Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [8100,2,Mod(649,8100)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8100, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("8100.649");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 8100 = 2^{2} \cdot 3^{4} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 8100.d (of order \(2\), degree \(1\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(64.6788256372\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(i)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: | \( x^{2} + 1 \) |
Coefficient ring: | \(\Z[a_1, \ldots, a_{23}]\) |
Coefficient ring index: | \( 2 \) |
Twist minimal: | no (minimal twist has level 1620) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
Embedding invariants
Embedding label | 649.2 | ||
Root | \(1.00000i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 8100.649 |
Dual form | 8100.2.d.g.649.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/8100\mathbb{Z}\right)^\times\).
\(n\) | \(4051\) | \(6401\) | \(7777\) |
\(\chi(n)\) | \(1\) | \(1\) | \(-1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 0 | 0 | ||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 4.00000i | 1.51186i | 0.654654 | + | 0.755929i | \(0.272814\pi\) | ||||
−0.654654 | + | 0.755929i | \(0.727186\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 3.00000 | 0.904534 | 0.452267 | − | 0.891883i | \(-0.350615\pi\) | ||||
0.452267 | + | 0.891883i | \(0.350615\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | − 4.00000i | − 1.10940i | −0.832050 | − | 0.554700i | \(-0.812833\pi\) | ||||
0.832050 | − | 0.554700i | \(-0.187167\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | −5.00000 | −1.14708 | −0.573539 | − | 0.819178i | \(-0.694430\pi\) | ||||
−0.573539 | + | 0.819178i | \(0.694430\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | − 6.00000i | − 1.25109i | −0.780189 | − | 0.625543i | \(-0.784877\pi\) | ||||
0.780189 | − | 0.625543i | \(-0.215123\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 0 | 0 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | 9.00000 | 1.67126 | 0.835629 | − | 0.549294i | \(-0.185103\pi\) | ||||
0.835629 | + | 0.549294i | \(0.185103\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 5.00000 | 0.898027 | 0.449013 | − | 0.893525i | \(-0.351776\pi\) | ||||
0.449013 | + | 0.893525i | \(0.351776\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | − 2.00000i | − 0.328798i | −0.986394 | − | 0.164399i | \(-0.947432\pi\) | ||||
0.986394 | − | 0.164399i | \(-0.0525685\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | −9.00000 | −1.40556 | −0.702782 | − | 0.711405i | \(-0.748059\pi\) | ||||
−0.702782 | + | 0.711405i | \(0.748059\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | − 10.0000i | − 1.52499i | −0.646997 | − | 0.762493i | \(-0.723975\pi\) | ||||
0.646997 | − | 0.762493i | \(-0.276025\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | 6.00000i | 0.875190i | 0.899172 | + | 0.437595i | \(0.144170\pi\) | ||||
−0.899172 | + | 0.437595i | \(0.855830\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | −9.00000 | −1.28571 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | − 12.0000i | − 1.64833i | −0.566352 | − | 0.824163i | \(-0.691646\pi\) | ||||
0.566352 | − | 0.824163i | \(-0.308354\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | −9.00000 | −1.17170 | −0.585850 | − | 0.810419i | \(-0.699239\pi\) | ||||
−0.585850 | + | 0.810419i | \(0.699239\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | −10.0000 | −1.28037 | −0.640184 | − | 0.768221i | \(-0.721142\pi\) | ||||
−0.640184 | + | 0.768221i | \(0.721142\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | − 2.00000i | − 0.244339i | −0.992509 | − | 0.122169i | \(-0.961015\pi\) | ||||
0.992509 | − | 0.122169i | \(-0.0389851\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 3.00000 | 0.356034 | 0.178017 | − | 0.984027i | \(-0.443032\pi\) | ||||
0.178017 | + | 0.984027i | \(0.443032\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | − 4.00000i | − 0.468165i | −0.972217 | − | 0.234082i | \(-0.924791\pi\) | ||||
0.972217 | − | 0.234082i | \(-0.0752085\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 12.0000i | 1.36753i | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | 4.00000 | 0.450035 | 0.225018 | − | 0.974355i | \(-0.427756\pi\) | ||||
0.225018 | + | 0.974355i | \(0.427756\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 6.00000i | 0.658586i | 0.944228 | + | 0.329293i | \(0.106810\pi\) | ||||
−0.944228 | + | 0.329293i | \(0.893190\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | 9.00000 | 0.953998 | 0.476999 | − | 0.878904i | \(-0.341725\pi\) | ||||
