 7.53372 7.53372i 0.267868 0.267868i
\(792\) 0 0
\(793\) 5.14800 12.4284i 0.182811 0.441344i
\(794\) 0 0
\(795\) 8.24906i 0.292564i
\(796\) 0 0
\(797\) −19.6224 19.6224i −0.695059 0.695059i 0.268281 0.963341i \(-0.413544\pi\)
−0.963341 + 0.268281i \(0.913544\pi\)
\(798\) 0 0
\(799\) −5.30878 3.69974i −0.187811 0.130887i
\(800\) 0 0
\(801\) −9.66572 9.66572i −0.341522 0.341522i
\(802\) 0 0
\(803\) 0.551099i 0.0194479i
\(804\) 0 0
\(805\) 3.25529 7.85897i 0.114734 0.276992i
\(806\) 0 0
\(807\) −13.5545 + 13.5545i −0.477141 + 0.477141i
\(808\) 0 0
\(809\) −3.76277 1.55859i −0.132292 0.0547971i 0.315555 0.948907i \(-0.397809\pi\)
−0.447847 + 0.894110i \(0.647809\pi\)
\(810\) 0 0
\(811\) 5.80819 2.40583i 0.203953 0.0844802i −0.278368 0.960474i \(-0.589794\pi\)
0.482322 + 0.875994i \(0.339794\pi\)
\(812\) 0 0
\(813\) −2.61298 6.30830i −0.0916413 0.221242i
\(814\) 0 0
\(815\) 18.8848 0.661507
\(816\) 0 0
\(817\) 23.4749 0.821282
\(818\) 0 0
\(819\) 1.94174 + 4.68777i 0.0678499 + 0.163804i
\(820\) 0 0
\(821\) −18.2926 + 7.57706i −0.638418 + 0.264441i −0.678325 0.734762i \(-0.737294\pi\)
0.0399072 + 0.999203i \(0.487294\pi\)
\(822\) 0 0
\(823\) −10.7853 4.46741i −0.375951 0.155724i 0.186703 0.982416i \(-0.440220\pi\)
−0.562654 + 0.826692i \(0.690220\pi\)
\(824\) 0 0
\(825\) 0.702307 0.702307i 0.0244512 0.0244512i
\(826\) 0 0
\(827\) −5.31585 + 12.8336i −0.184850 + 0.446268i −0.988954 0.148221i \(-0.952645\pi\)
0.804104 + 0.594488i \(0.202645\pi\)
\(828\) 0 0
\(829\) 34.2670i 1.19014i 0.803673 + 0.595071i \(0.202876\pi\)
−0.803673 + 0.595071i \(0.797124\pi\)
\(830\) 0 0
\(831\) 5.74725 + 5.74725i 0.199370 + 0.199370i
\(832\) 0 0
\(833\) 22.2251 3.96969i 0.770053 0.137542i
\(834\) 0 0
\(835\) 13.0868 + 13.0868i 0.452888 + 0.452888i
\(836\) 0 0
\(837\) 10.2700i 0.354982i
\(838\) 0 0
\(839\) 9.27891 22.4013i 0.320344 0.773378i −0.678890 0.734240i \(-0.737539\pi\)
0.999234 0.0391379i \(-0.0124612\pi\)
\(840\) 0 0
\(841\) 7.05025 7.05025i 0.243112 0.243112i
\(842\) 0 0
\(843\) 10.7235 + 4.44182i 0.369337 + 0.152984i
\(844\) 0 0
\(845\) 7.48369 3.09985i 0.257447 0.106638i
\(846\) 0 0
\(847\) 4.13895 + 9.99231i 0.142216 + 0.343340i
\(848\) 0 0
\(849\) −6.06404 −0.208117
\(850\) 0 0
\(851\) 13.0259 0.446523
\(852\) 0 0
\(853\) −2.82779 6.82689i −0.0968217 0.233748i 0.868046 0.496483i \(-0.165376\pi\)
−0.964868 + 0.262735i \(0.915376\pi\)
