Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [8100,2,Mod(649,8100)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8100, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("8100.649");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 8100 = 2^{2} \cdot 3^{4} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 8100.d (of order \(2\), degree \(1\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(64.6788256372\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Coefficient field: | \(\Q(\zeta_{12})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: | \( x^{4} - x^{2} + 1 \) |
Coefficient ring: | \(\Z[a_1, \ldots, a_{11}]\) |
Coefficient ring index: | \( 2^{3} \) |
Twist minimal: | no (minimal twist has level 1620) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
Embedding invariants
Embedding label | 649.2 | ||
Root | \(0.866025 + 0.500000i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 8100.649 |
Dual form | 8100.2.d.l.649.3 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/8100\mathbb{Z}\right)^\times\).
\(n\) | \(4051\) | \(6401\) | \(7777\) |
\(\chi(n)\) | \(1\) | \(1\) | \(-1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 0 | 0 | ||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | − 0.732051i | − 0.276689i | −0.990384 | − | 0.138345i | \(-0.955822\pi\) | ||||
0.990384 | − | 0.138345i | \(-0.0441781\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 1.73205 | 0.522233 | 0.261116 | − | 0.965307i | \(-0.415909\pi\) | ||||
0.261116 | + | 0.965307i | \(0.415909\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | − 1.46410i | − 0.406069i | −0.979172 | − | 0.203034i | \(-0.934920\pi\) | ||||
0.979172 | − | 0.203034i | \(-0.0650803\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | − 1.26795i | − 0.307523i | −0.988108 | − | 0.153761i | \(-0.950861\pi\) | ||||
0.988108 | − | 0.153761i | \(-0.0491387\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | −2.46410 | −0.565304 | −0.282652 | − | 0.959223i | \(-0.591214\pi\) | ||||
−0.282652 | + | 0.959223i | \(0.591214\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 3.46410i | 0.722315i | 0.932505 | + | 0.361158i | \(0.117618\pi\) | ||||
−0.932505 | + | 0.361158i | \(0.882382\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 0 | 0 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | −4.26795 | −0.792538 | −0.396269 | − | 0.918134i | \(-0.629695\pi\) | ||||
−0.396269 | + | 0.918134i | \(0.629695\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | −7.92820 | −1.42395 | −0.711974 | − | 0.702206i | \(-0.752198\pi\) | ||||
−0.711974 | + | 0.702206i | \(0.752198\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | − 4.19615i | − 0.689843i | −0.938631 | − | 0.344922i | \(-0.887905\pi\) | ||||
0.938631 | − | 0.344922i | \(-0.112095\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | 0.803848 | 0.125540 | 0.0627700 | − | 0.998028i | \(-0.480007\pi\) | ||||
0.0627700 | + | 0.998028i | \(0.480007\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 6.73205i | 1.02663i | 0.858201 | + | 0.513314i | \(0.171582\pi\) | ||||
−0.858201 | + | 0.513314i | \(0.828418\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | − 4.73205i | − 0.690241i | −0.938558 | − | 0.345120i | \(-0.887838\pi\) | ||||
0.938558 | − | 0.345120i | \(-0.112162\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | 6.46410 | 0.923443 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | 10.7321i | 1.47416i | 0.675805 | + | 0.737080i | \(0.263796\pi\) | ||||
−0.675805 | + | 0.737080i | \(0.736204\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | −4.26795 | −0.555640 | −0.277820 | − | 0.960633i | \(-0.589612\pi\) | ||||
−0.277820 | + | 0.960633i | \(0.589612\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | −4.00000 | −0.512148 | −0.256074 | − | 0.966657i | \(-0.582429\pi\) | ||||
−0.256074 | + | 0.966657i | \(0.582429\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | 14.3923i | 1.75830i | 0.476545 | + | 0.879150i | \(0.341889\pi\) | ||||
−0.476545 | + | 0.879150i | \(0.658111\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 0.803848 | 0.0953992 | 0.0476996 | − | 0.998862i | \(-0.484811\pi\) | ||||
0.0476996 | + | 0.998862i | \(0.484811\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 10.1962i | 1.19337i | 0.802476 | + | 0.596685i | \(0.203516\pi\) | ||||
−0.802476 | + | 0.596685i | \(0.796484\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | − 1.26795i | − 0.144496i | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | −6.39230 | −0.719190 | −0.359595 | − | 0.933108i | \(-0.617085\pi\) | ||||
−0.359595 | + | 0.933108i | \(0.617085\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | − 9.12436i | − 1.00153i | −0.865584 | − | 0.500764i | \(-0.833052\pi\) | ||||
0.865584 | − | 0.500764i | \(-0.166948\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | −5.19615 | −0.550791 | −0.275396 | − | 0.961331i | \(-0.588809\pi\) | ||||
