Properties

Label 8112.2.a.bd.1.1
Level $8112$
Weight $2$
Character 8112.1
Self dual yes
Analytic conductor $64.775$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8112,2,Mod(1,8112)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8112, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8112.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8112 = 2^{4} \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8112.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(64.7746461197\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 156)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 8112.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} +2.00000 q^{5} -1.00000 q^{7} +1.00000 q^{9} -2.00000 q^{11} +2.00000 q^{15} -4.00000 q^{17} -4.00000 q^{19} -1.00000 q^{21} -6.00000 q^{23} -1.00000 q^{25} +1.00000 q^{27} +6.00000 q^{29} +1.00000 q^{31} -2.00000 q^{33} -2.00000 q^{35} +10.0000 q^{37} -4.00000 q^{41} -1.00000 q^{43} +2.00000 q^{45} +10.0000 q^{47} -6.00000 q^{49} -4.00000 q^{51} +8.00000 q^{53} -4.00000 q^{55} -4.00000 q^{57} +2.00000 q^{59} -5.00000 q^{61} -1.00000 q^{63} +7.00000 q^{67} -6.00000 q^{69} -10.0000 q^{71} -7.00000 q^{73} -1.00000 q^{75} +2.00000 q^{77} -17.0000 q^{79} +1.00000 q^{81} -12.0000 q^{83} -8.00000 q^{85} +6.00000 q^{87} -16.0000 q^{89} +1.00000 q^{93} -8.00000 q^{95} +13.0000 q^{97} -2.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) 2.00000 0.894427 0.447214 0.894427i \(-0.352416\pi\)
0.447214 + 0.894427i \(0.352416\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964 −0.188982 0.981981i \(-0.560519\pi\)
−0.188982 + 0.981981i \(0.560519\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) 2.00000 0.516398
\(16\) 0 0
\(17\) −4.00000 −0.970143 −0.485071 0.874475i \(-0.661206\pi\)
−0.485071 + 0.874475i \(0.661206\pi\)
\(18\) 0 0
\(19\) −4.00000 −0.917663 −0.458831 0.888523i \(-0.651732\pi\)
−0.458831 + 0.888523i \(0.651732\pi\)
\(20\) 0 0
\(21\) −1.00000 −0.218218
\(22\) 0 0
\(23\) −6.00000 −1.25109 −0.625543 0.780189i \(-0.715123\pi\)
−0.625543 + 0.780189i \(0.715123\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) 0 0
\(31\) 1.00000 0.179605 0.0898027 0.995960i \(-0.471376\pi\)
0.0898027 + 0.995960i \(0.471376\pi\)
\(32\) 0 0
\(33\) −2.00000 −0.348155
\(34\) 0 0
\(35\) −2.00000 −0.338062
\(36\) 0 0
\(37\) 10.0000 1.64399 0.821995 0.569495i \(-0.192861\pi\)
0.821995 + 0.569495i \(0.192861\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −4.00000 −0.624695 −0.312348 0.949968i \(-0.601115\pi\)
−0.312348 + 0.949968i \(0.601115\pi\)
\(42\) 0 0
\(43\) −1.00000 −0.152499 −0.0762493 0.997089i \(-0.524294\pi\)
−0.0762493 + 0.997089i \(0.524294\pi\)
\(44\) 0 0
\(45\) 2.00000 0.298142
\(46\) 0 0
\(47\) 10.0000 1.45865 0.729325 0.684167i \(-0.239834\pi\)
0.729325 + 0.684167i \(0.239834\pi\)
\(48\) 0 0
\(49\) −6.00000 −0.857143
\(50\) 0 0
\(51\) −4.00000 −0.560112
\(52\) 0 0
\(53\) 8.00000 1.09888 0.549442 0.835532i \(-0.314840\pi\)
0.549442 + 0.835532i \(0.314840\pi\)
\(54\) 0 0
\(55\) −4.00000 −0.539360
\(56\) 0 0
\(57\) −4.00000 −0.529813
\(58\) 0 0
\(59\) 2.00000 0.260378 0.130189 0.991489i \(-0.458442\pi\)
0.130189 + 0.991489i \(0.458442\pi\)
\(60\) 0 0
\(61\) −5.00000 −0.640184 −0.320092 0.947386i \(-0.603714\pi\)
−0.320092 + 0.947386i \(0.603714\pi\)
\(62\) 0 0
\(63\) −1.00000 −0.125988
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 7.00000 0.855186 0.427593 0.903971i \(-0.359362\pi\)
0.427593 + 0.903971i \(0.359362\pi\)
\(68\) 0 0
\(69\) −6.00000 −0.722315
\(70\) 0 0
\(71\) −10.0000 −1.18678 −0.593391 0.804914i \(-0.702211\pi\)
−0.593391 + 0.804914i \(0.702211\pi\)
\(72\) 0 0
\(73\) −7.00000 −0.819288 −0.409644 0.912245i \(-0.634347\pi\)
−0.409644 + 0.912245i \(0.634347\pi\)
\(74\) 0 0
\(75\) −1.00000 −0.115470
\(76\) 0 0
\(77\) 2.00000 0.227921
\(78\) 0 0
\(79\) −17.0000 −1.91265 −0.956325 0.292306i \(-0.905577\pi\)
−0.956325 + 0.292306i \(0.905577\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −12.0000 −1.31717 −0.658586 0.752506i \(-0.728845\pi\)
−0.658586 + 0.752506i \(0.728845\pi\)
\(84\) 0 0
\(85\) −8.00000 −0.867722
\(86\) 0 0
\(87\) 6.00000 0.643268
\(88\) 0 0
\(89\) −16.0000 −1.69600 −0.847998 0.529999i \(-0.822192\pi\)