0.476999 | + | 0.878904i | \(0.341725\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 16.0000 | 1.67726 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | − 2.00000i | − 0.203069i | −0.994832 | − | 0.101535i | \(-0.967625\pi\) | ||||
0.994832 | − | 0.101535i | \(-0.0323753\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | −15.0000 | −1.49256 | −0.746278 | − | 0.665635i | \(-0.768161\pi\) | ||||
−0.746278 | + | 0.665635i | \(0.768161\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | − 10.0000i | − 0.985329i | −0.870219 | − | 0.492665i | \(-0.836023\pi\) | ||||
0.870219 | − | 0.492665i | \(-0.163977\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | − 6.00000i | − 0.580042i | −0.957020 | − | 0.290021i | \(-0.906338\pi\) | ||||
0.957020 | − | 0.290021i | \(-0.0936623\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | −11.0000 | −1.05361 | −0.526804 | − | 0.849987i | \(-0.676610\pi\) | ||||
−0.526804 | + | 0.849987i | \(0.676610\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | 12.0000i | 1.12887i | 0.825479 | + | 0.564433i | \(0.190905\pi\) | ||||
−0.825479 | + | 0.564433i | \(0.809095\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 0 | 0 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −2.00000 | −0.181818 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 0 | 0 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | − 20.0000i | − 1.77471i | −0.461084 | − | 0.887357i | \(-0.652539\pi\) | ||||
0.461084 | − | 0.887357i | \(-0.347461\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | −15.0000 | −1.31056 | −0.655278 | − | 0.755388i | \(-0.727449\pi\) | ||||
−0.655278 | + | 0.755388i | \(0.727449\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | − 20.0000i | − 1.73422i | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | − 12.0000i | − 1.02523i | −0.858619 | − | 0.512615i | \(-0.828677\pi\) | ||||
0.858619 | − | 0.512615i | \(-0.171323\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | 13.0000 | 1.10265 | 0.551323 | − | 0.834292i | \(-0.314123\pi\) | ||||
0.551323 | + | 0.834292i | \(0.314123\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | − 12.0000i | − 1.00349i | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | 18.0000 | 1.47462 | 0.737309 | − | 0.675556i | \(-0.236096\pi\) | ||||
0.737309 | + | 0.675556i | \(0.236096\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 17.0000 | 1.38344 | 0.691720 | − | 0.722166i | \(-0.256853\pi\) | ||||
0.691720 | + | 0.722166i | \(0.256853\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | − 14.0000i | − 1.11732i | −0.829396 | − | 0.558661i | \(-0.811315\pi\) | ||||
0.829396 | − | 0.558661i | \(-0.188685\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 24.0000 | 1.89146 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | − 4.00000i | − 0.313304i | −0.987654 | − | 0.156652i | \(-0.949930\pi\) | ||||
0.987654 | − | 0.156652i | \(-0.0500701\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | −3.00000 | −0.230769 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | − 6.00000i | − 0.456172i | −0.973641 | − | 0.228086i | \(-0.926753\pi\) | ||||
0.973641 | − | 0.228086i | \(-0.0732467\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | −9.00000 | −0.672692 | −0.336346 | − | 0.941739i | \(-0.609191\pi\) | ||||
−0.336346 | + | 0.941739i | \(0.609191\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | −13.0000 | −0.966282 | −0.483141 | − | 0.875542i | \(-0.660504\pi\) | ||||
−0.483141 | + | 0.875542i | \(0.660504\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 0 | 0 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 3.00000 | 0.217072 | 0.108536 | − | 0.994092i | \(-0.465384\pi\) | ||||
0.108536 | + | 0.994092i | \(0.465384\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | 14.0000i | 1.00774i | 0.863779 | + | 0.503871i | \(0.168091\pi\) | ||||
−0.863779 | + | 0.503871i | \(0.831909\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | 12.0000i | 0.854965i | 0.904024 | + | 0.427482i | \(0.140599\pi\) | ||||
−0.904024 | + | 0.427482i | \(0.859401\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | 16.0000 | 1.13421 | 0.567105 | − | 0.823646i | \(-0.308063\pi\) | ||||
0.567105 | + | 0.823646i | \(0.308063\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 36.0000i | 2.52670i | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | −15.0000 | −1.03757 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 5.00000 | 0.344214 | 0.172107 | − | 0.985078i | \(-0.444942\pi\) | ||||
0.172107 | + | 0.985078i | \(0.444942\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 20.0000i | 1.35769i | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 0 | 0 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | 8.00000i | 0.535720i | 0.963458 | + | 0.267860i | \(0.0863164\pi\) | ||||
