Properties

Label 8100.2.a.t.1.2
Level $8100$
Weight $2$
Character 8100.1
Self dual yes
Analytic conductor $64.679$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8100,2,Mod(1,8100)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8100, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8100.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8100 = 2^{2} \cdot 3^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8100.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(64.6788256372\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1620)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.73205\) of defining polynomial
Character \(\chi\) \(=\) 8100.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.73205 q^{7} +O(q^{10})\) \(q+2.73205 q^{7} +1.73205 q^{11} -5.46410 q^{13} +4.73205 q^{17} -4.46410 q^{19} -3.46410 q^{23} -7.73205 q^{29} +5.92820 q^{31} +6.19615 q^{37} -11.1962 q^{41} -3.26795 q^{43} +1.26795 q^{47} +0.464102 q^{49} +7.26795 q^{53} -7.73205 q^{59} -4.00000 q^{61} -6.39230 q^{67} -11.1962 q^{71} +0.196152 q^{73} +4.73205 q^{77} -14.3923 q^{79} +15.1244 q^{83} +5.19615 q^{89} -14.9282 q^{91} -0.732051 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{7} - 4 q^{13} + 6 q^{17} - 2 q^{19} - 12 q^{29} - 2 q^{31} + 2 q^{37} - 12 q^{41} - 10 q^{43} + 6 q^{47} - 6 q^{49} + 18 q^{53} - 12 q^{59} - 8 q^{61} + 8 q^{67} - 12 q^{71} - 10 q^{73} + 6 q^{77} - 8 q^{79} + 6 q^{83} - 16 q^{91} + 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 2.73205 1.03262 0.516309 0.856402i \(-0.327306\pi\)
0.516309 + 0.856402i \(0.327306\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.73205 0.522233 0.261116 0.965307i \(-0.415909\pi\)
0.261116 + 0.965307i \(0.415909\pi\)
\(12\) 0 0
\(13\) −5.46410 −1.51547 −0.757735 0.652563i \(-0.773694\pi\)
−0.757735 + 0.652563i \(0.773694\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 4.73205 1.14769 0.573845 0.818964i \(-0.305451\pi\)
0.573845 + 0.818964i \(0.305451\pi\)
\(18\) 0 0
\(19\) −4.46410 −1.02414 −0.512068 0.858945i \(-0.671120\pi\)
−0.512068 + 0.858945i \(0.671120\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −3.46410 −0.722315 −0.361158 0.932505i \(-0.617618\pi\)
−0.361158 + 0.932505i \(0.617618\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −7.73205 −1.43581 −0.717903 0.696143i \(-0.754898\pi\)
−0.717903 + 0.696143i \(0.754898\pi\)
\(30\) 0 0
\(31\) 5.92820 1.06474 0.532368 0.846513i \(-0.321302\pi\)
0.532368 + 0.846513i \(0.321302\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 6.19615 1.01864 0.509321 0.860577i \(-0.329897\pi\)
0.509321 + 0.860577i \(0.329897\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −11.1962 −1.74855 −0.874273 0.485435i \(-0.838661\pi\)
−0.874273 + 0.485435i \(0.838661\pi\)
\(42\) 0 0
\(43\) −3.26795 −0.498358 −0.249179 0.968458i \(-0.580161\pi\)
−0.249179 + 0.968458i \(0.580161\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.26795 0.184949 0.0924747 0.995715i \(-0.470522\pi\)
0.0924747 + 0.995715i \(0.470522\pi\)
\(48\) 0 0
\(49\) 0.464102 0.0663002
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 7.26795 0.998330 0.499165 0.866507i \(-0.333640\pi\)
0.499165 + 0.866507i \(0.333640\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −7.73205 −1.00663 −0.503314 0.864104i \(-0.667886\pi\)
−0.503314 + 0.864104i \(0.667886\pi\)
\(60\) 0 0
\(61\) −4.00000 −0.512148 −0.256074 0.966657i \(-0.582429\pi\)