−0.847998 + 0.529999i \(0.822192\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 1.00000 0.103695
\(94\) 0 0
\(95\) −8.00000 −0.820783
\(96\) 0 0
\(97\) 13.0000 1.31995 0.659975 0.751288i \(-0.270567\pi\)
0.659975 + 0.751288i \(0.270567\pi\)
\(98\) 0 0
\(99\) −2.00000 −0.201008
\(100\) 0 0
\(101\) −2.00000 −0.199007 −0.0995037 0.995037i \(-0.531726\pi\)
−0.0995037 + 0.995037i \(0.531726\pi\)
\(102\) 0 0
\(103\) −13.0000 −1.28093 −0.640464 0.767988i \(-0.721258\pi\)
−0.640464 + 0.767988i \(0.721258\pi\)
\(104\) 0 0
\(105\) −2.00000 −0.195180
\(106\) 0 0
\(107\) −18.0000 −1.74013 −0.870063 0.492941i \(-0.835922\pi\)
−0.870063 + 0.492941i \(0.835922\pi\)
\(108\) 0 0
\(109\) −11.0000 −1.05361 −0.526804 0.849987i \(-0.676610\pi\)
−0.526804 + 0.849987i \(0.676610\pi\)
\(110\) 0 0
\(111\) 10.0000 0.949158
\(112\) 0 0
\(113\) 18.0000 1.69330 0.846649 0.532152i \(-0.178617\pi\)
0.846649 + 0.532152i \(0.178617\pi\)
\(114\) 0 0
\(115\) −12.0000 −1.11901
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 4.00000 0.366679
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) −4.00000 −0.360668
\(124\) 0 0
\(125\) −12.0000 −1.07331
\(126\) 0 0
\(127\) −9.00000 −0.798621 −0.399310 0.916816i \(-0.630750\pi\)
−0.399310 + 0.916816i \(0.630750\pi\)
\(128\) 0 0
\(129\) −1.00000 −0.0880451
\(130\) 0 0
\(131\) −10.0000 −0.873704 −0.436852 0.899533i \(-0.643907\pi\)
−0.436852 + 0.899533i \(0.643907\pi\)
\(132\) 0 0
\(133\) 4.00000 0.346844
\(134\) 0 0
\(135\) 2.00000 0.172133
\(136\) 0 0
\(137\) 8.00000 0.683486 0.341743 0.939793i \(-0.388983\pi\)
0.341743 + 0.939793i \(0.388983\pi\)
\(138\) 0 0
\(139\) −3.00000 −0.254457 −0.127228 0.991873i \(-0.540608\pi\)
−0.127228 + 0.991873i \(0.540608\pi\)
\(140\) 0 0
\(141\) 10.0000 0.842152
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 12.0000 0.996546
\(146\) 0 0
\(147\) −6.00000 −0.494872
\(148\) 0 0
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) −4.00000 −0.323381
\(154\) 0 0
\(155\) 2.00000 0.160644
\(156\) 0 0
\(157\) −1.00000 −0.0798087 −0.0399043 0.999204i \(-0.512705\pi\)
−0.0399043 + 0.999204i \(0.512705\pi\)
\(158\) 0 0
\(159\) 8.00000 0.634441
\(160\) 0 0
\(161\) 6.00000 0.472866
\(162\) 0 0
\(163\) 7.00000 0.548282 0.274141 0.961689i \(-0.411606\pi\)
0.274141 + 0.961689i \(0.411606\pi\)
\(164\) 0 0
\(165\) −4.00000 −0.311400
\(166\) 0 0
\(167\) −12.0000 −0.928588 −0.464294 0.885681i \(-0.653692\pi\)
−0.464294 + 0.885681i \(0.653692\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) −4.00000 −0.305888
\(172\) 0 0
\(173\) −10.0000 −0.760286 −0.380143 0.924928i \(-0.624125\pi\)
−0.380143 + 0.924928i \(0.624125\pi\)
\(174\) 0 0
\(175\) 1.00000 0.0755929
\(176\) 0 0
\(177\) 2.00000 0.150329
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) −10.0000 −0.743294 −0.371647 0.928374i \(-0.621207\pi\)
−0.371647 + 0.928374i \(0.621207\pi\)
\(182\) 0 0
\(183\) −5.00000 −0.369611
\(184\) 0 0
\(185\) 20.0000 1.47043
\(186\) 0 0
\(187\) 8.00000 0.585018
\(188\) 0 0
\(189\) −1.00000 −0.0727393
\(190\) 0 0
\(191\) −22.0000 −1.59186 −0.795932 0.605386i \(-0.793019\pi\)
−0.795932 + 0.605386i \(0.793019\pi\)
\(192\) 0 0
\(193\) −17.0000 −1.22369 −0.611843 0.790979i \(-0.709572\pi\)
−0.611843 + 0.790979i \(0.709572\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 12.0000 0.854965 0.427482 0.904024i \(-0.359401\pi\)
0.427482 + 0.904024i \(0.359401\pi\)
\(198\) 0 0
\(199\) 5.00000 0.354441 0.177220 0.984171i \(-0.443289\pi\)
0.177220 + 0.984171i \(0.443289\pi\)
\(200\) 0 0
\(201\) 7.00000 0.493742
\(202\) 0 0
\(203\) −6.00000 −0.421117
\(204\) 0 0
\(205\) −8.00000 −0.558744
\(206\) 0 0
\(207\) −6.00000 −0.417029
\(208\) 0 0
\(209\) 8.00000 0.553372
\(210\) 0 0
\(211\) 27.0000 1.85876 0.929378 0.369129i \(-0.120344\pi\)
0.929378 + 0.369129i \(0.120344\pi\)
\(212\) 0 0
\(213\) −10.0000 −0.685189
\(214\) 0 0
\(215\) −2.00000 −0.136399
\(216\) 0 0
\(217\) −1.00000 −0.0678844
\(218\) 0 0
\(219\) −7.00000 −0.473016
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 16.0000 1.07144 0.535720 0.844396i \(-0.320040\pi\)
0.535720 + 0.844396i \(0.320040\pi\)
\(224\) 0 0
\(225\) −1.00000 −0.0666667
\(226\) 0 0
\(227\) 28.0000 1.85843 0.929213 0.369546i \(-0.120487\pi\)
0.929213 + 0.369546i \(0.120487\pi\)
\(228\) 0 0
