Properties

Label 8112.2.a.bl
Level $8112$
Weight $2$
Character orbit 8112.a
Self dual yes
Analytic conductor $64.775$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8112,2,Mod(1,8112)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8112.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8112, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8112 = 2^{4} \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8112.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-2,0,-2,0,-2,0,2,0,2,0,0,0,2,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(64.7746461197\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{13}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 312)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{13}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{3} - q^{5} + (\beta - 1) q^{7} + q^{9} + ( - \beta + 1) q^{11} + q^{15} + (\beta - 2) q^{17} + (\beta + 3) q^{19} + ( - \beta + 1) q^{21} + ( - \beta + 1) q^{23} - 4 q^{25} - q^{27} + 3 q^{29}+ \cdots + ( - \beta + 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} - 2 q^{5} - 2 q^{7} + 2 q^{9} + 2 q^{11} + 2 q^{15} - 4 q^{17} + 6 q^{19} + 2 q^{21} + 2 q^{23} - 8 q^{25} - 2 q^{27} + 6 q^{29} + 4 q^{31} - 2 q^{33} + 2 q^{35} - 12 q^{37} - 16 q^{41} - 2 q^{43}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.30278
2.30278
0 −1.00000 0 −1.00000 0 −4.60555 0 1.00000 0
1.2 0 −1.00000 0 −1.00000 0 2.60555 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8112.2.a.bl 2
4.b odd 2 1 4056.2.a.v 2
13.b even 2 1 8112.2.a.bn 2
13.c even 3 2 624.2.q.i 4
39.i odd 6 2 1872.2.t.q 4
52.b odd 2 1 4056.2.a.w 2
52.f even 4 2 4056.2.c.l 4
52.j odd 6 2 312.2.q.d 4
156.p even 6 2 936.2.t.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
312.2.q.d 4 52.j odd 6 2
624.2.q.i 4 13.c even 3 2
936.2.t.e 4 156.p even 6 2
1872.2.t.q 4 39.i odd 6 2
4056.2.a.v 2 4.b odd 2 1
4056.2.a.w 2 52.b odd 2 1
4056.2.c.l 4 52.f even 4 2
8112.2.a.bl 2 1.a even 1 1 trivial
8112.2.a.bn 2 13.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8112))\):

\( T_{5} + 1 \) Copy content Toggle raw display
\( T_{7}^{2} + 2T_{7} - 12 \) Copy content Toggle raw display
\( T_{11}^{2} - 2T_{11} - 12 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T + 1)^{2} \) Copy content Toggle raw display
$5$ \( (T + 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 2T - 12 \) Copy content Toggle raw display
$11$ \( T^{2} - 2T - 12 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 4T - 9 \) Copy content Toggle raw display
$19$ \( T^{2} - 6T - 4 \) Copy content Toggle raw display
$23$ \( T^{2} - 2T - 12 \) Copy content Toggle raw display
$29$ \( (T - 3)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} - 4T - 48 \) Copy content Toggle raw display
$37$ \( T^{2} + 12T + 23 \) Copy content Toggle raw display
$41$ \( T^{2} + 16T + 51 \) Copy content Toggle raw display
$43$ \( T^{2} + 2T - 12 \) Copy content Toggle raw display
$47$ \( T^{2} - 10T + 12 \) Copy content Toggle raw display
$53$ \( (T - 3)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 4T - 48 \) Copy content Toggle raw display
$61$ \( T^{2} + 8T + 3 \) Copy content Toggle raw display
$67$ \( T^{2} - 14T + 36 \) Copy content Toggle raw display
$71$ \( T^{2} - 26T + 156 \) Copy content Toggle raw display
$73$ \( (T - 7)^{2} \) Copy content Toggle raw display
$79$ \( (T + 12)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} - 2T - 116 \) Copy content Toggle raw display
$89$ \( T^{2} + 4T - 204 \) Copy content Toggle raw display
$97$ \( T^{2} - 8T - 36 \) Copy content Toggle raw display
show more
show less