−0.275396 | + | 0.961331i | \(0.588809\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | −1.07180 | −0.112355 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | 2.73205i | 0.277398i | 0.990335 | + | 0.138699i | \(0.0442920\pi\) | ||||
−0.990335 | + | 0.138699i | \(0.955708\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 18.1244 | 1.80344 | 0.901720 | − | 0.432320i | \(-0.142305\pi\) | ||||
0.901720 | + | 0.432320i | \(0.142305\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | − 2.39230i | − 0.235721i | −0.993030 | − | 0.117860i | \(-0.962396\pi\) | ||||
0.993030 | − | 0.117860i | \(-0.0376035\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | − 3.46410i | − 0.334887i | −0.985882 | − | 0.167444i | \(-0.946449\pi\) | ||||
0.985882 | − | 0.167444i | \(-0.0535512\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | −5.92820 | −0.567819 | −0.283909 | − | 0.958851i | \(-0.591632\pi\) | ||||
−0.283909 | + | 0.958851i | \(0.591632\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | 17.6603i | 1.66134i | 0.556767 | + | 0.830668i | \(0.312041\pi\) | ||||
−0.556767 | + | 0.830668i | \(0.687959\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | −0.928203 | −0.0850883 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −8.00000 | −0.727273 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 0 | 0 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 6.19615i | 0.549820i | 0.961470 | + | 0.274910i | \(0.0886480\pi\) | ||||
−0.961470 | + | 0.274910i | \(0.911352\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | −13.7321 | −1.19977 | −0.599887 | − | 0.800084i | \(-0.704788\pi\) | ||||
−0.599887 | + | 0.800084i | \(0.704788\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 1.80385i | 0.156413i | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | − 16.3923i | − 1.40049i | −0.713903 | − | 0.700245i | \(-0.753074\pi\) | ||||
0.713903 | − | 0.700245i | \(-0.246926\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | 5.39230 | 0.457369 | 0.228685 | − | 0.973501i | \(-0.426558\pi\) | ||||
0.228685 | + | 0.973501i | \(0.426558\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | − 2.53590i | − 0.212062i | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 3.39230 | 0.276062 | 0.138031 | − | 0.990428i | \(-0.455923\pi\) | ||||
0.138031 | + | 0.990428i | \(0.455923\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | − 6.73205i | − 0.537276i | −0.963241 | − | 0.268638i | \(-0.913426\pi\) | ||||
0.963241 | − | 0.268638i | \(-0.0865736\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 2.53590 | 0.199857 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 15.2679i | 1.19588i | 0.801542 | + | 0.597939i | \(0.204014\pi\) | ||||
−0.801542 | + | 0.597939i | \(0.795986\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 3.12436i | 0.241770i | 0.992667 | + | 0.120885i | \(0.0385732\pi\) | ||||
−0.992667 | + | 0.120885i | \(0.961427\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 10.8564 | 0.835108 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | − 24.2487i | − 1.84360i | −0.387671 | − | 0.921798i | \(-0.626720\pi\) | ||||
0.387671 | − | 0.921798i | \(-0.373280\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | 12.1244 | 0.906217 | 0.453108 | − | 0.891455i | \(-0.350315\pi\) | ||||
0.453108 | + | 0.891455i | \(0.350315\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | −9.53590 | −0.708798 | −0.354399 | − | 0.935094i | \(-0.615314\pi\) | ||||
−0.354399 | + | 0.935094i | \(0.615314\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | − 2.19615i | − 0.160599i | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 19.0526 | 1.37859 | 0.689297 | − | 0.724479i | \(-0.257919\pi\) | ||||
0.689297 | + | 0.724479i | \(0.257919\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | 20.5885i | 1.48199i | 0.671511 | + | 0.740995i | \(0.265646\pi\) | ||||
−0.671511 | + | 0.740995i | \(0.734354\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | 13.8564i | 0.987228i | 0.869681 | + | 0.493614i | \(0.164324\pi\) | ||||
−0.869681 | + | 0.493614i | \(0.835676\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | 11.8564 | 0.840478 | 0.420239 | − | 0.907413i | \(-0.361946\pi\) | ||||
0.420239 | + | 0.907413i | \(0.361946\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 3.12436i | 0.219287i | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | −4.26795 | −0.295220 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | −6.07180 | −0.418000 | −0.209000 | − | 0.977916i | \(-0.567021\pi\) | ||||
−0.209000 | + | 0.977916i | \(0.567021\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 5.80385i | 0.393991i | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | −1.85641 | −0.124875 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | 21.8564i | 1.46361i | 0.681512 | + | 0.731807i | \(0.261323\pi\) | ||||