\(229\) 22.0000 1.45380 0.726900 0.686743i \(-0.240960\pi\)
0.726900 + 0.686743i \(0.240960\pi\)
\(230\) 0 0
\(231\) 2.00000 0.131590
\(232\) 0 0
\(233\) −6.00000 −0.393073 −0.196537 0.980497i \(-0.562969\pi\)
−0.196537 + 0.980497i \(0.562969\pi\)
\(234\) 0 0
\(235\) 20.0000 1.30466
\(236\) 0 0
\(237\) −17.0000 −1.10427
\(238\) 0 0
\(239\) −24.0000 −1.55243 −0.776215 0.630468i \(-0.782863\pi\)
−0.776215 + 0.630468i \(0.782863\pi\)
\(240\) 0 0
\(241\) −14.0000 −0.901819 −0.450910 0.892570i \(-0.648900\pi\)
−0.450910 + 0.892570i \(0.648900\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) −12.0000 −0.766652
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −12.0000 −0.760469
\(250\) 0 0
\(251\) −16.0000 −1.00991 −0.504956 0.863145i \(-0.668491\pi\)
−0.504956 + 0.863145i \(0.668491\pi\)
\(252\) 0 0
\(253\) 12.0000 0.754434
\(254\) 0 0
\(255\) −8.00000 −0.500979
\(256\) 0 0
\(257\) 24.0000 1.49708 0.748539 0.663090i \(-0.230755\pi\)
0.748539 + 0.663090i \(0.230755\pi\)
\(258\) 0 0
\(259\) −10.0000 −0.621370
\(260\) 0 0
\(261\) 6.00000 0.371391
\(262\) 0 0
\(263\) −8.00000 −0.493301 −0.246651 0.969104i \(-0.579330\pi\)
−0.246651 + 0.969104i \(0.579330\pi\)
\(264\) 0 0
\(265\) 16.0000 0.982872
\(266\) 0 0
\(267\) −16.0000 −0.979184
\(268\) 0 0
\(269\) −20.0000 −1.21942 −0.609711 0.792624i \(-0.708714\pi\)
−0.609711 + 0.792624i \(0.708714\pi\)
\(270\) 0 0
\(271\) −11.0000 −0.668202 −0.334101 0.942537i \(-0.608433\pi\)
−0.334101 + 0.942537i \(0.608433\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 2.00000 0.120605
\(276\) 0 0
\(277\) −2.00000 −0.120168 −0.0600842 0.998193i \(-0.519137\pi\)
−0.0600842 + 0.998193i \(0.519137\pi\)
\(278\) 0 0
\(279\) 1.00000 0.0598684
\(280\) 0 0
\(281\) −2.00000 −0.119310 −0.0596550 0.998219i \(-0.519000\pi\)
−0.0596550 + 0.998219i \(0.519000\pi\)
\(282\) 0 0
\(283\) −5.00000 −0.297219 −0.148610 0.988896i \(-0.547480\pi\)
−0.148610 + 0.988896i \(0.547480\pi\)
\(284\) 0 0
\(285\) −8.00000 −0.473879
\(286\) 0 0
\(287\) 4.00000 0.236113
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) 13.0000 0.762073
\(292\) 0 0
\(293\) 26.0000 1.51894 0.759468 0.650545i \(-0.225459\pi\)
0.759468 + 0.650545i \(0.225459\pi\)
\(294\) 0 0
\(295\) 4.00000 0.232889
\(296\) 0 0
\(297\) −2.00000 −0.116052
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 1.00000 0.0576390
\(302\) 0 0
\(303\) −2.00000 −0.114897
\(304\) 0 0
\(305\) −10.0000 −0.572598
\(306\) 0 0
\(307\) 11.0000 0.627803 0.313902 0.949456i \(-0.398364\pi\)
0.313902 + 0.949456i \(0.398364\pi\)
\(308\) 0 0
\(309\) −13.0000 −0.739544
\(310\) 0 0
\(311\) 24.0000 1.36092 0.680458 0.732787i \(-0.261781\pi\)
0.680458 + 0.732787i \(0.261781\pi\)
\(312\) 0 0
\(313\) −21.0000 −1.18699 −0.593495 0.804838i \(-0.702252\pi\)
−0.593495 + 0.804838i \(0.702252\pi\)
\(314\) 0 0
\(315\) −2.00000 −0.112687
\(316\) 0 0
\(317\) −12.0000 −0.673987 −0.336994 0.941507i \(-0.609410\pi\)
−0.336994 + 0.941507i \(0.609410\pi\)
\(318\) 0 0
\(319\) −12.0000 −0.671871
\(320\) 0 0
\(321\) −18.0000 −1.00466
\(322\) 0 0
\(323\) 16.0000 0.890264
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −11.0000 −0.608301
\(328\) 0 0
\(329\) −10.0000 −0.551318
\(330\) 0 0
\(331\) 25.0000 1.37412 0.687062 0.726599i \(-0.258900\pi\)
0.687062 + 0.726599i \(0.258900\pi\)
\(332\) 0 0
\(333\) 10.0000 0.547997
\(334\) 0 0
\(335\) 14.0000 0.764902
\(336\) 0 0
\(337\) −3.00000 −0.163420 −0.0817102 0.996656i \(-0.526038\pi\)
−0.0817102 + 0.996656i \(0.526038\pi\)
\(338\) 0 0
\(339\) 18.0000 0.977626
\(340\) 0 0
\(341\) −2.00000 −0.108306
\(342\) 0 0
\(343\) 13.0000 0.701934
\(344\) 0 0
\(345\) −12.0000 −0.646058
\(346\) 0 0
\(347\) −12.0000 −0.644194 −0.322097 0.946707i \(-0.604388\pi\)
−0.322097 + 0.946707i \(0.604388\pi\)
\(348\) 0 0
\(349\) −9.00000 −0.481759 −0.240879 0.970555i \(-0.577436\pi\)
−0.240879 + 0.970555i \(0.577436\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 14.0000 0.745145 0.372572 0.928003i \(-0.378476\pi\)
0.372572 + 0.928003i \(0.378476\pi\)
\(354\) 0 0
\(355\) −20.0000 −1.06149
\(356\) 0 0
\(357\) 4.00000 0.211702
\(358\) 0 0
\(359\) 24.0000 1.26667 0.633336 0.773877i \(-0.281685\pi\)
0.633336 + 0.773877i \(0.281685\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 0 0
