Defining parameters
Level: | \( N \) | \(=\) | \( 8100 = 2^{2} \cdot 3^{4} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 8100.d (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 19 \) | ||
Sturm bound: | \(3240\) | ||
Trace bound: | \(29\) | ||
Distinguishing \(T_p\): | \(7\), \(11\), \(29\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(8100, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1728 | 72 | 1656 |
Cusp forms | 1512 | 72 | 1440 |
Eisenstein series | 216 | 0 | 216 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(8100, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(8100, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(8100, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(90, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(100, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(135, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(150, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(180, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(225, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(270, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(300, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(405, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(450, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(540, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(675, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(810, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(900, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1350, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1620, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2025, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2700, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(4050, [\chi])\)\(^{\oplus 2}\)