−0.681512 | + | 0.731807i | \(0.738677\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 15.8038i | 1.04894i | 0.851429 | + | 0.524469i | \(0.175736\pi\) | ||||
−0.851429 | + | 0.524469i | \(0.824264\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | −9.85641 | −0.651330 | −0.325665 | − | 0.945485i | \(-0.605588\pi\) | ||||
−0.325665 | + | 0.945485i | \(0.605588\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | 6.58846i | 0.431624i | 0.976435 | + | 0.215812i | \(0.0692399\pi\) | ||||
−0.976435 | + | 0.215812i | \(0.930760\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 15.4641 | 1.00029 | 0.500145 | − | 0.865942i | \(-0.333280\pi\) | ||||
0.500145 | + | 0.865942i | \(0.333280\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | −24.3205 | −1.56662 | −0.783311 | − | 0.621630i | \(-0.786471\pi\) | ||||
−0.783311 | + | 0.621630i | \(0.786471\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 3.60770i | 0.229552i | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | −27.4641 | −1.73352 | −0.866759 | − | 0.498727i | \(-0.833801\pi\) | ||||
−0.866759 | + | 0.498727i | \(0.833801\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 6.00000i | 0.377217i | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | 8.53590i | 0.532455i | 0.963910 | + | 0.266227i | \(0.0857772\pi\) | ||||
−0.963910 | + | 0.266227i | \(0.914223\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | −3.07180 | −0.190872 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | − 24.2487i | − 1.49524i | −0.664127 | − | 0.747620i | \(-0.731197\pi\) | ||||
0.664127 | − | 0.747620i | \(-0.268803\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | −19.7321 | −1.20308 | −0.601542 | − | 0.798841i | \(-0.705447\pi\) | ||||
−0.601542 | + | 0.798841i | \(0.705447\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | −24.7846 | −1.50556 | −0.752779 | − | 0.658273i | \(-0.771287\pi\) | ||||
−0.752779 | + | 0.658273i | \(0.771287\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 19.1244i | 1.14907i | 0.818480 | + | 0.574536i | \(0.194817\pi\) | ||||
−0.818480 | + | 0.574536i | \(0.805183\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | 5.32051 | 0.317395 | 0.158697 | − | 0.987327i | \(-0.449271\pi\) | ||||
0.158697 | + | 0.987327i | \(0.449271\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 23.4641i | 1.39480i | 0.716684 | + | 0.697398i | \(0.245659\pi\) | ||||
−0.716684 | + | 0.697398i | \(0.754341\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | − 0.588457i | − 0.0347355i | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | 15.3923 | 0.905430 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | 6.58846i | 0.384902i | 0.981307 | + | 0.192451i | \(0.0616436\pi\) | ||||
−0.981307 | + | 0.192451i | \(0.938356\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 5.07180 | 0.293310 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 4.92820 | 0.284057 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | 12.1962i | 0.696071i | 0.937481 | + | 0.348036i | \(0.113151\pi\) | ||||
−0.937481 | + | 0.348036i | \(0.886849\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | −28.5167 | −1.61703 | −0.808516 | − | 0.588475i | \(-0.799729\pi\) | ||||
−0.808516 | + | 0.588475i | \(0.799729\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | 1.07180i | 0.0605815i | 0.999541 | + | 0.0302908i | \(0.00964333\pi\) | ||||
−0.999541 | + | 0.0302908i | \(0.990357\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | − 21.1244i | − 1.18646i | −0.805032 | − | 0.593231i | \(-0.797852\pi\) | ||||
0.805032 | − | 0.593231i | \(-0.202148\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | −7.39230 | −0.413890 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 3.12436i | 0.173844i | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | −3.46410 | −0.190982 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | −8.60770 | −0.473122 | −0.236561 | − | 0.971617i | \(-0.576020\pi\) | ||||
−0.236561 | + | 0.971617i | \(0.576020\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | − 14.2487i | − 0.776177i | −0.921622 | − | 0.388088i | \(-0.873136\pi\) | ||||
0.921622 | − | 0.388088i | \(-0.126864\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | −13.7321 | −0.743632 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | − 9.85641i | − 0.532196i | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | 32.1962i | 1.72838i | 0.503166 | + | 0.864190i | \(0.332169\pi\) | ||||
−0.503166 | + | 0.864190i | \(0.667831\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | 25.0000 | 1.33822 | 0.669110 | − | 0.743164i | \(-0.266676\pi\) | ||||
0.669110 | + | 0.743164i | \(0.266676\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | − 22.9808i | − 1.22314i | −0.791189 | − | 0.611571i | \(-0.790538\pi\) | ||||