\(363\) −7.00000 −0.367405
\(364\) 0 0
\(365\) −14.0000 −0.732793
\(366\) 0 0
\(367\) 5.00000 0.260998 0.130499 0.991448i \(-0.458342\pi\)
0.130499 + 0.991448i \(0.458342\pi\)
\(368\) 0 0
\(369\) −4.00000 −0.208232
\(370\) 0 0
\(371\) −8.00000 −0.415339
\(372\) 0 0
\(373\) −33.0000 −1.70868 −0.854338 0.519718i \(-0.826037\pi\)
−0.854338 + 0.519718i \(0.826037\pi\)
\(374\) 0 0
\(375\) −12.0000 −0.619677
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −9.00000 −0.462299 −0.231149 0.972918i \(-0.574249\pi\)
−0.231149 + 0.972918i \(0.574249\pi\)
\(380\) 0 0
\(381\) −9.00000 −0.461084
\(382\) 0 0
\(383\) 12.0000 0.613171 0.306586 0.951843i \(-0.400813\pi\)
0.306586 + 0.951843i \(0.400813\pi\)
\(384\) 0 0
\(385\) 4.00000 0.203859
\(386\) 0 0
\(387\) −1.00000 −0.0508329
\(388\) 0 0
\(389\) −8.00000 −0.405616 −0.202808 0.979219i \(-0.565007\pi\)
−0.202808 + 0.979219i \(0.565007\pi\)
\(390\) 0 0
\(391\) 24.0000 1.21373
\(392\) 0 0
\(393\) −10.0000 −0.504433
\(394\) 0 0
\(395\) −34.0000 −1.71073
\(396\) 0 0
\(397\) 3.00000 0.150566 0.0752828 0.997162i \(-0.476014\pi\)
0.0752828 + 0.997162i \(0.476014\pi\)
\(398\) 0 0
\(399\) 4.00000 0.200250
\(400\) 0 0
\(401\) −36.0000 −1.79775 −0.898877 0.438201i \(-0.855616\pi\)
−0.898877 + 0.438201i \(0.855616\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 2.00000 0.0993808
\(406\) 0 0
\(407\) −20.0000 −0.991363
\(408\) 0 0
\(409\) −19.0000 −0.939490 −0.469745 0.882802i \(-0.655654\pi\)
−0.469745 + 0.882802i \(0.655654\pi\)
\(410\) 0 0
\(411\) 8.00000 0.394611
\(412\) 0 0
\(413\) −2.00000 −0.0984136
\(414\) 0 0
\(415\) −24.0000 −1.17811
\(416\) 0 0
\(417\) −3.00000 −0.146911
\(418\) 0 0
\(419\) 20.0000 0.977064 0.488532 0.872546i \(-0.337533\pi\)
0.488532 + 0.872546i \(0.337533\pi\)
\(420\) 0 0
\(421\) −11.0000 −0.536107 −0.268054 0.963404i \(-0.586380\pi\)
−0.268054 + 0.963404i \(0.586380\pi\)
\(422\) 0 0
\(423\) 10.0000 0.486217
\(424\) 0 0
\(425\) 4.00000 0.194029
\(426\) 0 0
\(427\) 5.00000 0.241967
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 32.0000 1.54139 0.770693 0.637207i \(-0.219910\pi\)
0.770693 + 0.637207i \(0.219910\pi\)
\(432\) 0 0
\(433\) −9.00000 −0.432512 −0.216256 0.976337i \(-0.569385\pi\)
−0.216256 + 0.976337i \(0.569385\pi\)
\(434\) 0 0
\(435\) 12.0000 0.575356
\(436\) 0 0
\(437\) 24.0000 1.14808
\(438\) 0 0
\(439\) −1.00000 −0.0477274 −0.0238637 0.999715i \(-0.507597\pi\)
−0.0238637 + 0.999715i \(0.507597\pi\)
\(440\) 0 0
\(441\) −6.00000 −0.285714
\(442\) 0 0
\(443\) 16.0000 0.760183 0.380091 0.924949i \(-0.375893\pi\)
0.380091 + 0.924949i \(0.375893\pi\)
\(444\) 0 0
\(445\) −32.0000 −1.51695
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 30.0000 1.41579 0.707894 0.706319i \(-0.249646\pi\)
0.707894 + 0.706319i \(0.249646\pi\)
\(450\) 0 0
\(451\) 8.00000 0.376705
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −3.00000 −0.140334 −0.0701670 0.997535i \(-0.522353\pi\)
−0.0701670 + 0.997535i \(0.522353\pi\)
\(458\) 0 0
\(459\) −4.00000 −0.186704
\(460\) 0 0
\(461\) 12.0000 0.558896 0.279448 0.960161i \(-0.409849\pi\)
0.279448 + 0.960161i \(0.409849\pi\)
\(462\) 0 0
\(463\) −19.0000 −0.883005 −0.441502 0.897260i \(-0.645554\pi\)
−0.441502 + 0.897260i \(0.645554\pi\)
\(464\) 0 0
\(465\) 2.00000 0.0927478
\(466\) 0 0
\(467\) −26.0000 −1.20314 −0.601568 0.798821i \(-0.705457\pi\)
−0.601568 + 0.798821i \(0.705457\pi\)
\(468\) 0 0
\(469\) −7.00000 −0.323230
\(470\) 0 0
\(471\) −1.00000 −0.0460776
\(472\) 0 0
\(473\) 2.00000 0.0919601
\(474\) 0 0
\(475\) 4.00000 0.183533
\(476\) 0 0
\(477\) 8.00000 0.366295
\(478\) 0 0
\(479\) 4.00000 0.182765 0.0913823 0.995816i \(-0.470871\pi\)
0.0913823 + 0.995816i \(0.470871\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 6.00000 0.273009
\(484\) 0 0
\(485\) 26.0000 1.18060
\(486\) 0 0
\(487\) 20.0000 0.906287 0.453143 0.891438i \(-0.350303\pi\)
0.453143 + 0.891438i \(0.350303\pi\)
\(488\) 0 0
\(489\) 7.00000 0.316551
\(490\) 0 0
\(491\) 18.0000 0.812329 0.406164 0.913800i \(-0.366866\pi\)
0.406164 + 0.913800i \(0.366866\pi\)
\(492\) 0 0
\(493\) −24.0000 −1.08091
\(494\) 0 0
\(495\) −4.00000 −0.179787
\(496\) 0 0
\(497\) 10.0000 0.448561
\(498\) 0 0
\(499\) 24.0000 1.07439 0.537194 0.843459i \(-0.319484\pi\)
