Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [8100,2,Mod(649,8100)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8100, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("8100.649");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 8100 = 2^{2} \cdot 3^{4} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 8100.d (of order \(2\), degree \(1\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(64.6788256372\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(i)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: | \( x^{2} + 1 \) |
Coefficient ring: | \(\Z[a_1, \ldots, a_{7}]\) |
Coefficient ring index: | \( 2 \) |
Twist minimal: | no (minimal twist has level 1620) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
Embedding invariants
Embedding label | 649.1 | ||
Root | \(-1.00000i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 8100.649 |
Dual form | 8100.2.d.d.649.2 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/8100\mathbb{Z}\right)^\times\).
\(n\) | \(4051\) | \(6401\) | \(7777\) |
\(\chi(n)\) | \(1\) | \(1\) | \(-1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 0 | 0 | ||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | − 2.00000i | − 0.755929i | −0.925820 | − | 0.377964i | \(-0.876624\pi\) | ||||
0.925820 | − | 0.377964i | \(-0.123376\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | −3.00000 | −0.904534 | −0.452267 | − | 0.891883i | \(-0.649385\pi\) | ||||
−0.452267 | + | 0.891883i | \(0.649385\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | − 4.00000i | − 1.10940i | −0.832050 | − | 0.554700i | \(-0.812833\pi\) | ||||
0.832050 | − | 0.554700i | \(-0.187167\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | 6.00000i | 1.45521i | 0.685994 | + | 0.727607i | \(0.259367\pi\) | ||||
−0.685994 | + | 0.727607i | \(0.740633\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 7.00000 | 1.60591 | 0.802955 | − | 0.596040i | \(-0.203260\pi\) | ||||
0.802955 | + | 0.596040i | \(0.203260\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | − 6.00000i | − 1.25109i | −0.780189 | − | 0.625543i | \(-0.784877\pi\) | ||||
0.780189 | − | 0.625543i | \(-0.215123\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 0 | 0 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | 3.00000 | 0.557086 | 0.278543 | − | 0.960424i | \(-0.410149\pi\) | ||||
0.278543 | + | 0.960424i | \(0.410149\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 5.00000 | 0.898027 | 0.449013 | − | 0.893525i | \(-0.351776\pi\) | ||||
0.449013 | + | 0.893525i | \(0.351776\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | 4.00000i | 0.657596i | 0.944400 | + | 0.328798i | \(0.106644\pi\) | ||||
−0.944400 | + | 0.328798i | \(0.893356\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | −3.00000 | −0.468521 | −0.234261 | − | 0.972174i | \(-0.575267\pi\) | ||||
−0.234261 | + | 0.972174i | \(0.575267\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 8.00000i | 1.21999i | 0.792406 | + | 0.609994i | \(0.208828\pi\) | ||||
−0.792406 | + | 0.609994i | \(0.791172\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | 3.00000 | 0.428571 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | 6.00000i | 0.824163i | 0.911147 | + | 0.412082i | \(0.135198\pi\) | ||||
−0.911147 | + | 0.412082i | \(0.864802\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | −3.00000 | −0.390567 | −0.195283 | − | 0.980747i | \(-0.562563\pi\) | ||||
−0.195283 | + | 0.980747i | \(0.562563\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | 14.0000 | 1.79252 | 0.896258 | − | 0.443533i | \(-0.146275\pi\) | ||||
0.896258 | + | 0.443533i | \(0.146275\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | − 2.00000i | − 0.244339i | −0.992509 | − | 0.122169i | \(-0.961015\pi\) | ||||
0.992509 | − | 0.122169i | \(-0.0389851\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | −15.0000 | −1.78017 | −0.890086 | − | 0.455792i | \(-0.849356\pi\) | ||||
−0.890086 | + | 0.455792i | \(0.849356\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | − 10.0000i | − 1.17041i | −0.810885 | − | 0.585206i | \(-0.801014\pi\) | ||||
0.810885 | − | 0.585206i | \(-0.198986\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 6.00000i | 0.683763i | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | −8.00000 | −0.900070 | −0.450035 | − | 0.893011i | \(-0.648589\pi\) | ||||
−0.450035 | + | 0.893011i | \(0.648589\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | 15.0000 | 1.59000 | 0.794998 | − | 0.606612i | \(-0.207472\pi\) | ||||
0.794998 | + | 0.606612i | \(0.207472\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | −8.00000 | −0.838628 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | − 8.00000i | − 0.812277i | −0.913812 | − | 0.406138i | \(-0.866875\pi\) | ||||