0.791189 | − | 0.611571i | \(-0.209462\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | 26.6603 | 1.40707 | 0.703537 | − | 0.710658i | \(-0.251603\pi\) | ||||
0.703537 | + | 0.710658i | \(0.251603\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −12.9282 | −0.680432 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | 5.60770i | 0.292719i | 0.989231 | + | 0.146360i | \(0.0467557\pi\) | ||||
−0.989231 | + | 0.146360i | \(0.953244\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 7.85641 | 0.407884 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | 24.0526i | 1.24539i | 0.782463 | + | 0.622697i | \(0.213963\pi\) | ||||
−0.782463 | + | 0.622697i | \(0.786037\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 6.24871i | 0.321825i | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | −11.4641 | −0.588871 | −0.294436 | − | 0.955671i | \(-0.595132\pi\) | ||||
−0.294436 | + | 0.955671i | \(0.595132\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | 30.2487i | 1.54564i | 0.634627 | + | 0.772818i | \(0.281154\pi\) | ||||
−0.634627 | + | 0.772818i | \(0.718846\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | 20.5359 | 1.04121 | 0.520606 | − | 0.853797i | \(-0.325706\pi\) | ||||
0.520606 | + | 0.853797i | \(0.325706\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 4.39230 | 0.222128 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | − 2.67949i | − 0.134480i | −0.997737 | − | 0.0672399i | \(-0.978581\pi\) | ||||
0.997737 | − | 0.0672399i | \(-0.0214193\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | −26.7846 | −1.33756 | −0.668780 | − | 0.743461i | \(-0.733183\pi\) | ||||
−0.668780 | + | 0.743461i | \(0.733183\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 11.6077i | 0.578220i | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | − 7.26795i | − 0.360259i | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | −9.85641 | −0.487368 | −0.243684 | − | 0.969855i | \(-0.578356\pi\) | ||||
−0.243684 | + | 0.969855i | \(0.578356\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 3.12436i | 0.153739i | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 14.5359 | 0.710125 | 0.355063 | − | 0.934843i | \(-0.384460\pi\) | ||||
0.355063 | + | 0.934843i | \(0.384460\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | −27.7846 | −1.35414 | −0.677070 | − | 0.735919i | \(-0.736750\pi\) | ||||
−0.677070 | + | 0.735919i | \(0.736750\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 2.92820i | 0.141706i | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 2.41154 | 0.116160 | 0.0580800 | − | 0.998312i | \(-0.481502\pi\) | ||||
0.0580800 | + | 0.998312i | \(0.481502\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | 4.53590i | 0.217981i | 0.994043 | + | 0.108991i | \(0.0347619\pi\) | ||||
−0.994043 | + | 0.108991i | \(0.965238\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | − 8.53590i | − 0.408327i | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | −27.3923 | −1.30736 | −0.653682 | − | 0.756770i | \(-0.726776\pi\) | ||||
−0.653682 | + | 0.756770i | \(0.726776\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | − 40.7321i | − 1.93524i | −0.252415 | − | 0.967619i | \(-0.581225\pi\) | ||||
0.252415 | − | 0.967619i | \(-0.418775\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | −0.124356 | −0.00586871 | −0.00293435 | − | 0.999996i | \(-0.500934\pi\) | ||||
−0.00293435 | + | 0.999996i | \(0.500934\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 1.39230 | 0.0655611 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | − 11.8038i | − 0.552161i | −0.961135 | − | 0.276080i | \(-0.910964\pi\) | ||||
0.961135 | − | 0.276080i | \(-0.0890356\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 21.5885 | 1.00547 | 0.502737 | − | 0.864439i | \(-0.332326\pi\) | ||||
0.502737 | + | 0.864439i | \(0.332326\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | 18.3923i | 0.854763i | 0.904071 | + | 0.427381i | \(0.140564\pi\) | ||||
−0.904071 | + | 0.427381i | \(0.859436\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | 15.8038i | 0.731315i | 0.930750 | + | 0.365657i | \(0.119156\pi\) | ||||
−0.930750 | + | 0.365657i | \(0.880844\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 10.5359 | 0.486503 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 11.6603i | 0.536139i | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 0 | 0 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | −20.6603 | −0.943991 | −0.471996 | − | 0.881601i | \(-0.656466\pi\) | ||||
−0.471996 | + | 0.881601i | \(0.656466\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | −6.14359 | −0.280124 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 0 | 0 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 37.4641i | 1.69766i | 0.528666 | + | 0.848830i | \(0.322693\pi\) | ||||
−0.528666 | + | 0.848830i | \(0.677307\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 7.73205 | 0.348943 | 0.174471 | − | 0.984662i | \(-0.444178\pi\) | ||||
