Properties

Label 816.2.a.g
Level 816816
Weight 22
Character orbit 816.a
Self dual yes
Analytic conductor 6.5166.516
Analytic rank 00
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [816,2,Mod(1,816)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(816, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("816.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 816=24317 816 = 2^{4} \cdot 3 \cdot 17
Weight: k k == 2 2
Character orbit: [χ][\chi] == 816.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,-1,0,3,0,4,0,1,0,3,0,-1,0,-3,0,-1,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 6.515792804946.51579280494
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 51)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == qq3+3q5+4q7+q9+3q11q133q15q17+q194q219q23+4q25q27+6q292q313q33+12q354q37+q39++3q99+O(q100) q - q^{3} + 3 q^{5} + 4 q^{7} + q^{9} + 3 q^{11} - q^{13} - 3 q^{15} - q^{17} + q^{19} - 4 q^{21} - 9 q^{23} + 4 q^{25} - q^{27} + 6 q^{29} - 2 q^{31} - 3 q^{33} + 12 q^{35} - 4 q^{37} + q^{39}+ \cdots + 3 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
0 −1.00000 0 3.00000 0 4.00000 0 1.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
33 +1 +1
1717 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 816.2.a.g 1
3.b odd 2 1 2448.2.a.c 1
4.b odd 2 1 51.2.a.a 1
8.b even 2 1 3264.2.a.r 1
8.d odd 2 1 3264.2.a.a 1
12.b even 2 1 153.2.a.b 1
20.d odd 2 1 1275.2.a.d 1
20.e even 4 2 1275.2.b.b 2
24.f even 2 1 9792.2.a.by 1
24.h odd 2 1 9792.2.a.cd 1
28.d even 2 1 2499.2.a.d 1
44.c even 2 1 6171.2.a.e 1
52.b odd 2 1 8619.2.a.g 1
60.h even 2 1 3825.2.a.i 1
68.d odd 2 1 867.2.a.c 1
68.f odd 4 2 867.2.d.a 2
68.g odd 8 4 867.2.e.e 4
68.i even 16 8 867.2.h.c 8
84.h odd 2 1 7497.2.a.j 1
204.h even 2 1 2601.2.a.f 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
51.2.a.a 1 4.b odd 2 1
153.2.a.b 1 12.b even 2 1
816.2.a.g 1 1.a even 1 1 trivial
867.2.a.c 1 68.d odd 2 1
867.2.d.a 2 68.f odd 4 2
867.2.e.e 4 68.g odd 8 4
867.2.h.c 8 68.i even 16 8
1275.2.a.d 1 20.d odd 2 1
1275.2.b.b 2 20.e even 4 2
2448.2.a.c 1 3.b odd 2 1
2499.2.a.d 1 28.d even 2 1
2601.2.a.f 1 204.h even 2 1
3264.2.a.a 1 8.d odd 2 1
3264.2.a.r 1 8.b even 2 1
3825.2.a.i 1 60.h even 2 1
6171.2.a.e 1 44.c even 2 1
7497.2.a.j 1 84.h odd 2 1
8619.2.a.g 1 52.b odd 2 1
9792.2.a.by 1 24.f even 2 1
9792.2.a.cd 1 24.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(816))S_{2}^{\mathrm{new}}(\Gamma_0(816)):

T53 T_{5} - 3 Copy content Toggle raw display
T74 T_{7} - 4 Copy content Toggle raw display
T191 T_{19} - 1 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T+1 T + 1 Copy content Toggle raw display
55 T3 T - 3 Copy content Toggle raw display
77 T4 T - 4 Copy content Toggle raw display
1111 T3 T - 3 Copy content Toggle raw display
1313 T+1 T + 1 Copy content Toggle raw display
1717 T+1 T + 1 Copy content Toggle raw display
1919 T1 T - 1 Copy content Toggle raw display
2323 T+9 T + 9 Copy content Toggle raw display
2929 T6 T - 6 Copy content Toggle raw display
3131 T+2 T + 2 Copy content Toggle raw display
3737 T+4 T + 4 Copy content Toggle raw display
4141 T+3 T + 3 Copy content Toggle raw display
4343 T7 T - 7 Copy content Toggle raw display
4747 T6 T - 6 Copy content Toggle raw display
5353 T+6 T + 6 Copy content Toggle raw display
5959 T+6 T + 6 Copy content Toggle raw display
6161 T8 T - 8 Copy content Toggle raw display
6767 T4 T - 4 Copy content Toggle raw display
7171 T+12 T + 12 Copy content Toggle raw display
7373 T2 T - 2 Copy content Toggle raw display
7979 T10 T - 10 Copy content Toggle raw display
8383 T6 T - 6 Copy content Toggle raw display
8989 T T Copy content Toggle raw display
9797 T+16 T + 16 Copy content Toggle raw display
show more
show less