Properties

Label 8100.2.d.b
Level $8100$
Weight $2$
Character orbit 8100.d
Analytic conductor $64.679$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8100,2,Mod(649,8100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8100, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8100.649");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8100 = 2^{2} \cdot 3^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8100.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(64.6788256372\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{23}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 1620)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2i\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 \beta q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q + 2 \beta q^{7} - 3 q^{11} - 2 \beta q^{13} - 5 q^{19} + 3 \beta q^{23} - 9 q^{29} + 5 q^{31} - \beta q^{37} + 9 q^{41} - 5 \beta q^{43} - 3 \beta q^{47} - 9 q^{49} + 6 \beta q^{53} + 9 q^{59} - 10 q^{61} - \beta q^{67} - 3 q^{71} - 2 \beta q^{73} - 6 \beta q^{77} + 4 q^{79} - 3 \beta q^{83} - 9 q^{89} + 16 q^{91} - \beta q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 6 q^{11} - 10 q^{19} - 18 q^{29} + 10 q^{31} + 18 q^{41} - 18 q^{49} + 18 q^{59} - 20 q^{61} - 6 q^{71} + 8 q^{79} - 18 q^{89} + 32 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/8100\mathbb{Z}\right)^\times\).

\(n\) \(4051\) \(6401\) \(7777\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
649.1
1.00000i
1.00000i
0 0 0 0 0 4.00000i 0 0 0
649.2 0 0 0 0 0 4.00000i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8100.2.d.b 2
3.b odd 2 1 8100.2.d.g 2
5.b even 2 1 inner 8100.2.d.b 2
5.c odd 4 1 1620.2.a.a 1
5.c odd 4 1 8100.2.a.m 1
15.d odd 2 1 8100.2.d.g 2
15.e even 4 1 1620.2.a.d yes 1
15.e even 4 1 8100.2.a.n 1
20.e even 4 1 6480.2.a.m 1
45.k odd 12 2 1620.2.i.l 2
45.l even 12 2 1620.2.i.e 2
60.l odd 4 1 6480.2.a.y 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1620.2.a.a 1 5.c odd 4 1
1620.2.a.d yes 1 15.e even 4 1
1620.2.i.e 2 45.l even 12 2
1620.2.i.l 2 45.k odd 12 2
6480.2.a.m 1 20.e even 4 1
6480.2.a.y 1 60.l odd 4 1
8100.2.a.m 1 5.c odd 4 1
8100.2.a.n 1 15.e even 4 1
8100.2.d.b 2 1.a even 1 1 trivial
8100.2.d.b 2 5.b even 2 1 inner
8100.2.d.g 2 3.b odd 2 1
8100.2.d.g 2 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(8100, [\chi])\):

\( T_{7}^{2} + 16 \) Copy content Toggle raw display
\( T_{11} + 3 \) Copy content Toggle raw display
\( T_{29} + 9 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 16 \) Copy content Toggle raw display
$11$ \( (T + 3)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 16 \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( (T + 5)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 36 \) Copy content Toggle raw display
$29$ \( (T + 9)^{2} \) Copy content Toggle raw display
$31$ \( (T - 5)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 4 \) Copy content Toggle raw display
$41$ \( (T - 9)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 100 \) Copy content Toggle raw display
$47$ \( T^{2} + 36 \) Copy content Toggle raw display
$53$ \( T^{2} + 144 \) Copy content Toggle raw display
$59$ \( (T - 9)^{2} \) Copy content Toggle raw display
$61$ \( (T + 10)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 4 \) Copy content Toggle raw display
$71$ \( (T + 3)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 16 \) Copy content Toggle raw display
$79$ \( (T - 4)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 36 \) Copy content Toggle raw display
$89$ \( (T + 9)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 4 \) Copy content Toggle raw display
show more
show less