0.174471 | + | 0.984662i | \(0.444178\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | 5.41154i | 0.243724i | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | − 0.588457i | − 0.0263959i | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | −6.60770 | −0.295801 | −0.147901 | − | 0.989002i | \(-0.547252\pi\) | ||||
−0.147901 | + | 0.989002i | \(0.547252\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 0.679492i | 0.0302970i | 0.999885 | + | 0.0151485i | \(0.00482211\pi\) | ||||
−0.999885 | + | 0.0151485i | \(0.995178\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | 14.7846 | 0.655316 | 0.327658 | − | 0.944796i | \(-0.393741\pi\) | ||||
0.327658 | + | 0.944796i | \(0.393741\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 7.46410 | 0.330192 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | − 8.19615i | − 0.360466i | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | −10.3923 | −0.455295 | −0.227648 | − | 0.973744i | \(-0.573103\pi\) | ||||
−0.227648 | + | 0.973744i | \(0.573103\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 24.3923i | 1.06660i | 0.845926 | + | 0.533301i | \(0.179048\pi\) | ||||
−0.845926 | + | 0.533301i | \(0.820952\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 10.0526i | 0.437896i | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | 11.0000 | 0.478261 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | − 1.17691i | − 0.0509778i | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 11.1962 | 0.482252 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | −4.46410 | −0.191927 | −0.0959634 | − | 0.995385i | \(-0.530593\pi\) | ||||
−0.0959634 | + | 0.995385i | \(0.530593\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | 36.7846i | 1.57280i | 0.617720 | + | 0.786398i | \(0.288057\pi\) | ||||
−0.617720 | + | 0.786398i | \(0.711943\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | 10.5167 | 0.448025 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 4.67949i | 0.198992i | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | 16.3923i | 0.694564i | 0.937761 | + | 0.347282i | \(0.112895\pi\) | ||||
−0.937761 | + | 0.347282i | \(0.887105\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 9.85641 | 0.416882 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | − 19.2679i | − 0.812047i | −0.913863 | − | 0.406024i | \(-0.866915\pi\) | ||||
0.913863 | − | 0.406024i | \(-0.133085\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | −4.94744 | −0.207408 | −0.103704 | − | 0.994608i | \(-0.533069\pi\) | ||||
−0.103704 | + | 0.994608i | \(0.533069\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | −26.8564 | −1.12391 | −0.561953 | − | 0.827169i | \(-0.689950\pi\) | ||||
−0.561953 | + | 0.827169i | \(0.689950\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | − 22.1962i | − 0.924038i | −0.886870 | − | 0.462019i | \(-0.847125\pi\) | ||||
0.886870 | − | 0.462019i | \(-0.152875\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | −6.67949 | −0.277112 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 18.5885i | 0.769855i | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 14.1962i | 0.585938i | 0.956122 | + | 0.292969i | \(0.0946433\pi\) | ||||
−0.956122 | + | 0.292969i | \(0.905357\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 19.5359 | 0.804963 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | 36.9282i | 1.51646i | 0.651987 | + | 0.758230i | \(0.273935\pi\) | ||||
−0.651987 | + | 0.758230i | \(0.726065\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | −45.5885 | −1.86269 | −0.931347 | − | 0.364133i | \(-0.881365\pi\) | ||||
−0.931347 | + | 0.364133i | \(0.881365\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | 10.3205 | 0.420982 | 0.210491 | − | 0.977596i | \(-0.432494\pi\) | ||||
0.210491 | + | 0.977596i | \(0.432494\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 0 | 0 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | 28.5885i | 1.16037i | 0.814485 | + | 0.580185i | \(0.197020\pi\) | ||||
−0.814485 | + | 0.580185i | \(0.802980\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | −6.92820 | −0.280285 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | 3.60770i | 0.145713i | 0.997342 | + | 0.0728567i | \(0.0232116\pi\) | ||||
−0.997342 | + | 0.0728567i | \(0.976788\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | − 12.0000i | − 0.483102i | −0.970388 | − | 0.241551i | \(-0.922344\pi\) | ||||
0.970388 | − | 0.241551i | \(-0.0776561\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | 10.0000 | 0.401934 | 0.200967 | − | 0.979598i | \(-0.435592\pi\) | ||||
0.200967 | + | 0.979598i | \(0.435592\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 3.80385i | 0.152398i | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 0 | 0 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | −5.32051 | −0.212143 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | −13.9282 | −0.554473 | −0.277237 | − | 0.960802i | \(-0.589419\pi\) | ||||