−0.963458 | + | 0.267860i | \(0.913684\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 24.0000i | 1.59294i | 0.604681 | + | 0.796468i | \(0.293301\pi\) | ||||
−0.604681 | + | 0.796468i | \(0.706699\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | −14.0000 | −0.925146 | −0.462573 | − | 0.886581i | \(-0.653074\pi\) | ||||
−0.462573 | + | 0.886581i | \(0.653074\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | − 30.0000i | − 1.96537i | −0.185296 | − | 0.982683i | \(-0.559325\pi\) | ||||
0.185296 | − | 0.982683i | \(-0.440675\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 24.0000 | 1.55243 | 0.776215 | − | 0.630468i | \(-0.217137\pi\) | ||||
0.776215 | + | 0.630468i | \(0.217137\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | 29.0000 | 1.86805 | 0.934027 | − | 0.357202i | \(-0.116269\pi\) | ||||
0.934027 | + | 0.357202i | \(0.116269\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 20.0000i | 1.27257i | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | 12.0000 | 0.757433 | 0.378717 | − | 0.925513i | \(-0.376365\pi\) | ||||
0.378717 | + | 0.925513i | \(0.376365\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | − 18.0000i | − 1.13165i | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | 6.00000i | 0.374270i | 0.982334 | + | 0.187135i | \(0.0599201\pi\) | ||||
−0.982334 | + | 0.187135i | \(0.940080\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 8.00000 | 0.497096 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 6.00000i | 0.369976i | 0.982741 | + | 0.184988i | \(0.0592246\pi\) | ||||
−0.982741 | + | 0.184988i | \(0.940775\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | −21.0000 | −1.28039 | −0.640196 | − | 0.768211i | \(-0.721147\pi\) | ||||
−0.640196 | + | 0.768211i | \(0.721147\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 32.0000 | 1.94386 | 0.971931 | − | 0.235267i | \(-0.0755965\pi\) | ||||
0.971931 | + | 0.235267i | \(0.0755965\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | − 26.0000i | − 1.56219i | −0.624413 | − | 0.781094i | \(-0.714662\pi\) | ||||
0.624413 | − | 0.781094i | \(-0.285338\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | −18.0000 | −1.07379 | −0.536895 | − | 0.843649i | \(-0.680403\pi\) | ||||
−0.536895 | + | 0.843649i | \(0.680403\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | − 22.0000i | − 1.30776i | −0.756596 | − | 0.653882i | \(-0.773139\pi\) | ||||
0.756596 | − | 0.653882i | \(-0.226861\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | − 36.0000i | − 2.12501i | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | 17.0000 | 1.00000 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | 30.0000i | 1.75262i | 0.481749 | + | 0.876309i | \(0.340002\pi\) | ||||
−0.481749 | + | 0.876309i | \(0.659998\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | −24.0000 | −1.38796 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 40.0000 | 2.30556 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | − 2.00000i | − 0.114146i | −0.998370 | − | 0.0570730i | \(-0.981823\pi\) | ||||
0.998370 | − | 0.0570730i | \(-0.0181768\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | −3.00000 | −0.170114 | −0.0850572 | − | 0.996376i | \(-0.527107\pi\) | ||||
−0.0850572 | + | 0.996376i | \(0.527107\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | 20.0000i | 1.13047i | 0.824931 | + | 0.565233i | \(0.191214\pi\) | ||||
−0.824931 | + | 0.565233i | \(0.808786\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | − 18.0000i | − 1.01098i | −0.862832 | − | 0.505490i | \(-0.831312\pi\) | ||||
0.862832 | − | 0.505490i | \(-0.168688\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 27.0000 | 1.51171 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 0 | 0 | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | −24.0000 | −1.32316 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | 5.00000 | 0.274825 | 0.137412 | − | 0.990514i | \(-0.456121\pi\) | ||||
0.137412 | + | 0.990514i | \(0.456121\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | − 8.00000i | − 0.435788i | −0.975972 | − | 0.217894i | \(-0.930081\pi\) | ||||
0.975972 | − | 0.217894i | \(-0.0699187\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 15.0000 | 0.812296 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | − 8.00000i | − 0.431959i | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | − 24.0000i | − 1.28839i | −0.764862 | − | 0.644194i | \(-0.777193\pi\) | ||||
0.764862 | − | 0.644194i | \(-0.222807\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | −17.0000 | −0.909989 | −0.454995 | − | 0.890494i | \(-0.650359\pi\) | ||||
−0.454995 | + | 0.890494i | \(0.650359\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | − 6.00000i | − 0.319348i | −0.987170 | − | 0.159674i | \(-0.948956\pi\) | ||||