0.537194 + 0.843459i \(0.319484\pi\)
\(500\) 0 0
\(501\) −12.0000 −0.536120
\(502\) 0 0
\(503\) 2.00000 0.0891756 0.0445878 0.999005i \(-0.485803\pi\)
0.0445878 + 0.999005i \(0.485803\pi\)
\(504\) 0 0
\(505\) −4.00000 −0.177998
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 30.0000 1.32973 0.664863 0.746965i \(-0.268490\pi\)
0.664863 + 0.746965i \(0.268490\pi\)
\(510\) 0 0
\(511\) 7.00000 0.309662
\(512\) 0 0
\(513\) −4.00000 −0.176604
\(514\) 0 0
\(515\) −26.0000 −1.14570
\(516\) 0 0
\(517\) −20.0000 −0.879599
\(518\) 0 0
\(519\) −10.0000 −0.438951
\(520\) 0 0
\(521\) −8.00000 −0.350486 −0.175243 0.984525i \(-0.556071\pi\)
−0.175243 + 0.984525i \(0.556071\pi\)
\(522\) 0 0
\(523\) 20.0000 0.874539 0.437269 0.899331i \(-0.355946\pi\)
0.437269 + 0.899331i \(0.355946\pi\)
\(524\) 0 0
\(525\) 1.00000 0.0436436
\(526\) 0 0
\(527\) −4.00000 −0.174243
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) 0 0
\(531\) 2.00000 0.0867926
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −36.0000 −1.55642
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 12.0000 0.516877
\(540\) 0 0
\(541\) 29.0000 1.24681 0.623404 0.781900i \(-0.285749\pi\)
0.623404 + 0.781900i \(0.285749\pi\)
\(542\) 0 0
\(543\) −10.0000 −0.429141
\(544\) 0 0
\(545\) −22.0000 −0.942376
\(546\) 0 0
\(547\) −35.0000 −1.49649 −0.748246 0.663421i \(-0.769104\pi\)
−0.748246 + 0.663421i \(0.769104\pi\)
\(548\) 0 0
\(549\) −5.00000 −0.213395
\(550\) 0 0
\(551\) −24.0000 −1.02243
\(552\) 0 0
\(553\) 17.0000 0.722914
\(554\) 0 0
\(555\) 20.0000 0.848953
\(556\) 0 0
\(557\) −12.0000 −0.508456 −0.254228 0.967144i \(-0.581821\pi\)
−0.254228 + 0.967144i \(0.581821\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 8.00000 0.337760
\(562\) 0 0
\(563\) 26.0000 1.09577 0.547885 0.836554i \(-0.315433\pi\)
0.547885 + 0.836554i \(0.315433\pi\)
\(564\) 0 0
\(565\) 36.0000 1.51453
\(566\) 0 0
\(567\) −1.00000 −0.0419961
\(568\) 0 0
\(569\) 42.0000 1.76073 0.880366 0.474295i \(-0.157297\pi\)
0.880366 + 0.474295i \(0.157297\pi\)
\(570\) 0 0
\(571\) 44.0000 1.84134 0.920671 0.390339i \(-0.127642\pi\)
0.920671 + 0.390339i \(0.127642\pi\)
\(572\) 0 0
\(573\) −22.0000 −0.919063
\(574\) 0 0
\(575\) 6.00000 0.250217
\(576\) 0 0
\(577\) 6.00000 0.249783 0.124892 0.992170i \(-0.460142\pi\)
0.124892 + 0.992170i \(0.460142\pi\)
\(578\) 0 0
\(579\) −17.0000 −0.706496
\(580\) 0 0
\(581\) 12.0000 0.497844
\(582\) 0 0
\(583\) −16.0000 −0.662652
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −10.0000 −0.412744 −0.206372 0.978474i \(-0.566166\pi\)
−0.206372 + 0.978474i \(0.566166\pi\)
\(588\) 0 0
\(589\) −4.00000 −0.164817
\(590\) 0 0
\(591\) 12.0000 0.493614
\(592\) 0 0
\(593\) −6.00000 −0.246390 −0.123195 0.992382i \(-0.539314\pi\)
−0.123195 + 0.992382i \(0.539314\pi\)
\(594\) 0 0
\(595\) 8.00000 0.327968
\(596\) 0 0
\(597\) 5.00000 0.204636
\(598\) 0 0
\(599\) 6.00000 0.245153 0.122577 0.992459i \(-0.460884\pi\)
0.122577 + 0.992459i \(0.460884\pi\)
\(600\) 0 0
\(601\) 26.0000 1.06056 0.530281 0.847822i \(-0.322086\pi\)
0.530281 + 0.847822i \(0.322086\pi\)
\(602\) 0 0
\(603\) 7.00000 0.285062
\(604\) 0 0
\(605\) −14.0000 −0.569181
\(606\) 0 0
\(607\) −8.00000 −0.324710 −0.162355 0.986732i \(-0.551909\pi\)
−0.162355 + 0.986732i \(0.551909\pi\)
\(608\) 0 0
\(609\) −6.00000 −0.243132
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −17.0000 −0.686624 −0.343312 0.939222i \(-0.611549\pi\)
−0.343312 + 0.939222i \(0.611549\pi\)
\(614\) 0 0
\(615\) −8.00000 −0.322591
\(616\) 0 0
\(617\) −42.0000 −1.69086 −0.845428 0.534089i \(-0.820655\pi\)
−0.845428 + 0.534089i \(0.820655\pi\)
\(618\) 0 0
\(619\) 13.0000 0.522514 0.261257 0.965269i \(-0.415863\pi\)
0.261257 + 0.965269i \(0.415863\pi\)
\(620\) 0 0
\(621\) −6.00000 −0.240772
\(622\) 0 0
\(623\) 16.0000 0.641026
\(624\) 0 0
\(625\) −19.0000 −0.760000
\(626\) 0 0
\(627\) 8.00000 0.319489
\(628\) 0 0
\(629\) −40.0000 −1.59490
\(630\) 0 0
\(631\) −9.00000 −0.358284 −0.179142 0.983823i \(-0.557332\pi\)
−0.179142 + 0.983823i \(0.557332\pi\)
\(632\) 0 0
\(633\) 27.0000 1.07315
\(634\) 0 0
\(635\) −18.0000 −0.714308
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −10.0000 −0.395594
\(640\) 0 0
\(641\) 2.00000 0.0789953 0.0394976 0.999220i \(-0.487424\pi\)