0.913812 | − | 0.406138i | \(-0.133125\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 3.00000 | 0.298511 | 0.149256 | − | 0.988799i | \(-0.452312\pi\) | ||||
0.149256 | + | 0.988799i | \(0.452312\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 2.00000i | 0.197066i | 0.995134 | + | 0.0985329i | \(0.0314150\pi\) | ||||
−0.995134 | + | 0.0985329i | \(0.968585\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | − 6.00000i | − 0.580042i | −0.957020 | − | 0.290021i | \(-0.906338\pi\) | ||||
0.957020 | − | 0.290021i | \(-0.0936623\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | −11.0000 | −1.05361 | −0.526804 | − | 0.849987i | \(-0.676610\pi\) | ||||
−0.526804 | + | 0.849987i | \(0.676610\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | − 18.0000i | − 1.69330i | −0.532152 | − | 0.846649i | \(-0.678617\pi\) | ||||
0.532152 | − | 0.846649i | \(-0.321383\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 12.0000 | 1.10004 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −2.00000 | −0.181818 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 0 | 0 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | − 2.00000i | − 0.177471i | −0.996055 | − | 0.0887357i | \(-0.971717\pi\) | ||||
0.996055 | − | 0.0887357i | \(-0.0282826\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 15.0000 | 1.31056 | 0.655278 | − | 0.755388i | \(-0.272551\pi\) | ||||
0.655278 | + | 0.755388i | \(0.272551\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | − 14.0000i | − 1.21395i | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 12.0000i | 1.02523i | 0.858619 | + | 0.512615i | \(0.171323\pi\) | ||||
−0.858619 | + | 0.512615i | \(0.828677\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | 1.00000 | 0.0848189 | 0.0424094 | − | 0.999100i | \(-0.486497\pi\) | ||||
0.0424094 | + | 0.999100i | \(0.486497\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 12.0000i | 1.00349i | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | 6.00000 | 0.491539 | 0.245770 | − | 0.969328i | \(-0.420959\pi\) | ||||
0.245770 | + | 0.969328i | \(0.420959\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 5.00000 | 0.406894 | 0.203447 | − | 0.979086i | \(-0.434786\pi\) | ||||
0.203447 | + | 0.979086i | \(0.434786\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | 4.00000i | 0.319235i | 0.987179 | + | 0.159617i | \(0.0510260\pi\) | ||||
−0.987179 | + | 0.159617i | \(0.948974\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | −12.0000 | −0.945732 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | − 22.0000i | − 1.72317i | −0.507611 | − | 0.861586i | \(-0.669471\pi\) | ||||
0.507611 | − | 0.861586i | \(-0.330529\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | − 18.0000i | − 1.39288i | −0.717614 | − | 0.696441i | \(-0.754766\pi\) | ||||
0.717614 | − | 0.696441i | \(-0.245234\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | −3.00000 | −0.230769 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | − 18.0000i | − 1.36851i | −0.729241 | − | 0.684257i | \(-0.760127\pi\) | ||||
0.729241 | − | 0.684257i | \(-0.239873\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | −15.0000 | −1.12115 | −0.560576 | − | 0.828103i | \(-0.689420\pi\) | ||||
−0.560576 | + | 0.828103i | \(0.689420\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | 23.0000 | 1.70958 | 0.854788 | − | 0.518977i | \(-0.173687\pi\) | ||||
0.854788 | + | 0.518977i | \(0.173687\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | − 18.0000i | − 1.31629i | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 21.0000 | 1.51951 | 0.759753 | − | 0.650211i | \(-0.225320\pi\) | ||||
0.759753 | + | 0.650211i | \(0.225320\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | − 16.0000i | − 1.15171i | −0.817554 | − | 0.575853i | \(-0.804670\pi\) | ||||
0.817554 | − | 0.575853i | \(-0.195330\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | 24.0000i | 1.70993i | 0.518686 | + | 0.854965i | \(0.326421\pi\) | ||||
−0.518686 | + | 0.854965i | \(0.673579\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | 16.0000 | 1.13421 | 0.567105 | − | 0.823646i | \(-0.308063\pi\) | ||||
0.567105 | + | 0.823646i | \(0.308063\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | − 6.00000i | − 0.421117i | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | −21.0000 | −1.45260 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 5.00000 | 0.344214 | 0.172107 | − | 0.985078i | \(-0.444942\pi\) | ||||
0.172107 | + | 0.985078i | \(0.444942\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | − 10.0000i | − 0.678844i | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 24.0000 | 1.61441 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | − 28.0000i | − 1.87502i | −0.347960 | − | 0.937509i | \(-0.613126\pi\) | ||||