\(854\) 0 0
\(855\) −13.1055 + 5.42849i −0.448200 + 0.185651i
\(856\) 0 0
\(857\) 7.42181 + 3.07421i 0.253524 + 0.105013i 0.505826 0.862635i \(-0.331188\pi\)
−0.252302 + 0.967649i \(0.581188\pi\)
\(858\) 0 0
\(859\) −5.42119 + 5.42119i −0.184969 + 0.184969i −0.793517 0.608548i \(-0.791752\pi\)
0.608548 + 0.793517i \(0.291752\pi\)
\(860\) 0 0
\(861\) −5.73445 + 13.8442i −0.195429 + 0.471808i
\(862\) 0 0
\(863\) 14.4183i 0.490804i −0.969421 0.245402i \(-0.921080\pi\)
0.969421 0.245402i \(-0.0789200\pi\)
\(864\) 0 0
\(865\) 18.0336 + 18.0336i 0.613162 + 0.613162i
\(866\) 0 0
\(867\) −12.4827 + 11.5405i −0.423934 + 0.391935i
\(868\) 0 0
\(869\) 2.87302 + 2.87302i 0.0974604 + 0.0974604i
\(870\) 0 0
\(871\) 8.69833i 0.294732i
\(872\) 0 0
\(873\) 1.02734 2.48022i 0.0347702 0.0839426i
\(874\) 0 0
\(875\) 10.2963 10.2963i 0.348079 0.348079i
\(876\) 0 0
\(877\) 49.7256 + 20.5970i 1.67912 + 0.695512i 0.999283 0.0378554i \(-0.0120526\pi\)
0.679832 + 0.733368i \(0.262053\pi\)
\(878\) 0 0
\(879\) 6.35211 2.63113i 0.214251 0.0887458i
\(880\) 0 0
\(881\) −11.4019 27.5265i −0.384138 0.927392i −0.991156 0.132703i \(-0.957634\pi\)
0.607018 0.794688i \(-0.292366\pi\)
\(882\) 0 0
\(883\) −28.2666 −0.951247 −0.475624 0.879649i \(-0.657778\pi\)
−0.475624 + 0.879649i \(0.657778\pi\)
\(884\) 0 0
\(885\) −16.7905 −0.564405
\(886\) 0 0
\(887\) 9.61176 + 23.2049i 0.322731 + 0.779143i 0.999093 + 0.0425732i \(0.0135556\pi\)
−0.676362 + 0.736569i \(0.736444\pi\)
\(888\) 0 0
\(889\) 16.1384 6.68474i 0.541265 0.224199i
\(890\) 0 0
\(891\) −1.38268 0.572726i −0.0463216 0.0191871i
\(892\) 0 0
\(893\) 7.55953 7.55953i 0.252970 0.252970i
\(894\) 0 0
\(895\) 8.46088 20.4264i 0.282816 0.682779i
\(896\) 0 0
\(897\) 13.5976i 0.454012i
\(898\) 0 0
\(899\) −45.3339 45.3339i −1.51197 1.51197i
\(900\) 0 0
\(901\) 16.0785 2.87184i 0.535654 0.0956748i
\(902\) 0 0
\(903\) 3.00850 + 3.00850i 0.100116 + 0.100116i
\(904\) 0 0
\(905\) 34.4166i 1.14405i
\(906\) 0 0
\(907\) 18.7895 45.3619i 0.623895 1.50622i −0.223199 0.974773i \(-0.571650\pi\)
0.847094 0.531443i \(-0.178350\pi\)
\(908\) 0 0
\(909\) −1.68297 + 1.68297i −0.0558207 + 0.0558207i
\(910\) 0 0
\(911\) 7.36911 + 3.05238i 0.244149 + 0.101130i 0.501403 0.865214i \(-0.332817\pi\)
−0.257253 + 0.966344i \(0.582817\pi\)
\(912\) 0 0
\(913\) −19.9298 + 8.25518i −0.659579 + 0.273207i