0.0394976 + 0.999220i \(0.487424\pi\)
\(642\) 0 0
\(643\) 31.0000 1.22252 0.611260 0.791430i \(-0.290663\pi\)
0.611260 + 0.791430i \(0.290663\pi\)
\(644\) 0 0
\(645\) −2.00000 −0.0787499
\(646\) 0 0
\(647\) −6.00000 −0.235884 −0.117942 0.993020i \(-0.537630\pi\)
−0.117942 + 0.993020i \(0.537630\pi\)
\(648\) 0 0
\(649\) −4.00000 −0.157014
\(650\) 0 0
\(651\) −1.00000 −0.0391931
\(652\) 0 0
\(653\) −4.00000 −0.156532 −0.0782660 0.996933i \(-0.524938\pi\)
−0.0782660 + 0.996933i \(0.524938\pi\)
\(654\) 0 0
\(655\) −20.0000 −0.781465
\(656\) 0 0
\(657\) −7.00000 −0.273096
\(658\) 0 0
\(659\) −12.0000 −0.467454 −0.233727 0.972302i \(-0.575092\pi\)
−0.233727 + 0.972302i \(0.575092\pi\)
\(660\) 0 0
\(661\) 19.0000 0.739014 0.369507 0.929228i \(-0.379527\pi\)
0.369507 + 0.929228i \(0.379527\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 8.00000 0.310227
\(666\) 0 0
\(667\) −36.0000 −1.39393
\(668\) 0 0
\(669\) 16.0000 0.618596
\(670\) 0 0
\(671\) 10.0000 0.386046
\(672\) 0 0
\(673\) 7.00000 0.269830 0.134915 0.990857i \(-0.456924\pi\)
0.134915 + 0.990857i \(0.456924\pi\)
\(674\) 0 0
\(675\) −1.00000 −0.0384900
\(676\) 0 0
\(677\) 8.00000 0.307465 0.153732 0.988113i \(-0.450871\pi\)
0.153732 + 0.988113i \(0.450871\pi\)
\(678\) 0 0
\(679\) −13.0000 −0.498894
\(680\) 0 0
\(681\) 28.0000 1.07296
\(682\) 0 0
\(683\) 46.0000 1.76014 0.880071 0.474843i \(-0.157495\pi\)
0.880071 + 0.474843i \(0.157495\pi\)
\(684\) 0 0
\(685\) 16.0000 0.611329
\(686\) 0 0
\(687\) 22.0000 0.839352
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 5.00000 0.190209 0.0951045 0.995467i \(-0.469681\pi\)
0.0951045 + 0.995467i \(0.469681\pi\)
\(692\) 0 0
\(693\) 2.00000 0.0759737
\(694\) 0 0
\(695\) −6.00000 −0.227593
\(696\) 0 0
\(697\) 16.0000 0.606043
\(698\) 0 0
\(699\) −6.00000 −0.226941
\(700\) 0 0
\(701\) 28.0000 1.05755 0.528773 0.848763i \(-0.322652\pi\)
0.528773 + 0.848763i \(0.322652\pi\)
\(702\) 0 0
\(703\) −40.0000 −1.50863
\(704\) 0 0
\(705\) 20.0000 0.753244
\(706\) 0 0
\(707\) 2.00000 0.0752177
\(708\) 0 0
\(709\) −15.0000 −0.563337 −0.281668 0.959512i \(-0.590888\pi\)
−0.281668 + 0.959512i \(0.590888\pi\)
\(710\) 0 0
\(711\) −17.0000 −0.637550
\(712\) 0 0
\(713\) −6.00000 −0.224702
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −24.0000 −0.896296
\(718\) 0 0
\(719\) 18.0000 0.671287 0.335643 0.941989i \(-0.391046\pi\)
0.335643 + 0.941989i \(0.391046\pi\)
\(720\) 0 0
\(721\) 13.0000 0.484145
\(722\) 0 0
\(723\) −14.0000 −0.520666
\(724\) 0 0
\(725\) −6.00000 −0.222834
\(726\) 0 0
\(727\) −41.0000 −1.52061 −0.760303 0.649569i \(-0.774949\pi\)
−0.760303 + 0.649569i \(0.774949\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 4.00000 0.147945
\(732\) 0 0
\(733\) −35.0000 −1.29275 −0.646377 0.763018i \(-0.723717\pi\)
−0.646377 + 0.763018i \(0.723717\pi\)
\(734\) 0 0
\(735\) −12.0000 −0.442627
\(736\) 0 0
\(737\) −14.0000 −0.515697
\(738\) 0 0
\(739\) 20.0000 0.735712 0.367856 0.929883i \(-0.380092\pi\)
0.367856 + 0.929883i \(0.380092\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −6.00000 −0.220119 −0.110059 0.993925i \(-0.535104\pi\)
−0.110059 + 0.993925i \(0.535104\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −12.0000 −0.439057
\(748\) 0 0
\(749\) 18.0000 0.657706
\(750\) 0 0
\(751\) 16.0000 0.583848 0.291924 0.956441i \(-0.405705\pi\)
0.291924 + 0.956441i \(0.405705\pi\)
\(752\) 0 0
\(753\) −16.0000 −0.583072
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −18.0000 −0.654221 −0.327111 0.944986i \(-0.606075\pi\)
−0.327111 + 0.944986i \(0.606075\pi\)
\(758\) 0 0
\(759\) 12.0000 0.435572
\(760\) 0 0
\(761\) −8.00000 −0.290000 −0.145000 0.989432i \(-0.546318\pi\)
−0.145000 + 0.989432i \(0.546318\pi\)
\(762\) 0 0
\(763\) 11.0000 0.398227
\(764\) 0 0
\(765\) −8.00000 −0.289241
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 14.0000 0.504853 0.252426 0.967616i \(-0.418771\pi\)
0.252426 + 0.967616i \(0.418771\pi\)
\(770\) 0 0
\(771\) 24.0000 0.864339
\(772\) 0 0
\(773\) 6.00000 0.215805 0.107903 0.994161i \(-0.465587\pi\)
0.107903 + 0.994161i \(0.465587\pi\)
\(774\) 0 0
\(775\) −1.00000 −0.0359211
\(776\) 0 0
\(777\) −10.0000 −0.358748
\(778\) 0 0
\(779\) 16.0000 0.573259
\(780\) 0 0