0.347960 | − | 0.937509i | \(-0.386874\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | − 18.0000i | − 1.19470i | −0.801980 | − | 0.597351i | \(-0.796220\pi\) | ||||
0.801980 | − | 0.597351i | \(-0.203780\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | −14.0000 | −0.925146 | −0.462573 | − | 0.886581i | \(-0.653074\pi\) | ||||
−0.462573 | + | 0.886581i | \(0.653074\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | 24.0000i | 1.57229i | 0.618041 | + | 0.786146i | \(0.287927\pi\) | ||||
−0.618041 | + | 0.786146i | \(0.712073\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | −7.00000 | −0.450910 | −0.225455 | − | 0.974254i | \(-0.572387\pi\) | ||||
−0.225455 | + | 0.974254i | \(0.572387\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | − 28.0000i | − 1.78160i | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | −12.0000 | −0.757433 | −0.378717 | − | 0.925513i | \(-0.623635\pi\) | ||||
−0.378717 | + | 0.925513i | \(0.623635\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 18.0000i | 1.13165i | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | − 18.0000i | − 1.12281i | −0.827541 | − | 0.561405i | \(-0.810261\pi\) | ||||
0.827541 | − | 0.561405i | \(-0.189739\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 8.00000 | 0.497096 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | − 6.00000i | − 0.369976i | −0.982741 | − | 0.184988i | \(-0.940775\pi\) | ||||
0.982741 | − | 0.184988i | \(-0.0592246\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | −15.0000 | −0.914566 | −0.457283 | − | 0.889321i | \(-0.651177\pi\) | ||||
−0.457283 | + | 0.889321i | \(0.651177\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 8.00000 | 0.485965 | 0.242983 | − | 0.970031i | \(-0.421874\pi\) | ||||
0.242983 | + | 0.970031i | \(0.421874\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 28.0000i | 1.68236i | 0.540758 | + | 0.841178i | \(0.318138\pi\) | ||||
−0.540758 | + | 0.841178i | \(0.681862\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | −30.0000 | −1.78965 | −0.894825 | − | 0.446417i | \(-0.852700\pi\) | ||||
−0.894825 | + | 0.446417i | \(0.852700\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | − 22.0000i | − 1.30776i | −0.756596 | − | 0.653882i | \(-0.773139\pi\) | ||||
0.756596 | − | 0.653882i | \(-0.226861\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 6.00000i | 0.354169i | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | −19.0000 | −1.11765 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | − 24.0000i | − 1.40209i | −0.713115 | − | 0.701047i | \(-0.752716\pi\) | ||||
0.713115 | − | 0.701047i | \(-0.247284\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | −24.0000 | −1.38796 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 16.0000 | 0.922225 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | − 20.0000i | − 1.14146i | −0.821138 | − | 0.570730i | \(-0.806660\pi\) | ||||
0.821138 | − | 0.570730i | \(-0.193340\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 15.0000 | 0.850572 | 0.425286 | − | 0.905059i | \(-0.360174\pi\) | ||||
0.425286 | + | 0.905059i | \(0.360174\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | − 16.0000i | − 0.904373i | −0.891923 | − | 0.452187i | \(-0.850644\pi\) | ||||
0.891923 | − | 0.452187i | \(-0.149356\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | − 12.0000i | − 0.673987i | −0.941507 | − | 0.336994i | \(-0.890590\pi\) | ||||
0.941507 | − | 0.336994i | \(-0.109410\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | −9.00000 | −0.503903 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 42.0000i | 2.33694i | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 0 | 0 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | 17.0000 | 0.934405 | 0.467202 | − | 0.884150i | \(-0.345262\pi\) | ||||
0.467202 | + | 0.884150i | \(0.345262\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | 28.0000i | 1.52526i | 0.646837 | + | 0.762629i | \(0.276092\pi\) | ||||
−0.646837 | + | 0.762629i | \(0.723908\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | −15.0000 | −0.812296 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | − 20.0000i | − 1.07990i | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | 18.0000i | 0.966291i | 0.875540 | + | 0.483145i | \(0.160506\pi\) | ||||
−0.875540 | + | 0.483145i | \(0.839494\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | 7.00000 | 0.374701 | 0.187351 | − | 0.982293i | \(-0.440010\pi\) | ||||
0.187351 | + | 0.982293i | \(0.440010\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 24.0000i | 1.27739i | 0.769460 | + | 0.638696i | \(0.220526\pi\) | ||||