−0.256074 + 0.966657i \(0.582429\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −6.39230 −0.780944 −0.390472 0.920615i \(-0.627688\pi\)
−0.390472 + 0.920615i \(0.627688\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −11.1962 −1.32874 −0.664369 0.747404i \(-0.731300\pi\)
−0.664369 + 0.747404i \(0.731300\pi\)
\(72\) 0 0
\(73\) 0.196152 0.0229579 0.0114790 0.999934i \(-0.496346\pi\)
0.0114790 + 0.999934i \(0.496346\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 4.73205 0.539267
\(78\) 0 0
\(79\) −14.3923 −1.61926 −0.809630 0.586940i \(-0.800332\pi\)
−0.809630 + 0.586940i \(0.800332\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 15.1244 1.66011 0.830057 0.557679i \(-0.188308\pi\)
0.830057 + 0.557679i \(0.188308\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 5.19615 0.550791 0.275396 0.961331i \(-0.411191\pi\)
0.275396 + 0.961331i \(0.411191\pi\)
\(90\) 0 0
\(91\) −14.9282 −1.56490
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −0.732051 −0.0743285 −0.0371642 0.999309i \(-0.511832\pi\)
−0.0371642 + 0.999309i \(0.511832\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 6.12436 0.609396 0.304698 0.952449i \(-0.401444\pi\)
0.304698 + 0.952449i \(0.401444\pi\)
\(102\) 0 0
\(103\) −18.3923 −1.81225 −0.906124 0.423013i \(-0.860973\pi\)
−0.906124 + 0.423013i \(0.860973\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −3.46410 −0.334887 −0.167444 0.985882i \(-0.553551\pi\)
−0.167444 + 0.985882i \(0.553551\pi\)
\(108\) 0 0
\(109\) −7.92820 −0.759384 −0.379692 0.925113i \(-0.623970\pi\)
−0.379692 + 0.925113i \(0.623970\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0.339746 0.0319606 0.0159803 0.999872i \(-0.494913\pi\)
0.0159803 + 0.999872i \(0.494913\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 12.9282 1.18513
\(120\) 0 0
\(121\) −8.00000 −0.727273
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −4.19615 −0.372348 −0.186174 0.982517i \(-0.559609\pi\)
−0.186174 + 0.982517i \(0.559609\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 10.2679 0.897115 0.448557 0.893754i \(-0.351938\pi\)
0.448557 + 0.893754i \(0.351938\pi\)
\(132\) 0 0
\(133\) −12.1962 −1.05754
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −4.39230 −0.375260 −0.187630 0.982240i \(-0.560081\pi\)
−0.187630 + 0.982240i \(0.560081\pi\)
\(138\) 0 0
\(139\) 15.3923 1.30556 0.652779 0.757548i \(-0.273603\pi\)
0.652779 + 0.757548i \(0.273603\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −9.46410 −0.791428
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) −17.3923 −1.41537 −0.707683 0.706530i \(-0.750259\pi\)
−0.707683 + 0.706530i \(0.750259\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −3.26795 −0.260811 −0.130405 0.991461i \(-0.541628\pi\)
−0.130405 + 0.991461i \(0.541628\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −9.46410 −0.745876
\(162\) 0 0
\(163\) −18.7321 −1.46721 −0.733604 0.679577i \(-0.762163\pi\)
−0.733604 + 0.679577i \(0.762163\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 21.1244 1.63465 0.817326 0.576176i \(-0.195456\pi\)
0.817326 + 0.576176i \(0.195456\pi\)
\(168\) 0 0
\(169\) 16.8564 1.29665
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 24.2487 1.84360 0.921798 0.387671i \(-0.126720\pi\)
0.921798 + 0.387671i \(0.126720\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −12.1244 −0.906217 −0.453108 0.891455i \(-0.649685\pi\)
−0.453108 + 0.891455i \(0.649685\pi\)
\(180\) 0 0
\(181\) −16.4641 −1.22377 −0.611884 0.790948i \(-0.709588\pi\)