0.987170 | − | 0.159674i | \(-0.0510443\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | −15.0000 | −0.791670 | −0.395835 | − | 0.918322i | \(-0.629545\pi\) | ||||
−0.395835 | + | 0.918322i | \(0.629545\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | 6.00000 | 0.315789 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | − 14.0000i | − 0.730794i | −0.930852 | − | 0.365397i | \(-0.880933\pi\) | ||||
0.930852 | − | 0.365397i | \(-0.119067\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 48.0000 | 2.49204 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | − 28.0000i | − 1.44979i | −0.688862 | − | 0.724893i | \(-0.741889\pi\) | ||||
0.688862 | − | 0.724893i | \(-0.258111\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | − 36.0000i | − 1.85409i | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 4.00000 | 0.205466 | 0.102733 | − | 0.994709i | \(-0.467241\pi\) | ||||
0.102733 | + | 0.994709i | \(0.467241\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | 36.0000i | 1.83951i | 0.392488 | + | 0.919757i | \(0.371614\pi\) | ||||
−0.392488 | + | 0.919757i | \(0.628386\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | 18.0000 | 0.912636 | 0.456318 | − | 0.889817i | \(-0.349168\pi\) | ||||
0.456318 | + | 0.889817i | \(0.349168\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 0 | 0 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | − 2.00000i | − 0.100377i | −0.998740 | − | 0.0501886i | \(-0.984018\pi\) | ||||
0.998740 | − | 0.0501886i | \(-0.0159822\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | −18.0000 | −0.898877 | −0.449439 | − | 0.893311i | \(-0.648376\pi\) | ||||
−0.449439 | + | 0.893311i | \(0.648376\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | − 20.0000i | − 0.996271i | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | − 6.00000i | − 0.297409i | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | 10.0000 | 0.494468 | 0.247234 | − | 0.968956i | \(-0.420478\pi\) | ||||
0.247234 | + | 0.968956i | \(0.420478\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | − 36.0000i | − 1.77144i | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | 17.0000 | 0.828529 | 0.414265 | − | 0.910156i | \(-0.364039\pi\) | ||||
0.414265 | + | 0.910156i | \(0.364039\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | − 40.0000i | − 1.93574i | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 33.0000 | 1.58955 | 0.794777 | − | 0.606902i | \(-0.207588\pi\) | ||||
0.794777 | + | 0.606902i | \(0.207588\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | − 34.0000i | − 1.63394i | −0.576683 | − | 0.816968i | \(-0.695653\pi\) | ||||
0.576683 | − | 0.816968i | \(-0.304347\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | 30.0000i | 1.43509i | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | −17.0000 | −0.811366 | −0.405683 | − | 0.914014i | \(-0.632966\pi\) | ||||
−0.405683 | + | 0.914014i | \(0.632966\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 6.00000i | 0.285069i | 0.989790 | + | 0.142534i | \(0.0455251\pi\) | ||||
−0.989790 | + | 0.142534i | \(0.954475\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 39.0000 | 1.84052 | 0.920262 | − | 0.391303i | \(-0.127976\pi\) | ||||
0.920262 | + | 0.391303i | \(0.127976\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | −27.0000 | −1.27138 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | 10.0000i | 0.467780i | 0.972263 | + | 0.233890i | \(0.0751456\pi\) | ||||
−0.972263 | + | 0.233890i | \(0.924854\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | −3.00000 | −0.139724 | −0.0698620 | − | 0.997557i | \(-0.522256\pi\) | ||||
−0.0698620 | + | 0.997557i | \(0.522256\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | − 34.0000i | − 1.58011i | −0.613033 | − | 0.790057i | \(-0.710051\pi\) | ||||
0.613033 | − | 0.790057i | \(-0.289949\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 8.00000 | 0.369406 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | − 30.0000i | − 1.37940i | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 0 | 0 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | −3.00000 | −0.137073 | −0.0685367 | − | 0.997649i | \(-0.521833\pi\) | ||||
−0.0685367 | + | 0.997649i | \(0.521833\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | −8.00000 | −0.364769 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 0 | 0 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 16.0000i | 0.725029i | 0.931978 | + | 0.362515i | \(0.118082\pi\) | ||||
−0.931978 | + | 0.362515i | \(0.881918\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | −3.00000 | −0.135388 | −0.0676941 | − | 0.997706i | \(-0.521564\pi\) | ||||