−0.769460 | + | 0.638696i | \(0.779474\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | 27.0000 | 1.42501 | 0.712503 | − | 0.701669i | \(-0.247562\pi\) | ||||
0.712503 | + | 0.701669i | \(0.247562\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | 30.0000 | 1.57895 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | 22.0000i | 1.14839i | 0.818718 | + | 0.574195i | \(0.194685\pi\) | ||||
−0.818718 | + | 0.574195i | \(0.805315\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 12.0000 | 0.623009 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | − 22.0000i | − 1.13912i | −0.821951 | − | 0.569558i | \(-0.807114\pi\) | ||||
0.821951 | − | 0.569558i | \(-0.192886\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | − 12.0000i | − 0.618031i | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | −32.0000 | −1.64373 | −0.821865 | − | 0.569683i | \(-0.807066\pi\) | ||||
−0.821865 | + | 0.569683i | \(0.807066\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | 24.0000i | 1.22634i | 0.789950 | + | 0.613171i | \(0.210106\pi\) | ||||
−0.789950 | + | 0.613171i | \(0.789894\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | 6.00000 | 0.304212 | 0.152106 | − | 0.988364i | \(-0.451394\pi\) | ||||
0.152106 | + | 0.988364i | \(0.451394\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 36.0000 | 1.82060 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | − 2.00000i | − 0.100377i | −0.998740 | − | 0.0501886i | \(-0.984018\pi\) | ||||
0.998740 | − | 0.0501886i | \(-0.0159822\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | 6.00000 | 0.299626 | 0.149813 | − | 0.988714i | \(-0.452133\pi\) | ||||
0.149813 | + | 0.988714i | \(0.452133\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | − 20.0000i | − 0.996271i | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | − 12.0000i | − 0.594818i | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | 10.0000 | 0.494468 | 0.247234 | − | 0.968956i | \(-0.420478\pi\) | ||||
0.247234 | + | 0.968956i | \(0.420478\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 6.00000i | 0.295241i | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | −36.0000 | −1.75872 | −0.879358 | − | 0.476162i | \(-0.842028\pi\) | ||||
−0.879358 | + | 0.476162i | \(0.842028\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | −7.00000 | −0.341159 | −0.170580 | − | 0.985344i | \(-0.554564\pi\) | ||||
−0.170580 | + | 0.985344i | \(0.554564\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | − 28.0000i | − 1.35501i | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 3.00000 | 0.144505 | 0.0722525 | − | 0.997386i | \(-0.476981\pi\) | ||||
0.0722525 | + | 0.997386i | \(0.476981\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | 2.00000i | 0.0961139i | 0.998845 | + | 0.0480569i | \(0.0153029\pi\) | ||||
−0.998845 | + | 0.0480569i | \(0.984697\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | − 42.0000i | − 2.00913i | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 19.0000 | 0.906821 | 0.453410 | − | 0.891302i | \(-0.350207\pi\) | ||||
0.453410 | + | 0.891302i | \(0.350207\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 9.00000 | 0.424736 | 0.212368 | − | 0.977190i | \(-0.431882\pi\) | ||||
0.212368 | + | 0.977190i | \(0.431882\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 9.00000 | 0.423793 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | − 8.00000i | − 0.374224i | −0.982339 | − | 0.187112i | \(-0.940087\pi\) | ||||
0.982339 | − | 0.187112i | \(-0.0599128\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 15.0000 | 0.698620 | 0.349310 | − | 0.937007i | \(-0.386416\pi\) | ||||
0.349310 | + | 0.937007i | \(0.386416\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | 14.0000i | 0.650635i | 0.945605 | + | 0.325318i | \(0.105471\pi\) | ||||
−0.945605 | + | 0.325318i | \(0.894529\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | − 6.00000i | − 0.277647i | −0.990317 | − | 0.138823i | \(-0.955668\pi\) | ||||
0.990317 | − | 0.138823i | \(-0.0443321\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | −4.00000 | −0.184703 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | − 24.0000i | − 1.10352i | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 0 | 0 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 27.0000 | 1.23366 | 0.616831 | − | 0.787096i | \(-0.288416\pi\) | ||||
0.616831 | + | 0.787096i | \(0.288416\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 16.0000 | 0.729537 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 0 | 0 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 16.0000i | 0.725029i | 0.931978 | + | 0.362515i | \(0.118082\pi\) | ||||
−0.931978 | + | 0.362515i | \(0.881918\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 39.0000 | 1.76005 | 0.880023 | − | 0.474932i | \(-0.157527\pi\) | ||||
