Properties

Label 8112.2.ed
Level $8112$
Weight $2$
Character orbit 8112.ed
Rep. character $\chi_{8112}(281,\cdot)$
Character field $\Q(\zeta_{52})$
Dimension $0$
Newform subspaces $0$
Sturm bound $2912$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 8112 = 2^{4} \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8112.ed (of order \(52\) and degree \(24\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 4056 \)
Character field: \(\Q(\zeta_{52})\)
Newform subspaces: \( 0 \)
Sturm bound: \(2912\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(8112, [\chi])\).

Total New Old
Modular forms 35136 0 35136
Cusp forms 34752 0 34752
Eisenstein series 384 0 384

Decomposition of \(S_{2}^{\mathrm{old}}(8112, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(8112, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(4056, [\chi])\)\(^{\oplus 2}\)