−0.277237 | + | 0.960802i | \(0.589419\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | − 9.46410i | − 0.374981i | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | 23.1962 | 0.916193 | 0.458096 | − | 0.888902i | \(-0.348531\pi\) | ||||
0.458096 | + | 0.888902i | \(0.348531\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | − 16.5885i | − 0.654185i | −0.944992 | − | 0.327092i | \(-0.893931\pi\) | ||||
0.944992 | − | 0.327092i | \(-0.106069\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | − 48.2487i | − 1.89685i | −0.316998 | − | 0.948426i | \(-0.602675\pi\) | ||||
0.316998 | − | 0.948426i | \(-0.397325\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | −7.39230 | −0.290173 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | 9.46410i | 0.370359i | 0.982705 | + | 0.185179i | \(0.0592866\pi\) | ||||
−0.982705 | + | 0.185179i | \(0.940713\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | −9.46410 | −0.368669 | −0.184335 | − | 0.982864i | \(-0.559013\pi\) | ||||
−0.184335 | + | 0.982864i | \(0.559013\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | −5.39230 | −0.209736 | −0.104868 | − | 0.994486i | \(-0.533442\pi\) | ||||
−0.104868 | + | 0.994486i | \(0.533442\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | − 14.7846i | − 0.572462i | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | −6.92820 | −0.267460 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | − 17.6077i | − 0.678727i | −0.940655 | − | 0.339363i | \(-0.889788\pi\) | ||||
0.940655 | − | 0.339363i | \(-0.110212\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | − 28.6410i | − 1.10076i | −0.834913 | − | 0.550382i | \(-0.814482\pi\) | ||||
0.834913 | − | 0.550382i | \(-0.185518\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 2.00000 | 0.0767530 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | − 14.5359i | − 0.556201i | −0.960552 | − | 0.278100i | \(-0.910295\pi\) | ||||
0.960552 | − | 0.278100i | \(-0.0897048\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 0 | 0 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 15.7128 | 0.598610 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | −10.0000 | −0.380418 | −0.190209 | − | 0.981744i | \(-0.560917\pi\) | ||||
−0.190209 | + | 0.981744i | \(0.560917\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | − 1.01924i | − 0.0386064i | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | 42.1244 | 1.59101 | 0.795507 | − | 0.605944i | \(-0.207204\pi\) | ||||
0.795507 | + | 0.605944i | \(0.207204\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 10.3397i | 0.389971i | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | − 13.2679i | − 0.498993i | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | −17.4641 | −0.655878 | −0.327939 | − | 0.944699i | \(-0.606354\pi\) | ||||
−0.327939 | + | 0.944699i | \(0.606354\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | − 27.4641i | − 1.02854i | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | −6.80385 | −0.253741 | −0.126870 | − | 0.991919i | \(-0.540493\pi\) | ||||
−0.126870 | + | 0.991919i | \(0.540493\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | −1.75129 | −0.0652214 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 0 | 0 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | − 33.1769i | − 1.23046i | −0.788346 | − | 0.615232i | \(-0.789062\pi\) | ||||
0.788346 | − | 0.615232i | \(-0.210938\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 8.53590 | 0.315712 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | − 39.5692i | − 1.46152i | −0.682633 | − | 0.730761i | \(-0.739165\pi\) | ||||
0.682633 | − | 0.730761i | \(-0.260835\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 24.9282i | 0.918242i | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | −36.1769 | −1.33079 | −0.665395 | − | 0.746492i | \(-0.731737\pi\) | ||||
−0.665395 | + | 0.746492i | \(0.731737\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 36.5885i | 1.34230i | 0.741321 | + | 0.671150i | \(0.234199\pi\) | ||||
−0.741321 | + | 0.671150i | \(0.765801\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | −2.53590 | −0.0926597 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | −0.784610 | −0.0286308 | −0.0143154 | − | 0.999898i | \(-0.504557\pi\) | ||||
−0.0143154 | + | 0.999898i | \(0.504557\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | − 0.392305i | − 0.0142586i | −0.999975 | − | 0.00712928i | \(-0.997731\pi\) | ||||
0.999975 | − | 0.00712928i | \(-0.00226934\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | 5.87564 | 0.212992 | 0.106496 | − | 0.994313i | \(-0.466037\pi\) | ||||
0.106496 | + | 0.994313i | \(0.466037\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 4.33975i | 0.157109i | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 6.24871i | 0.225628i | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | 13.2487 | 0.477761 | 0.238880 | − | 0.971049i | \(-0.423220\pi\) | ||||