−0.0676941 | + | 0.997706i | \(0.521564\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | 0 | 0 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 12.0000i | 0.538274i | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | −41.0000 | −1.83541 | −0.917706 | − | 0.397260i | \(-0.869961\pi\) | ||||
−0.917706 | + | 0.397260i | \(0.869961\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | − 36.0000i | − 1.60516i | −0.596544 | − | 0.802580i | \(-0.703460\pi\) | ||||
0.596544 | − | 0.802580i | \(-0.296540\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | −18.0000 | −0.797836 | −0.398918 | − | 0.916987i | \(-0.630614\pi\) | ||||
−0.398918 | + | 0.916987i | \(0.630614\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 16.0000 | 0.707798 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 18.0000i | 0.791639i | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 18.0000 | 0.788594 | 0.394297 | − | 0.918983i | \(-0.370988\pi\) | ||||
0.394297 | + | 0.918983i | \(0.370988\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | − 16.0000i | − 0.699631i | −0.936819 | − | 0.349816i | \(-0.886244\pi\) | ||||
0.936819 | − | 0.349816i | \(-0.113756\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 0 | 0 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | −13.0000 | −0.565217 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 36.0000i | 1.55933i | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | −27.0000 | −1.16297 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | −1.00000 | −0.0429934 | −0.0214967 | − | 0.999769i | \(-0.506843\pi\) | ||||
−0.0214967 | + | 0.999769i | \(0.506843\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | − 20.0000i | − 0.855138i | −0.903983 | − | 0.427569i | \(-0.859370\pi\) | ||||
0.903983 | − | 0.427569i | \(-0.140630\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | −45.0000 | −1.91706 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 16.0000i | 0.680389i | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | 24.0000i | 1.01691i | 0.861088 | + | 0.508456i | \(0.169784\pi\) | ||||
−0.861088 | + | 0.508456i | \(0.830216\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | −40.0000 | −1.69182 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | − 18.0000i | − 0.758610i | −0.925272 | − | 0.379305i | \(-0.876163\pi\) | ||||
0.925272 | − | 0.379305i | \(-0.123837\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | 27.0000 | 1.13190 | 0.565949 | − | 0.824440i | \(-0.308510\pi\) | ||||
0.565949 | + | 0.824440i | \(0.308510\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | 11.0000 | 0.460336 | 0.230168 | − | 0.973151i | \(-0.426072\pi\) | ||||
0.230168 | + | 0.973151i | \(0.426072\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | − 20.0000i | − 0.832611i | −0.909225 | − | 0.416305i | \(-0.863325\pi\) | ||||
0.909225 | − | 0.416305i | \(-0.136675\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | −24.0000 | −0.995688 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | − 36.0000i | − 1.49097i | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | − 18.0000i | − 0.742940i | −0.928445 | − | 0.371470i | \(-0.878854\pi\) | ||||
0.928445 | − | 0.371470i | \(-0.121146\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | −25.0000 | −1.03011 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | 42.0000i | 1.72473i | 0.506284 | + | 0.862367i | \(0.331019\pi\) | ||||
−0.506284 | + | 0.862367i | \(0.668981\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | 3.00000 | 0.122577 | 0.0612883 | − | 0.998120i | \(-0.480479\pi\) | ||||
0.0612883 | + | 0.998120i | \(0.480479\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | −19.0000 | −0.775026 | −0.387513 | − | 0.921864i | \(-0.626666\pi\) | ||||
−0.387513 | + | 0.921864i | \(0.626666\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 0 | 0 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | 22.0000i | 0.892952i | 0.894795 | + | 0.446476i | \(0.147321\pi\) | ||||
−0.894795 | + | 0.446476i | \(0.852679\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 24.0000 | 0.970936 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | − 4.00000i | − 0.161558i | −0.996732 | − | 0.0807792i | \(-0.974259\pi\) | ||||
0.996732 | − | 0.0807792i | \(-0.0257409\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | 48.0000i | 1.93241i | 0.257780 | + | 0.966204i | \(0.417009\pi\) | ||||
−0.257780 | + | 0.966204i | \(0.582991\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | 28.0000 | 1.12542 | 0.562708 | − | 0.826656i | \(-0.309760\pi\) | ||||
0.562708 | + | 0.826656i | \(0.309760\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 36.0000i | 1.44231i | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 0 | 0 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | 0 | 0 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 5.00000 | 0.199047 | 0.0995234 | − | 0.995035i | \(-0.468268\pi\) | ||||