0.880023 | + | 0.474932i | \(0.157527\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | 18.0000i | 0.810679i | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 30.0000i | 1.34568i | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | −5.00000 | −0.223831 | −0.111915 | − | 0.993718i | \(-0.535699\pi\) | ||||
−0.111915 | + | 0.993718i | \(0.535699\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 36.0000i | 1.60516i | 0.596544 | + | 0.802580i | \(0.296540\pi\) | ||||
−0.596544 | + | 0.802580i | \(0.703460\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | 30.0000 | 1.32973 | 0.664863 | − | 0.746965i | \(-0.268490\pi\) | ||||
0.664863 | + | 0.746965i | \(0.268490\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | −20.0000 | −0.884748 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 0 | 0 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | −42.0000 | −1.84005 | −0.920027 | − | 0.391856i | \(-0.871833\pi\) | ||||
−0.920027 | + | 0.391856i | \(0.871833\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | − 28.0000i | − 1.22435i | −0.790721 | − | 0.612177i | \(-0.790294\pi\) | ||||
0.790721 | − | 0.612177i | \(-0.209706\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 30.0000i | 1.30682i | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | −13.0000 | −0.565217 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 12.0000i | 0.519778i | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | −9.00000 | −0.387657 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | −13.0000 | −0.558914 | −0.279457 | − | 0.960158i | \(-0.590154\pi\) | ||||
−0.279457 | + | 0.960158i | \(0.590154\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | − 32.0000i | − 1.36822i | −0.729378 | − | 0.684111i | \(-0.760191\pi\) | ||||
0.729378 | − | 0.684111i | \(-0.239809\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | 21.0000 | 0.894630 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 16.0000i | 0.680389i | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | 24.0000i | 1.01691i | 0.861088 | + | 0.508456i | \(0.169784\pi\) | ||||
−0.861088 | + | 0.508456i | \(0.830216\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 32.0000 | 1.35346 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | − 36.0000i | − 1.51722i | −0.651546 | − | 0.758610i | \(-0.725879\pi\) | ||||
0.651546 | − | 0.758610i | \(-0.274121\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | −3.00000 | −0.125767 | −0.0628833 | − | 0.998021i | \(-0.520030\pi\) | ||||
−0.0628833 | + | 0.998021i | \(0.520030\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | −37.0000 | −1.54840 | −0.774201 | − | 0.632940i | \(-0.781848\pi\) | ||||
−0.774201 | + | 0.632940i | \(0.781848\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | − 26.0000i | − 1.08239i | −0.840896 | − | 0.541197i | \(-0.817971\pi\) | ||||
0.840896 | − | 0.541197i | \(-0.182029\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 0 | 0 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | − 18.0000i | − 0.745484i | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | − 12.0000i | − 0.495293i | −0.968850 | − | 0.247647i | \(-0.920343\pi\) | ||||
0.968850 | − | 0.247647i | \(-0.0796572\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 35.0000 | 1.44215 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | 30.0000i | 1.23195i | 0.787765 | + | 0.615976i | \(0.211238\pi\) | ||||
−0.787765 | + | 0.615976i | \(0.788762\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | −39.0000 | −1.59350 | −0.796748 | − | 0.604311i | \(-0.793448\pi\) | ||||
−0.796748 | + | 0.604311i | \(0.793448\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | 17.0000 | 0.693444 | 0.346722 | − | 0.937968i | \(-0.387295\pi\) | ||||
0.346722 | + | 0.937968i | \(0.387295\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 0 | 0 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | − 8.00000i | − 0.324710i | −0.986732 | − | 0.162355i | \(-0.948091\pi\) | ||||
0.986732 | − | 0.162355i | \(-0.0519090\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 0 | 0 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | 8.00000i | 0.323117i | 0.986863 | + | 0.161558i | \(0.0516520\pi\) | ||||
−0.986863 | + | 0.161558i | \(0.948348\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | − 24.0000i | − 0.966204i | −0.875564 | − | 0.483102i | \(-0.839510\pi\) | ||||
0.875564 | − | 0.483102i | \(-0.160490\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | 4.00000 | 0.160774 | 0.0803868 | − | 0.996764i | \(-0.474384\pi\) | ||||