\(914\) 0 0
\(915\) 2.60848 + 6.29743i 0.0862337 + 0.208187i
\(916\) 0 0
\(917\) 3.19875 0.105632
\(918\) 0 0
\(919\) −19.8027 −0.653229 −0.326615 0.945158i \(-0.605908\pi\)
−0.326615 + 0.945158i \(0.605908\pi\)
\(920\) 0 0
\(921\) 8.51282 + 20.5518i 0.280507 + 0.677204i
\(922\) 0 0
\(923\) −0.860474 + 0.356420i −0.0283228 + 0.0117317i
\(924\) 0 0
\(925\) 2.41384 + 0.999845i 0.0793666 + 0.0328747i
\(926\) 0 0
\(927\) −9.39809 + 9.39809i −0.308674 + 0.308674i
\(928\) 0 0
\(929\) 2.13327 5.15017i 0.0699903 0.168972i −0.885013 0.465566i \(-0.845851\pi\)
0.955004 + 0.296594i \(0.0958509\pi\)
\(930\) 0 0
\(931\) 37.3005i 1.22248i
\(932\) 0 0
\(933\) 3.82843 + 3.82843i 0.125337 + 0.125337i
\(934\) 0 0
\(935\) −10.5422 7.34696i −0.344767 0.240271i
\(936\) 0 0
\(937\) −0.281833 0.281833i −0.00920709 0.00920709i 0.702488 0.711695i \(-0.252072\pi\)
−0.711695 + 0.702488i \(0.752072\pi\)
\(938\) 0 0
\(939\) 11.2945i 0.368582i
\(940\) 0 0
\(941\) 1.64878 3.98050i 0.0537486 0.129760i −0.894724 0.446619i \(-0.852628\pi\)
0.948473 + 0.316858i \(0.102628\pi\)
\(942\) 0 0
\(943\) 28.3955 28.3955i 0.924683 0.924683i
\(944\) 0 0
\(945\) −2.37529 0.983875i −0.0772680 0.0320055i
\(946\) 0 0
\(947\) −10.5466 + 4.36856i −0.342720 + 0.141959i −0.547403 0.836869i \(-0.684384\pi\)
0.204683 + 0.978828i \(0.434384\pi\)
\(948\) 0 0
\(949\) −0.579129 1.39814i −0.0187993 0.0453856i
\(950\) 0 0
\(951\) −18.4520 −0.598346
\(952\) 0 0
\(953\) −40.8932 −1.32466 −0.662330 0.749213i \(-0.730432\pi\)
−0.662330 + 0.749213i \(0.730432\pi\)
\(954\) 0 0
\(955\) −9.57608 23.1187i −0.309875 0.748103i
\(956\) 0 0
\(957\) −8.63160 + 3.57532i −0.279020 + 0.115574i
\(958\) 0 0
\(959\) 17.4159 + 7.21391i 0.562389 + 0.232949i
\(960\) 0 0
\(961\) −52.6600 + 52.6600i −1.69871 + 1.69871i
\(962\) 0 0
\(963\) −5.00260 + 12.0773i −0.161206 + 0.389187i
\(964\) 0 0
\(965\) 22.3197i 0.718498i
\(966\) 0 0
\(967\) −16.6407 16.6407i −0.535130 0.535130i 0.386965 0.922095i \(-0.373524\pi\)
−0.922095 + 0.386965i \(0.873524\pi\)
\(968\) 0 0
\(969\) −15.1435 23.6546i −0.486478 0.759896i
\(970\) 0 0
\(971\) 4.55476 + 4.55476i 0.146169 + 0.146169i 0.776404 0.630235i \(-0.217042\pi\)
−0.630235 + 0.776404i \(0.717042\pi\)
\(972\) 0 0
\(973\) 4.99055i 0.159990i
\(974\) 0 0
\(975\) 1.04373 2.51978i 0.0334261 0.0806976i
\(976\) 0 0
\(977\) 12.6200 12.6200i 0.403750 0.403750i −0.475802 0.879552i \(-0.657842\pi\)