0.0995234 | + | 0.995035i | \(0.468268\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 36.0000i | 1.42637i | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | 3.00000 | 0.118493 | 0.0592464 | − | 0.998243i | \(-0.481130\pi\) | ||||
0.0592464 | + | 0.998243i | \(0.481130\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | 14.0000i | 0.552106i | 0.961142 | + | 0.276053i | \(0.0890266\pi\) | ||||
−0.961142 | + | 0.276053i | \(0.910973\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | 30.0000i | 1.17942i | 0.807614 | + | 0.589711i | \(0.200758\pi\) | ||||
−0.807614 | + | 0.589711i | \(0.799242\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | −27.0000 | −1.05984 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | 48.0000i | 1.87839i | 0.343391 | + | 0.939193i | \(0.388424\pi\) | ||||
−0.343391 | + | 0.939193i | \(0.611576\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | 12.0000 | 0.467454 | 0.233727 | − | 0.972302i | \(-0.424908\pi\) | ||||
0.233727 | + | 0.972302i | \(0.424908\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | −19.0000 | −0.739014 | −0.369507 | − | 0.929228i | \(-0.620473\pi\) | ||||
−0.369507 | + | 0.929228i | \(0.620473\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | − 54.0000i | − 2.09089i | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | −30.0000 | −1.15814 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | − 22.0000i | − 0.848038i | −0.905653 | − | 0.424019i | \(-0.860619\pi\) | ||||
0.905653 | − | 0.424019i | \(-0.139381\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | − 6.00000i | − 0.230599i | −0.993331 | − | 0.115299i | \(-0.963217\pi\) | ||||
0.993331 | − | 0.115299i | \(-0.0367827\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 8.00000 | 0.307012 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | − 24.0000i | − 0.918334i | −0.888350 | − | 0.459167i | \(-0.848148\pi\) | ||||
0.888350 | − | 0.459167i | \(-0.151852\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 0 | 0 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | −48.0000 | −1.82865 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | −28.0000 | −1.06517 | −0.532585 | − | 0.846376i | \(-0.678779\pi\) | ||||
−0.532585 | + | 0.846376i | \(0.678779\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 0 | 0 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | −9.00000 | −0.339925 | −0.169963 | − | 0.985451i | \(-0.554365\pi\) | ||||
−0.169963 | + | 0.985451i | \(0.554365\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 10.0000i | 0.377157i | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | − 60.0000i | − 2.25653i | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | −38.0000 | −1.42712 | −0.713560 | − | 0.700594i | \(-0.752918\pi\) | ||||
−0.713560 | + | 0.700594i | \(0.752918\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | − 30.0000i | − 1.12351i | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 15.0000 | 0.559406 | 0.279703 | − | 0.960087i | \(-0.409764\pi\) | ||||
0.279703 | + | 0.960087i | \(0.409764\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 40.0000 | 1.48968 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 0 | 0 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | − 44.0000i | − 1.63187i | −0.578144 | − | 0.815935i | \(-0.696223\pi\) | ||||
0.578144 | − | 0.815935i | \(-0.303777\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 0 | 0 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | − 22.0000i | − 0.812589i | −0.913742 | − | 0.406294i | \(-0.866821\pi\) | ||||
0.913742 | − | 0.406294i | \(-0.133179\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | − 6.00000i | − 0.221013i | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | −11.0000 | −0.404642 | −0.202321 | − | 0.979319i | \(-0.564848\pi\) | ||||
−0.202321 | + | 0.979319i | \(0.564848\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | − 48.0000i | − 1.76095i | −0.474093 | − | 0.880475i | \(-0.657224\pi\) | ||||
0.474093 | − | 0.880475i | \(-0.342776\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 24.0000 | 0.876941 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | −40.0000 | −1.45962 | −0.729810 | − | 0.683650i | \(-0.760392\pi\) | ||||
−0.729810 | + | 0.683650i | \(0.760392\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | 52.0000i | 1.88997i | 0.327111 | + | 0.944986i | \(0.393925\pi\) | ||||
−0.327111 | + | 0.944986i | \(0.606075\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | −3.00000 | −0.108750 | −0.0543750 | − | 0.998521i | \(-0.517317\pi\) | ||||
−0.0543750 | + | 0.998521i | \(0.517317\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | − 44.0000i | − 1.59291i | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 36.0000i | 1.29988i | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | −5.00000 | −0.180305 | −0.0901523 | − | 0.995928i | \(-0.528735\pi\) | ||||