0.0803868 | + | 0.996764i | \(0.474384\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | − 30.0000i | − 1.20192i | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 0 | 0 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | −24.0000 | −0.956943 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 5.00000 | 0.199047 | 0.0995234 | − | 0.995035i | \(-0.468268\pi\) | ||||
0.0995234 | + | 0.995035i | \(0.468268\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | − 12.0000i | − 0.475457i | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | 33.0000 | 1.30342 | 0.651711 | − | 0.758468i | \(-0.274052\pi\) | ||||
0.651711 | + | 0.758468i | \(0.274052\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | − 40.0000i | − 1.57745i | −0.614749 | − | 0.788723i | \(-0.710743\pi\) | ||||
0.614749 | − | 0.788723i | \(-0.289257\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | 18.0000i | 0.707653i | 0.935311 | + | 0.353827i | \(0.115120\pi\) | ||||
−0.935311 | + | 0.353827i | \(0.884880\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 9.00000 | 0.353281 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | − 24.0000i | − 0.939193i | −0.882881 | − | 0.469596i | \(-0.844399\pi\) | ||||
0.882881 | − | 0.469596i | \(-0.155601\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | 24.0000 | 0.934907 | 0.467454 | − | 0.884018i | \(-0.345171\pi\) | ||||
0.467454 | + | 0.884018i | \(0.345171\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | −7.00000 | −0.272268 | −0.136134 | − | 0.990690i | \(-0.543468\pi\) | ||||
−0.136134 | + | 0.990690i | \(0.543468\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | − 18.0000i | − 0.696963i | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | −42.0000 | −1.62139 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | − 10.0000i | − 0.385472i | −0.981251 | − | 0.192736i | \(-0.938264\pi\) | ||||
0.981251 | − | 0.192736i | \(-0.0617360\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | 6.00000i | 0.230599i | 0.993331 | + | 0.115299i | \(0.0367827\pi\) | ||||
−0.993331 | + | 0.115299i | \(0.963217\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | −16.0000 | −0.614024 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | − 36.0000i | − 1.37750i | −0.724998 | − | 0.688751i | \(-0.758159\pi\) | ||||
0.724998 | − | 0.688751i | \(-0.241841\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 0 | 0 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 24.0000 | 0.914327 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | 44.0000 | 1.67384 | 0.836919 | − | 0.547326i | \(-0.184354\pi\) | ||||
0.836919 | + | 0.547326i | \(0.184354\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | − 18.0000i | − 0.681799i | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | −3.00000 | −0.113308 | −0.0566542 | − | 0.998394i | \(-0.518043\pi\) | ||||
−0.0566542 | + | 0.998394i | \(0.518043\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 28.0000i | 1.05604i | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | − 6.00000i | − 0.225653i | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | −26.0000 | −0.976450 | −0.488225 | − | 0.872718i | \(-0.662356\pi\) | ||||
−0.488225 | + | 0.872718i | \(0.662356\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | − 30.0000i | − 1.12351i | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 9.00000 | 0.335643 | 0.167822 | − | 0.985817i | \(-0.446327\pi\) | ||||
0.167822 | + | 0.985817i | \(0.446327\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 4.00000 | 0.148968 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 0 | 0 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | − 44.0000i | − 1.63187i | −0.578144 | − | 0.815935i | \(-0.696223\pi\) | ||||
0.578144 | − | 0.815935i | \(-0.303777\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | −48.0000 | −1.77534 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | 14.0000i | 0.517102i | 0.965998 | + | 0.258551i | \(0.0832450\pi\) | ||||
−0.965998 | + | 0.258551i | \(0.916755\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 6.00000i | 0.221013i | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | 25.0000 | 0.919640 | 0.459820 | − | 0.888012i | \(-0.347914\pi\) | ||||
0.459820 | + | 0.888012i | \(0.347914\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | − 54.0000i | − 1.98107i | −0.137268 | − | 0.990534i | \(-0.543832\pi\) | ||||
0.137268 | − | 0.990534i | \(-0.456168\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | −12.0000 | −0.438470 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 8.00000 | 0.291924 | 0.145962 | − | 0.989290i | \(-0.453372\pi\) | ||||
0.145962 | + | 0.989290i | \(0.453372\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | 28.0000i | 1.01768i | 0.860862 | + | 0.508839i | \(0.169925\pi\) | ||||