\(781\) 20.0000 0.715656
\(782\) 0 0
\(783\) 6.00000 0.214423
\(784\) 0 0
\(785\) −2.00000 −0.0713831
\(786\) 0 0
\(787\) −49.0000 −1.74666 −0.873331 0.487128i \(-0.838045\pi\)
−0.873331 + 0.487128i \(0.838045\pi\)
\(788\) 0 0
\(789\) −8.00000 −0.284808
\(790\) 0 0
\(791\) −18.0000 −0.640006
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 16.0000 0.567462
\(796\) 0 0
\(797\) −8.00000 −0.283375 −0.141687 0.989911i \(-0.545253\pi\)
−0.141687 + 0.989911i \(0.545253\pi\)
\(798\) 0 0
\(799\) −40.0000 −1.41510
\(800\) 0 0
\(801\) −16.0000 −0.565332
\(802\) 0 0
\(803\) 14.0000 0.494049
\(804\) 0 0
\(805\) 12.0000 0.422944
\(806\) 0 0
\(807\) −20.0000 −0.704033
\(808\) 0 0
\(809\) 32.0000 1.12506 0.562530 0.826777i \(-0.309828\pi\)
0.562530 + 0.826777i \(0.309828\pi\)
\(810\) 0 0
\(811\) −51.0000 −1.79085 −0.895426 0.445210i \(-0.853129\pi\)
−0.895426 + 0.445210i \(0.853129\pi\)
\(812\) 0 0
\(813\) −11.0000 −0.385787
\(814\) 0 0
\(815\) 14.0000 0.490399
\(816\) 0 0
\(817\) 4.00000 0.139942
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −30.0000 −1.04701 −0.523504 0.852023i \(-0.675375\pi\)
−0.523504 + 0.852023i \(0.675375\pi\)
\(822\) 0 0
\(823\) −32.0000 −1.11545 −0.557725 0.830026i \(-0.688326\pi\)
−0.557725 + 0.830026i \(0.688326\pi\)
\(824\) 0 0
\(825\) 2.00000 0.0696311
\(826\) 0 0
\(827\) 20.0000 0.695468 0.347734 0.937593i \(-0.386951\pi\)
0.347734 + 0.937593i \(0.386951\pi\)
\(828\) 0 0
\(829\) −11.0000 −0.382046 −0.191023 0.981586i \(-0.561180\pi\)
−0.191023 + 0.981586i \(0.561180\pi\)
\(830\) 0 0
\(831\) −2.00000 −0.0693792
\(832\) 0 0
\(833\) 24.0000 0.831551
\(834\) 0 0
\(835\) −24.0000 −0.830554
\(836\) 0 0
\(837\) 1.00000 0.0345651
\(838\) 0 0
\(839\) 22.0000 0.759524 0.379762 0.925084i \(-0.376006\pi\)
0.379762 + 0.925084i \(0.376006\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 0 0
\(843\) −2.00000 −0.0688837
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 7.00000 0.240523
\(848\) 0 0
\(849\) −5.00000 −0.171600
\(850\) 0 0
\(851\) −60.0000 −2.05677
\(852\) 0 0
\(853\) −53.0000 −1.81469 −0.907343 0.420392i \(-0.861893\pi\)
−0.907343 + 0.420392i \(0.861893\pi\)
\(854\) 0 0
\(855\) −8.00000 −0.273594
\(856\) 0 0
\(857\) 54.0000 1.84460 0.922302 0.386469i \(-0.126305\pi\)
0.922302 + 0.386469i \(0.126305\pi\)
\(858\) 0 0
\(859\) 35.0000 1.19418 0.597092 0.802173i \(-0.296323\pi\)
0.597092 + 0.802173i \(0.296323\pi\)
\(860\) 0 0
\(861\) 4.00000 0.136320
\(862\) 0 0
\(863\) 26.0000 0.885050 0.442525 0.896756i \(-0.354083\pi\)
0.442525 + 0.896756i \(0.354083\pi\)
\(864\) 0 0
\(865\) −20.0000 −0.680020
\(866\) 0 0
\(867\) −1.00000 −0.0339618
\(868\) 0 0
\(869\) 34.0000 1.15337
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 13.0000 0.439983
\(874\) 0 0
\(875\) 12.0000 0.405674
\(876\) 0 0
\(877\) −38.0000 −1.28317 −0.641584 0.767052i \(-0.721723\pi\)
−0.641584 + 0.767052i \(0.721723\pi\)
\(878\) 0 0
\(879\) 26.0000 0.876958
\(880\) 0 0
\(881\) −40.0000 −1.34763 −0.673817 0.738898i \(-0.735346\pi\)
−0.673817 + 0.738898i \(0.735346\pi\)
\(882\) 0 0
\(883\) −19.0000 −0.639401 −0.319700 0.947519i \(-0.603582\pi\)
−0.319700 + 0.947519i \(0.603582\pi\)
\(884\) 0 0
\(885\) 4.00000 0.134459
\(886\) 0 0
\(887\) 18.0000 0.604381 0.302190 0.953248i \(-0.402282\pi\)
0.302190 + 0.953248i \(0.402282\pi\)
\(888\) 0 0
\(889\) 9.00000 0.301850
\(890\) 0 0
\(891\) −2.00000 −0.0670025
\(892\) 0 0
\(893\) −40.0000 −1.33855
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 6.00000 0.200111
\(900\) 0 0
\(901\) −32.0000 −1.06607
\(902\) 0 0
\(903\) 1.00000 0.0332779
\(904\) 0 0
\(905\) −20.0000 −0.664822
\(906\) 0 0
\(907\) −52.0000 −1.72663 −0.863316 0.504664i \(-0.831616\pi\)
−0.863316 + 0.504664i \(0.831616\pi\)
\(908\) 0 0
\(909\) −2.00000 −0.0663358
\(910\) 0 0
\(911\) 20.0000 0.662630 0.331315 0.943520i \(-0.392508\pi\)
0.331315 + 0.943520i \(0.392508\pi\)
\(912\) 0 0
\(913\) 24.0000 0.794284
\(914\) 0 0
\(915\) −10.0000 −0.330590
\(916\) 0 0
\(917\) 10.0000 0.330229
\(918\) 0 0
\(919\) 16.0000 0.527791 0.263896 0.964551i \(-0.414993\pi\)
0.263896 + 0.964551i \(0.414993\pi\)
\(920\) 0 0
\(921\) 11.0000 0.362462
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −10.0000 −0.328798
\(926\) 0 0
\(927\) −13.0000 −0.426976