0.879552 + 0.475802i \(0.157842\pi\)
\(978\) 0 0
\(979\) 18.9004 + 7.82882i 0.604061 + 0.250210i
\(980\) 0 0
\(981\) 0.883480 0.365949i 0.0282073 0.0116839i
\(982\) 0 0
\(983\) −9.22941 22.2818i −0.294372 0.710678i −0.999998 0.00209283i \(-0.999334\pi\)
0.705625 0.708585i \(-0.250666\pi\)
\(984\) 0 0
\(985\) 6.59899 0.210261
\(986\) 0 0
\(987\) 1.93763 0.0616755
\(988\) 0 0
\(989\) −4.36331 10.5340i −0.138745 0.334961i
\(990\) 0 0
\(991\) −22.3633 + 9.26319i −0.710394 + 0.294255i −0.708468 0.705743i \(-0.750613\pi\)
−0.00192659 + 0.999998i \(0.500613\pi\)
\(992\) 0 0
\(993\) 5.32714 + 2.20657i 0.169052 + 0.0700235i
\(994\) 0 0
\(995\) −20.1355 + 20.1355i −0.638338 + 0.638338i
\(996\) 0 0
\(997\) 14.1268 34.1051i 0.447400 1.08012i −0.525892 0.850551i \(-0.676268\pi\)
0.973292 0.229569i \(-0.0737315\pi\)
\(998\) 0 0
\(999\) 3.93694i 0.124559i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 816.2.bq.a.49.1 8
4.3 odd 2 51.2.h.a.49.2 yes 8
12.11 even 2 153.2.l.e.100.1 8
17.8 even 8 inner 816.2.bq.a.433.1 8
68.3 even 16 867.2.d.e.577.6 8
68.7 even 16 867.2.e.h.616.2 8
68.11 even 16 867.2.e.i.829.3 8
68.15 odd 8 867.2.h.f.757.1 8
68.19 odd 8 867.2.h.b.757.1 8
68.23 even 16 867.2.e.h.829.3 8
68.27 even 16 867.2.e.i.616.2 8
68.31 even 16 867.2.d.e.577.5 8
68.39 even 16 867.2.a.m.1.2 4
68.43 odd 8 867.2.h.g.688.2 8
68.47 odd 4 867.2.h.f.733.1 8
68.55 odd 4 867.2.h.b.733.1 8
68.59 odd 8 51.2.h.a.25.2 8
68.63 even 16 867.2.a.n.1.2 4
68.67 odd 2 867.2.h.g.712.2 8
204.59 even 8 153.2.l.e.127.1 8
204.107 odd 16 2601.2.a.bc.1.3 4
204.131 odd 16 2601.2.a.bd.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.2.h.a.25.2 8 68.59 odd 8
51.2.h.a.49.2 yes 8 4.3 odd 2
153.2.l.e.100.1 8 12.11 even 2
153.2.l.e.127.1 8 204.59 even 8
816.2.bq.a.49.1 8 1.1 even 1 trivial
816.2.bq.a.433.1 8 17.8 even 8 inner
867.2.a.m.1.2 4 68.39 even 16
867.2.a.n.1.2 4 68.63 even 16
867.2.d.e.577.5 8 68.31 even 16
867.2.d.e.577.6 8 68.3 even 16
867.2.e.h.616.2 8 68.7 even 16
867.2.e.h.829.3 8 68.23 even 16
867.2.e.i.616.2 8 68.27 even 16
867.2.e.i.829.3 8 68.11 even 16
867.2.h.b.733.1 8 68.55 odd 4
867.2.h.b.757.1 8 68.19 odd 8
867.2.h.f.733.1 8 68.47 odd 4
867.2.h.f.757.1 8 68.15 odd 8
867.2.h.g.688.2 8 68.43 odd 8
867.2.h.g.712.2 8 68.67 odd 2
2601.2.a.bc.1.3 4 204.107 odd 16
2601.2.a.bd.1.3 4 204.131 odd 16