−0.860862 | + | 0.508839i | \(0.830075\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | −9.00000 | −0.326250 | −0.163125 | − | 0.986605i | \(-0.552157\pi\) | ||||
−0.163125 | + | 0.986605i | \(0.552157\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 22.0000i | 0.796453i | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 12.0000i | 0.433295i | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | −41.0000 | −1.47850 | −0.739249 | − | 0.673432i | \(-0.764819\pi\) | ||||
−0.739249 | + | 0.673432i | \(0.764819\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | − 36.0000i | − 1.29483i | −0.762138 | − | 0.647415i | \(-0.775850\pi\) | ||||
0.762138 | − | 0.647415i | \(-0.224150\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 0 | 0 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | −21.0000 | −0.752403 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 45.0000 | 1.61023 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | 34.0000i | 1.21197i | 0.795476 | + | 0.605985i | \(0.207221\pi\) | ||||
−0.795476 | + | 0.605985i | \(0.792779\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | −36.0000 | −1.28001 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | − 56.0000i | − 1.98862i | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 0 | 0 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | 30.0000i | 1.05868i | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | 15.0000 | 0.527372 | 0.263686 | − | 0.964609i | \(-0.415062\pi\) | ||||
0.263686 | + | 0.964609i | \(0.415062\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | −7.00000 | −0.245803 | −0.122902 | − | 0.992419i | \(-0.539220\pi\) | ||||
−0.122902 | + | 0.992419i | \(0.539220\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 0 | 0 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | 56.0000i | 1.95919i | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | −15.0000 | −0.523504 | −0.261752 | − | 0.965135i | \(-0.584300\pi\) | ||||
−0.261752 | + | 0.965135i | \(0.584300\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | 14.0000i | 0.488009i | 0.969774 | + | 0.244005i | \(0.0784612\pi\) | ||||
−0.969774 | + | 0.244005i | \(0.921539\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | − 12.0000i | − 0.417281i | −0.977992 | − | 0.208640i | \(-0.933096\pi\) | ||||
0.977992 | − | 0.208640i | \(-0.0669038\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | 25.0000 | 0.868286 | 0.434143 | − | 0.900844i | \(-0.357051\pi\) | ||||
0.434143 | + | 0.900844i | \(0.357051\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 18.0000i | 0.623663i | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 0 | 0 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | −9.00000 | −0.310715 | −0.155357 | − | 0.987858i | \(-0.549653\pi\) | ||||
−0.155357 | + | 0.987858i | \(0.549653\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | −20.0000 | −0.689655 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 0 | 0 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | 4.00000i | 0.137442i | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 24.0000 | 0.822709 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | 14.0000i | 0.479351i | 0.970853 | + | 0.239675i | \(0.0770410\pi\) | ||||
−0.970853 | + | 0.239675i | \(0.922959\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | 55.0000 | 1.87658 | 0.938288 | − | 0.345855i | \(-0.112411\pi\) | ||||
0.938288 | + | 0.345855i | \(0.112411\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | − 6.00000i | − 0.204242i | −0.994772 | − | 0.102121i | \(-0.967437\pi\) | ||||
0.994772 | − | 0.102121i | \(-0.0325630\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 0 | 0 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 24.0000 | 0.814144 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | −8.00000 | −0.271070 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | 28.0000i | 0.945493i | 0.881199 | + | 0.472746i | \(0.156737\pi\) | ||||
−0.881199 | + | 0.472746i | \(0.843263\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | 33.0000 | 1.11180 | 0.555899 | − | 0.831250i | \(-0.312374\pi\) | ||||
0.555899 | + | 0.831250i | \(0.312374\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | 2.00000i | 0.0673054i | 0.999434 | + | 0.0336527i | \(0.0107140\pi\) | ||||
−0.999434 | + | 0.0336527i | \(0.989286\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | 48.0000i | 1.61168i | 0.592132 | + | 0.805841i | \(0.298286\pi\) | ||||
−0.592132 | + | 0.805841i | \(0.701714\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | −4.00000 | −0.134156 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | 0 | 0 | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 0 | 0 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 15.0000 | 0.500278 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | −36.0000 | −1.19933 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 0 | 0 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | − 26.0000i | − 0.863316i | −0.902037 | − | 0.431658i | \(-0.857929\pi\) | ||||
