Defining parameters
| Level: | \( N \) | \(=\) | \( 816 = 2^{4} \cdot 3 \cdot 17 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 816.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 13 \) | ||
| Sturm bound: | \(288\) | ||
| Trace bound: | \(19\) | ||
| Distinguishing \(T_p\): | \(5\), \(7\), \(19\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(816))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 156 | 16 | 140 |
| Cusp forms | 133 | 16 | 117 |
| Eisenstein series | 23 | 0 | 23 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(3\) | \(17\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | |||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(16\) | \(1\) | \(15\) | \(14\) | \(1\) | \(13\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(23\) | \(4\) | \(19\) | \(20\) | \(4\) | \(16\) | \(3\) | \(0\) | \(3\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(19\) | \(3\) | \(16\) | \(16\) | \(3\) | \(13\) | \(3\) | \(0\) | \(3\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(20\) | \(0\) | \(20\) | \(17\) | \(0\) | \(17\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(23\) | \(2\) | \(21\) | \(20\) | \(2\) | \(18\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(16\) | \(2\) | \(14\) | \(13\) | \(2\) | \(11\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(20\) | \(2\) | \(18\) | \(17\) | \(2\) | \(15\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(19\) | \(2\) | \(17\) | \(16\) | \(2\) | \(14\) | \(3\) | \(0\) | \(3\) | |||
| Plus space | \(+\) | \(72\) | \(5\) | \(67\) | \(61\) | \(5\) | \(56\) | \(11\) | \(0\) | \(11\) | |||||
| Minus space | \(-\) | \(84\) | \(11\) | \(73\) | \(72\) | \(11\) | \(61\) | \(12\) | \(0\) | \(12\) | |||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(816))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(816))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(816)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(34))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(48))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(51))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(68))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(102))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(136))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(204))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(272))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(408))\)\(^{\oplus 2}\)