−0.0901523 | + | 0.995928i | \(0.528735\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | 6.00000i | 0.215805i | 0.994161 | + | 0.107903i | \(0.0344134\pi\) | ||||
−0.994161 | + | 0.107903i | \(0.965587\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 0 | 0 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 45.0000 | 1.61229 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 9.00000 | 0.322045 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | − 32.0000i | − 1.14068i | −0.821410 | − | 0.570338i | \(-0.806812\pi\) | ||||
0.821410 | − | 0.570338i | \(-0.193188\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | −48.0000 | −1.70668 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 40.0000i | 1.42044i | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | 12.0000i | 0.425062i | 0.977154 | + | 0.212531i | \(0.0681706\pi\) | ||||
−0.977154 | + | 0.212531i | \(0.931829\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 0 | 0 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | − 12.0000i | − 0.423471i | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | 9.00000 | 0.316423 | 0.158212 | − | 0.987405i | \(-0.449427\pi\) | ||||
0.158212 | + | 0.987405i | \(0.449427\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | 29.0000 | 1.01833 | 0.509164 | − | 0.860670i | \(-0.329955\pi\) | ||||
0.509164 | + | 0.860670i | \(0.329955\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 0 | 0 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | 50.0000i | 1.74928i | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | 15.0000 | 0.523504 | 0.261752 | − | 0.965135i | \(-0.415700\pi\) | ||||
0.261752 | + | 0.965135i | \(0.415700\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | 14.0000i | 0.488009i | 0.969774 | + | 0.244005i | \(0.0784612\pi\) | ||||
−0.969774 | + | 0.244005i | \(0.921539\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | − 12.0000i | − 0.417281i | −0.977992 | − | 0.208640i | \(-0.933096\pi\) | ||||
0.977992 | − | 0.208640i | \(-0.0669038\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | 1.00000 | 0.0347314 | 0.0173657 | − | 0.999849i | \(-0.494472\pi\) | ||||
0.0173657 | + | 0.999849i | \(0.494472\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 0 | 0 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 0 | 0 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | −15.0000 | −0.517858 | −0.258929 | − | 0.965896i | \(-0.583369\pi\) | ||||
−0.258929 | + | 0.965896i | \(0.583369\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | 52.0000 | 1.79310 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 0 | 0 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | − 8.00000i | − 0.274883i | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | −12.0000 | −0.411355 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | − 4.00000i | − 0.136957i | −0.997653 | − | 0.0684787i | \(-0.978185\pi\) | ||||
0.997653 | − | 0.0684787i | \(-0.0218145\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | 31.0000 | 1.05771 | 0.528853 | − | 0.848713i | \(-0.322622\pi\) | ||||
0.528853 | + | 0.848713i | \(0.322622\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | − 24.0000i | − 0.816970i | −0.912765 | − | 0.408485i | \(-0.866057\pi\) | ||||
0.912765 | − | 0.408485i | \(-0.133943\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 0 | 0 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 12.0000 | 0.407072 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | −8.00000 | −0.271070 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | 16.0000i | 0.540282i | 0.962821 | + | 0.270141i | \(0.0870703\pi\) | ||||
−0.962821 | + | 0.270141i | \(0.912930\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | −33.0000 | −1.11180 | −0.555899 | − | 0.831250i | \(-0.687626\pi\) | ||||
−0.555899 | + | 0.831250i | \(0.687626\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | − 40.0000i | − 1.34611i | −0.739594 | − | 0.673054i | \(-0.764982\pi\) | ||||
0.739594 | − | 0.673054i | \(-0.235018\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | 42.0000i | 1.41022i | 0.709097 | + | 0.705111i | \(0.249103\pi\) | ||||
−0.709097 | + | 0.705111i | \(0.750897\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 80.0000 | 2.68311 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | − 30.0000i | − 1.00391i | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 0 | 0 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 45.0000 | 1.50083 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | 0 | 0 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 0 | 0 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | 22.0000i | 0.730498i | 0.930910 | + | 0.365249i | \(0.119016\pi\) | ||||