0.238880 | + | 0.971049i | \(0.423220\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | − 0.339746i | − 0.0122198i | −0.999981 | − | 0.00610991i | \(-0.998055\pi\) | ||||
0.999981 | − | 0.00610991i | \(-0.00194486\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 0 | 0 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | −1.98076 | −0.0709682 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 1.39230 | 0.0498206 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | 25.8038i | 0.919808i | 0.887969 | + | 0.459904i | \(0.152116\pi\) | ||||
−0.887969 | + | 0.459904i | \(0.847884\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 12.9282 | 0.459674 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 5.85641i | 0.207967i | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | − 11.3205i | − 0.400993i | −0.979694 | − | 0.200496i | \(-0.935744\pi\) | ||||
0.979694 | − | 0.200496i | \(-0.0642555\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | −6.00000 | −0.212265 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | 17.6603i | 0.623217i | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | −39.5885 | −1.39186 | −0.695928 | − | 0.718112i | \(-0.745007\pi\) | ||||
−0.695928 | + | 0.718112i | \(0.745007\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | 23.2487 | 0.816373 | 0.408186 | − | 0.912899i | \(-0.366161\pi\) | ||||
0.408186 | + | 0.912899i | \(0.366161\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 0 | 0 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | − 16.5885i | − 0.580357i | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | −20.6603 | −0.721048 | −0.360524 | − | 0.932750i | \(-0.617402\pi\) | ||||
−0.360524 | + | 0.932750i | \(0.617402\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | − 3.07180i | − 0.107076i | −0.998566 | − | 0.0535381i | \(-0.982950\pi\) | ||||
0.998566 | − | 0.0535381i | \(-0.0170498\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | − 38.5359i | − 1.34002i | −0.742350 | − | 0.670012i | \(-0.766289\pi\) | ||||
0.742350 | − | 0.670012i | \(-0.233711\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | 10.2154 | 0.354795 | 0.177398 | − | 0.984139i | \(-0.443232\pi\) | ||||
0.177398 | + | 0.984139i | \(0.443232\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | − 8.19615i | − 0.283980i | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 0 | 0 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | −39.5885 | −1.36675 | −0.683373 | − | 0.730070i | \(-0.739488\pi\) | ||||
−0.683373 | + | 0.730070i | \(0.739488\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | −10.7846 | −0.371883 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 0 | 0 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | 5.85641i | 0.201229i | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 14.5359 | 0.498284 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | 10.1962i | 0.349110i | 0.984647 | + | 0.174555i | \(0.0558486\pi\) | ||||
−0.984647 | + | 0.174555i | \(0.944151\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | − 42.9282i | − 1.46640i | −0.680013 | − | 0.733200i | \(-0.738026\pi\) | ||||
0.680013 | − | 0.733200i | \(-0.261974\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | 33.7846 | 1.15272 | 0.576358 | − | 0.817197i | \(-0.304473\pi\) | ||||
0.576358 | + | 0.817197i | \(0.304473\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | 4.48334i | 0.152615i | 0.997084 | + | 0.0763073i | \(0.0243130\pi\) | ||||
−0.997084 | + | 0.0763073i | \(0.975687\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 0 | 0 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | −11.0718 | −0.375585 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 21.0718 | 0.713991 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | 34.2487i | 1.15650i | 0.815861 | + | 0.578248i | \(0.196264\pi\) | ||||
−0.815861 | + | 0.578248i | \(0.803736\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | −17.1962 | −0.579353 | −0.289677 | − | 0.957125i | \(-0.593548\pi\) | ||||
−0.289677 | + | 0.957125i | \(0.593548\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | 32.8372i | 1.10506i | 0.833493 | + | 0.552529i | \(0.186337\pi\) | ||||
−0.833493 | + | 0.552529i | \(0.813663\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | 16.7321i | 0.561807i | 0.959736 | + | 0.280904i | \(0.0906341\pi\) | ||||
−0.959736 | + | 0.280904i | \(0.909366\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 4.53590 | 0.152129 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | 11.6603i | 0.390196i | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 0 | 0 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 33.8372 | 1.12853 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | 13.6077 | 0.453338 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 0 | 0 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | 42.7846i | 1.42064i | 0.703879 | + | 0.710320i | \(0.251450\pi\) | ||||