\(928\) 0 0
\(929\) 28.0000 0.918650 0.459325 0.888268i \(-0.348091\pi\)
0.459325 + 0.888268i \(0.348091\pi\)
\(930\) 0 0
\(931\) 24.0000 0.786568
\(932\) 0 0
\(933\) 24.0000 0.785725
\(934\) 0 0
\(935\) 16.0000 0.523256
\(936\) 0 0
\(937\) 38.0000 1.24141 0.620703 0.784046i \(-0.286847\pi\)
0.620703 + 0.784046i \(0.286847\pi\)
\(938\) 0 0
\(939\) −21.0000 −0.685309
\(940\) 0 0
\(941\) −22.0000 −0.717180 −0.358590 0.933495i \(-0.616742\pi\)
−0.358590 + 0.933495i \(0.616742\pi\)
\(942\) 0 0
\(943\) 24.0000 0.781548
\(944\) 0 0
\(945\) −2.00000 −0.0650600
\(946\) 0 0
\(947\) −20.0000 −0.649913 −0.324956 0.945729i \(-0.605350\pi\)
−0.324956 + 0.945729i \(0.605350\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −12.0000 −0.389127
\(952\) 0 0
\(953\) 6.00000 0.194359 0.0971795 0.995267i \(-0.469018\pi\)
0.0971795 + 0.995267i \(0.469018\pi\)
\(954\) 0 0
\(955\) −44.0000 −1.42381
\(956\) 0 0
\(957\) −12.0000 −0.387905
\(958\) 0 0
\(959\) −8.00000 −0.258333
\(960\) 0 0
\(961\) −30.0000 −0.967742
\(962\) 0 0
\(963\) −18.0000 −0.580042
\(964\) 0 0
\(965\) −34.0000 −1.09450
\(966\) 0 0
\(967\) −4.00000 −0.128631 −0.0643157 0.997930i \(-0.520486\pi\)
−0.0643157 + 0.997930i \(0.520486\pi\)
\(968\) 0 0
\(969\) 16.0000 0.513994
\(970\) 0 0
\(971\) −20.0000 −0.641831 −0.320915 0.947108i \(-0.603990\pi\)
−0.320915 + 0.947108i \(0.603990\pi\)
\(972\) 0 0
\(973\) 3.00000 0.0961756
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −24.0000 −0.767828 −0.383914 0.923369i \(-0.625424\pi\)
−0.383914 + 0.923369i \(0.625424\pi\)
\(978\) 0 0
\(979\) 32.0000 1.02272
\(980\) 0 0
\(981\) −11.0000 −0.351203
\(982\) 0 0
\(983\) 30.0000 0.956851 0.478426 0.878128i \(-0.341208\pi\)
0.478426 + 0.878128i \(0.341208\pi\)
\(984\) 0 0
\(985\) 24.0000 0.764704
\(986\) 0 0
\(987\) −10.0000 −0.318304
\(988\) 0 0
\(989\) 6.00000 0.190789
\(990\) 0 0
\(991\) −48.0000 −1.52477 −0.762385 0.647124i \(-0.775972\pi\)
−0.762385 + 0.647124i \(0.775972\pi\)
\(992\) 0 0
\(993\) 25.0000 0.793351
\(994\) 0 0
\(995\) 10.0000 0.317021
\(996\) 0 0
\(997\) 7.00000 0.221692 0.110846 0.993838i \(-0.464644\pi\)
0.110846 + 0.993838i \(0.464644\pi\)
\(998\) 0 0
\(999\) 10.0000 0.316386
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8112.2.a.bd.1.1 1
4.3 odd 2 2028.2.a.b.1.1 1
12.11 even 2 6084.2.a.e.1.1 1
13.3 even 3 624.2.q.d.529.1 2
13.9 even 3 624.2.q.d.289.1 2
13.12 even 2 8112.2.a.u.1.1 1
39.29 odd 6 1872.2.t.e.1153.1 2
39.35 odd 6 1872.2.t.e.289.1 2
52.3 odd 6 156.2.i.a.61.1 2
52.7 even 12 2028.2.q.g.361.2 4
52.11 even 12 2028.2.q.g.1837.2 4
52.15 even 12 2028.2.q.g.1837.1 4
52.19 even 12 2028.2.q.g.361.1 4
52.23 odd 6 2028.2.i.f.529.1 2
52.31 even 4 2028.2.b.c.337.1 2
52.35 odd 6 156.2.i.a.133.1 yes 2
52.43 odd 6 2028.2.i.f.2005.1 2
52.47 even 4 2028.2.b.c.337.2 2
52.51 odd 2 2028.2.a.a.1.1 1
156.35 even 6 468.2.l.b.289.1 2
156.47 odd 4 6084.2.b.b.4393.1 2
156.83 odd 4 6084.2.b.b.4393.2 2
156.107 even 6 468.2.l.b.217.1 2
156.155 even 2 6084.2.a.l.1.1 1
260.3 even 12 3900.2.by.c.3649.2 4
260.87 even 12 3900.2.by.c.1849.2 4
260.107 even 12 3900.2.by.c.3649.1 4
260.139 odd 6 3900.2.q.e.601.1 2
260.159 odd 6 3900.2.q.e.2401.1 2
260.243 even 12 3900.2.by.c.1849.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
156.2.i.a.61.1 2 52.3 odd 6
156.2.i.a.133.1 yes 2 52.35 odd 6
468.2.l.b.217.1 2 156.107 even 6
468.2.l.b.289.1 2 156.35 even 6
624.2.q.d.289.1 2 13.9 even 3
624.2.q.d.529.1 2 13.3 even 3
1872.2.t.e.289.1 2 39.35 odd 6
1872.2.t.e.1153.1 2 39.29 odd 6
2028.2.a.a.1.1 1 52.51 odd 2
2028.2.a.b.1.1 1 4.3 odd 2
2028.2.b.c.337.1 2 52.31 even 4
2028.2.b.c.337.2 2 52.47 even 4
2028.2.i.f.529.1 2 52.23 odd 6
2028.2.i.f.2005.1 2 52.43 odd 6
2028.2.q.g.361.1 4 52.19 even 12
2028.2.q.g.361.2 4 52.7 even 12
2028.2.q.g.1837.1 4 52.15 even 12
2028.2.q.g.1837.2 4 52.11 even 12
3900.2.q.e.601.1 2 260.139 odd 6
3900.2.q.e.2401.1 2 260.159 odd 6
3900.2.by.c.1849.1 4 260.243 even 12
3900.2.by.c.1849.2 4 260.87 even 12
3900.2.by.c.3649.1 4 260.107 even 12
3900.2.by.c.3649.2 4 260.3 even 12
6084.2.a.e.1.1 1 12.11 even 2
6084.2.a.l.1.1 1 156.155 even 2
6084.2.b.b.4393.1 2 156.47 odd 4
6084.2.b.b.4393.2 2 156.83 odd 4
8112.2.a.u.1.1 1 13.12 even 2
8112.2.a.bd.1.1 1 1.1 even 1 trivial