−0.930910 | + | 0.365249i | \(0.880984\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | −51.0000 | −1.68971 | −0.844853 | − | 0.534999i | \(-0.820312\pi\) | ||||
−0.844853 | + | 0.534999i | \(0.820312\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 18.0000i | 0.595713i | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | − 60.0000i | − 1.98137i | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | 25.0000 | 0.824674 | 0.412337 | − | 0.911031i | \(-0.364713\pi\) | ||||
0.412337 | + | 0.911031i | \(0.364713\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | − 12.0000i | − 0.394985i | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 0 | 0 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | 15.0000 | 0.492134 | 0.246067 | − | 0.969253i | \(-0.420862\pi\) | ||||
0.246067 | + | 0.969253i | \(0.420862\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | 45.0000 | 1.47482 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | − 26.0000i | − 0.849383i | −0.905338 | − | 0.424691i | \(-0.860383\pi\) | ||||
0.905338 | − | 0.424691i | \(-0.139617\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | 6.00000 | 0.195594 | 0.0977972 | − | 0.995206i | \(-0.468820\pi\) | ||||
0.0977972 | + | 0.995206i | \(0.468820\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 54.0000i | 1.75848i | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | 18.0000i | 0.584921i | 0.956278 | + | 0.292461i | \(0.0944741\pi\) | ||||
−0.956278 | + | 0.292461i | \(0.905526\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | −16.0000 | −0.519382 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | − 24.0000i | − 0.777436i | −0.921357 | − | 0.388718i | \(-0.872918\pi\) | ||||
0.921357 | − | 0.388718i | \(-0.127082\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 48.0000 | 1.55000 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −6.00000 | −0.193548 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 0 | 0 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | − 44.0000i | − 1.41494i | −0.706741 | − | 0.707472i | \(-0.749835\pi\) | ||||
0.706741 | − | 0.707472i | \(-0.250165\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | 3.00000 | 0.0962746 | 0.0481373 | − | 0.998841i | \(-0.484672\pi\) | ||||
0.0481373 | + | 0.998841i | \(0.484672\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 52.0000i | 1.66704i | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | 12.0000i | 0.383914i | 0.981403 | + | 0.191957i | \(0.0614834\pi\) | ||||
−0.981403 | + | 0.191957i | \(0.938517\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 27.0000 | 0.862924 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | − 12.0000i | − 0.382741i | −0.981518 | − | 0.191370i | \(-0.938707\pi\) | ||||
0.981518 | − | 0.191370i | \(-0.0612931\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 0 | 0 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | −60.0000 | −1.90789 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | −43.0000 | −1.36594 | −0.682970 | − | 0.730446i | \(-0.739312\pi\) | ||||
−0.682970 | + | 0.730446i | \(0.739312\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 0 | 0 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 28.0000i | 0.886769i | 0.896332 | + | 0.443384i | \(0.146222\pi\) | ||||
−0.896332 | + | 0.443384i | \(0.853778\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 8100.2.d.g.649.2 | 2 | ||
3.2 | odd | 2 | 8100.2.d.b.649.2 | 2 | |||
5.2 | odd | 4 | 1620.2.a.d.1.1 | yes | 1 | ||
5.3 | odd | 4 | 8100.2.a.n.1.1 | 1 | |||
5.4 | even | 2 | inner | 8100.2.d.g.649.1 | 2 | ||
15.2 | even | 4 | 1620.2.a.a.1.1 | ✓ | 1 | ||
15.8 | even | 4 | 8100.2.a.m.1.1 | 1 | |||
15.14 | odd | 2 | 8100.2.d.b.649.1 | 2 | |||
20.7 | even | 4 | 6480.2.a.y.1.1 | 1 | |||
45.2 | even | 12 | 1620.2.i.l.1081.1 | 2 | |||
45.7 | odd | 12 | 1620.2.i.e.1081.1 | 2 | |||
45.22 | odd | 12 | 1620.2.i.e.541.1 | 2 | |||
45.32 | even | 12 | 1620.2.i.l.541.1 | 2 | |||
60.47 | odd | 4 | 6480.2.a.m.1.1 | 1 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
1620.2.a.a.1.1 | ✓ | 1 | 15.2 | even | 4 | ||
1620.2.a.d.1.1 | yes | 1 | 5.2 | odd | 4 | ||
1620.2.i.e.541.1 | 2 | 45.22 | odd | 12 | |||
1620.2.i.e.1081.1 | 2 | 45.7 | odd | 12 | |||
1620.2.i.l.541.1 | 2 | 45.32 | even | 12 | |||
1620.2.i.l.1081.1 | 2 | 45.2 | even | 12 | |||
6480.2.a.m.1.1 | 1 | 60.47 | odd | 4 | |||
6480.2.a.y.1.1 | 1 | 20.7 | even | 4 | |||
8100.2.a.m.1.1 | 1 | 15.8 | even | 4 | |||
8100.2.a.n.1.1 | 1 | 5.3 | odd | 4 | |||
8100.2.d.b.649.1 | 2 | 15.14 | odd | 2 | |||
8100.2.d.b.649.2 | 2 | 3.2 | odd | 2 | |||
8100.2.d.g.649.1 | 2 | 5.4 | even | 2 | inner | ||
8100.2.d.g.649.2 | 2 | 1.1 | even | 1 | trivial |