0.902037 | − | 0.431658i | \(-0.142071\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | −45.0000 | −1.49092 | −0.745458 | − | 0.666552i | \(-0.767769\pi\) | ||||
−0.745458 | + | 0.666552i | \(0.767769\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 0 | 0 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | − 30.0000i | − 0.990687i | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | −11.0000 | −0.362857 | −0.181428 | − | 0.983404i | \(-0.558072\pi\) | ||||
−0.181428 | + | 0.983404i | \(0.558072\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | 60.0000i | 1.97492i | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 0 | 0 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | 9.00000 | 0.295280 | 0.147640 | − | 0.989041i | \(-0.452832\pi\) | ||||
0.147640 | + | 0.989041i | \(0.452832\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | 21.0000 | 0.688247 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | 58.0000i | 1.89478i | 0.320085 | + | 0.947389i | \(0.396288\pi\) | ||||
−0.320085 | + | 0.947389i | \(0.603712\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | −6.00000 | −0.195594 | −0.0977972 | − | 0.995206i | \(-0.531180\pi\) | ||||
−0.0977972 | + | 0.995206i | \(0.531180\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 18.0000i | 0.586161i | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | − 54.0000i | − 1.75476i | −0.479792 | − | 0.877382i | \(-0.659288\pi\) | ||||
0.479792 | − | 0.877382i | \(-0.340712\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | −40.0000 | −1.29845 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 24.0000 | 0.775000 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −6.00000 | −0.193548 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 0 | 0 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | − 2.00000i | − 0.0643157i | −0.999483 | − | 0.0321578i | \(-0.989762\pi\) | ||||
0.999483 | − | 0.0321578i | \(-0.0102379\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | 45.0000 | 1.44412 | 0.722059 | − | 0.691831i | \(-0.243196\pi\) | ||||
0.722059 | + | 0.691831i | \(0.243196\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | − 2.00000i | − 0.0641171i | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | 24.0000i | 0.767828i | 0.923369 | + | 0.383914i | \(0.125424\pi\) | ||||
−0.923369 | + | 0.383914i | \(0.874576\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | −45.0000 | −1.43821 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | − 42.0000i | − 1.33959i | −0.742545 | − | 0.669796i | \(-0.766382\pi\) | ||||
0.742545 | − | 0.669796i | \(-0.233618\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 0 | 0 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | 48.0000 | 1.52631 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | −19.0000 | −0.603555 | −0.301777 | − | 0.953378i | \(-0.597580\pi\) | ||||
−0.301777 | + | 0.953378i | \(0.597580\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 0 | 0 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | − 26.0000i | − 0.823428i | −0.911313 | − | 0.411714i | \(-0.864930\pi\) | ||||
0.911313 | − | 0.411714i | \(-0.135070\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 8100.2.d.d.649.1 | 2 | ||
3.2 | odd | 2 | 8100.2.d.i.649.1 | 2 | |||
5.2 | odd | 4 | 1620.2.a.f.1.1 | yes | 1 | ||
5.3 | odd | 4 | 8100.2.a.b.1.1 | 1 | |||
5.4 | even | 2 | inner | 8100.2.d.d.649.2 | 2 | ||
15.2 | even | 4 | 1620.2.a.c.1.1 | ✓ | 1 | ||
15.8 | even | 4 | 8100.2.a.e.1.1 | 1 | |||
15.14 | odd | 2 | 8100.2.d.i.649.2 | 2 | |||
20.7 | even | 4 | 6480.2.a.p.1.1 | 1 | |||
45.2 | even | 12 | 1620.2.i.g.1081.1 | 2 | |||
45.7 | odd | 12 | 1620.2.i.c.1081.1 | 2 | |||
45.22 | odd | 12 | 1620.2.i.c.541.1 | 2 | |||
45.32 | even | 12 | 1620.2.i.g.541.1 | 2 | |||
60.47 | odd | 4 | 6480.2.a.b.1.1 | 1 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
1620.2.a.c.1.1 | ✓ | 1 | 15.2 | even | 4 | ||
1620.2.a.f.1.1 | yes | 1 | 5.2 | odd | 4 | ||
1620.2.i.c.541.1 | 2 | 45.22 | odd | 12 | |||
1620.2.i.c.1081.1 | 2 | 45.7 | odd | 12 | |||
1620.2.i.g.541.1 | 2 | 45.32 | even | 12 | |||
1620.2.i.g.1081.1 | 2 | 45.2 | even | 12 | |||
6480.2.a.b.1.1 | 1 | 60.47 | odd | 4 | |||
6480.2.a.p.1.1 | 1 | 20.7 | even | 4 | |||
8100.2.a.b.1.1 | 1 | 5.3 | odd | 4 | |||
8100.2.a.e.1.1 | 1 | 15.8 | even | 4 | |||
8100.2.d.d.649.1 | 2 | 1.1 | even | 1 | trivial | ||
8100.2.d.d.649.2 | 2 | 5.4 | even | 2 | inner | ||
8100.2.d.i.649.1 | 2 | 3.2 | odd | 2 | |||
8100.2.d.i.649.2 | 2 | 15.14 | odd | 2 |