−0.703879 | + | 0.710320i | \(0.748550\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | 17.1962 | 0.569734 | 0.284867 | − | 0.958567i | \(-0.408051\pi\) | ||||
0.284867 | + | 0.958567i | \(0.408051\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | − 15.8038i | − 0.523031i | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 10.0526i | 0.331965i | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | −30.6077 | −1.00965 | −0.504827 | − | 0.863220i | \(-0.668444\pi\) | ||||
−0.504827 | + | 0.863220i | \(0.668444\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | − 1.17691i | − 0.0387386i | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 0 | 0 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | 46.5167 | 1.52616 | 0.763081 | − | 0.646303i | \(-0.223686\pi\) | ||||
0.763081 | + | 0.646303i | \(0.223686\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | −15.9282 | −0.522026 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | − 32.9282i | − 1.07572i | −0.843035 | − | 0.537859i | \(-0.819233\pi\) | ||||
0.843035 | − | 0.537859i | \(-0.180767\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | 15.4641 | 0.504115 | 0.252058 | − | 0.967712i | \(-0.418893\pi\) | ||||
0.252058 | + | 0.967712i | \(0.418893\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 2.78461i | 0.0906794i | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | 16.6410i | 0.540760i | 0.962754 | + | 0.270380i | \(0.0871494\pi\) | ||||
−0.962754 | + | 0.270380i | \(0.912851\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | 14.9282 | 0.484590 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | 9.46410i | 0.306572i | 0.988182 | + | 0.153286i | \(0.0489856\pi\) | ||||
−0.988182 | + | 0.153286i | \(0.951014\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | −12.0000 | −0.387500 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | 31.8564 | 1.02763 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 0 | 0 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | − 38.5885i | − 1.24092i | −0.784238 | − | 0.620461i | \(-0.786946\pi\) | ||||
0.784238 | − | 0.620461i | \(-0.213054\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | −25.7321 | −0.825781 | −0.412890 | − | 0.910781i | \(-0.635481\pi\) | ||||
−0.412890 | + | 0.910781i | \(0.635481\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | − 3.94744i | − 0.126549i | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | − 16.3923i | − 0.524436i | −0.965009 | − | 0.262218i | \(-0.915546\pi\) | ||||
0.965009 | − | 0.262218i | \(-0.0844540\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | −9.00000 | −0.287641 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | 49.2679i | 1.57140i | 0.618605 | + | 0.785702i | \(0.287698\pi\) | ||||
−0.618605 | + | 0.785702i | \(0.712302\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 0 | 0 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | −23.3205 | −0.741549 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | 14.2154 | 0.451567 | 0.225783 | − | 0.974178i | \(-0.427506\pi\) | ||||
0.225783 | + | 0.974178i | \(0.427506\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 0 | 0 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | − 41.8038i | − 1.32394i | −0.749530 | − | 0.661971i | \(-0.769720\pi\) | ||||
0.749530 | − | 0.661971i | \(-0.230280\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 8100.2.d.l.649.2 | 4 | ||
3.2 | odd | 2 | 8100.2.d.m.649.2 | 4 | |||
5.2 | odd | 4 | 1620.2.a.h.1.2 | yes | 2 | ||
5.3 | odd | 4 | 8100.2.a.s.1.1 | 2 | |||
5.4 | even | 2 | inner | 8100.2.d.l.649.3 | 4 | ||
15.2 | even | 4 | 1620.2.a.g.1.2 | ✓ | 2 | ||
15.8 | even | 4 | 8100.2.a.t.1.1 | 2 | |||
15.14 | odd | 2 | 8100.2.d.m.649.3 | 4 | |||
20.7 | even | 4 | 6480.2.a.bp.1.1 | 2 | |||
45.2 | even | 12 | 1620.2.i.n.1081.1 | 4 | |||
45.7 | odd | 12 | 1620.2.i.m.1081.1 | 4 | |||
45.22 | odd | 12 | 1620.2.i.m.541.1 | 4 | |||
45.32 | even | 12 | 1620.2.i.n.541.1 | 4 | |||
60.47 | odd | 4 | 6480.2.a.bh.1.1 | 2 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
1620.2.a.g.1.2 | ✓ | 2 | 15.2 | even | 4 | ||
1620.2.a.h.1.2 | yes | 2 | 5.2 | odd | 4 | ||
1620.2.i.m.541.1 | 4 | 45.22 | odd | 12 | |||
1620.2.i.m.1081.1 | 4 | 45.7 | odd | 12 | |||
1620.2.i.n.541.1 | 4 | 45.32 | even | 12 | |||
1620.2.i.n.1081.1 | 4 | 45.2 | even | 12 | |||
6480.2.a.bh.1.1 | 2 | 60.47 | odd | 4 | |||
6480.2.a.bp.1.1 | 2 | 20.7 | even | 4 | |||
8100.2.a.s.1.1 | 2 | 5.3 | odd | 4 | |||
8100.2.a.t.1.1 | 2 | 15.8 | even | 4 | |||
8100.2.d.l.649.2 | 4 | 1.1 | even | 1 | trivial | ||
8100.2.d.l.649.3 | 4 | 5.4 | even | 2 | inner | ||
8100.2.d.m.649.2 | 4 | 3.2 | odd | 2 | |||
8100.2.d.m.649.3 | 4 | 15.14 | odd | 2 |