−0.611884 + 0.790948i \(0.709588\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 8.19615 0.599362
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 19.0526 1.37859 0.689297 0.724479i \(-0.257919\pi\)
0.689297 + 0.724479i \(0.257919\pi\)
\(192\) 0 0
\(193\) 10.5885 0.762174 0.381087 0.924539i \(-0.375550\pi\)
0.381087 + 0.924539i \(0.375550\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 13.8564 0.987228 0.493614 0.869681i \(-0.335676\pi\)
0.493614 + 0.869681i \(0.335676\pi\)
\(198\) 0 0
\(199\) 15.8564 1.12403 0.562015 0.827127i \(-0.310026\pi\)
0.562015 + 0.827127i \(0.310026\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −21.1244 −1.48264
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −7.73205 −0.534837
\(210\) 0 0
\(211\) −19.9282 −1.37191 −0.685957 0.727642i \(-0.740616\pi\)
−0.685957 + 0.727642i \(0.740616\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 16.1962 1.09947
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −25.8564 −1.73929
\(222\) 0 0
\(223\) 5.85641 0.392174 0.196087 0.980587i \(-0.437177\pi\)
0.196087 + 0.980587i \(0.437177\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −26.1962 −1.73870 −0.869350 0.494197i \(-0.835462\pi\)
−0.869350 + 0.494197i \(0.835462\pi\)
\(228\) 0 0
\(229\) −17.8564 −1.17998 −0.589992 0.807409i \(-0.700869\pi\)
−0.589992 + 0.807409i \(0.700869\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −24.5885 −1.61084 −0.805422 0.592702i \(-0.798061\pi\)
−0.805422 + 0.592702i \(0.798061\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 8.53590 0.552141 0.276071 0.961137i \(-0.410968\pi\)
0.276071 + 0.961137i \(0.410968\pi\)
\(240\) 0 0
\(241\) 10.3205 0.664802 0.332401 0.943138i \(-0.392141\pi\)
0.332401 + 0.943138i \(0.392141\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 24.3923 1.55205
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 20.5359 1.29621 0.648107 0.761549i \(-0.275561\pi\)
0.648107 + 0.761549i \(0.275561\pi\)
\(252\) 0 0
\(253\) −6.00000 −0.377217
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −15.4641 −0.964624 −0.482312 0.875999i \(-0.660203\pi\)
−0.482312 + 0.875999i \(0.660203\pi\)
\(258\) 0 0
\(259\) 16.9282 1.05187
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 24.2487 1.49524 0.747620 0.664127i \(-0.231197\pi\)
0.747620 + 0.664127i \(0.231197\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −16.2679 −0.991874 −0.495937 0.868358i \(-0.665175\pi\)
−0.495937 + 0.868358i \(0.665175\pi\)
\(270\) 0 0
\(271\) 16.7846 1.01959 0.509796 0.860295i \(-0.329721\pi\)
0.509796 + 0.860295i \(0.329721\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −5.12436 −0.307893 −0.153946 0.988079i \(-0.549198\pi\)
−0.153946 + 0.988079i \(0.549198\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 29.3205 1.74911 0.874557 0.484922i \(-0.161152\pi\)
0.874557 + 0.484922i \(0.161152\pi\)
\(282\) 0 0
\(283\) −16.5359 −0.982957 −0.491479 0.870890i \(-0.663543\pi\)
−0.491479 + 0.870890i \(0.663543\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −30.5885 −1.80558
\(288\) 0 0
\(289\) 5.39230 0.317194
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −24.5885 −1.43647 −0.718237 0.695799i \(-0.755050\pi\)
−0.718237 + 0.695799i \(0.755050\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 18.9282 1.09465
\(300\) 0 0
\(301\) −8.92820 −0.514613
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 1.80385 0.102951 0.0514755 0.998674i \(-0.483608\pi\)
0.0514755 + 0.998674i \(0.483608\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −16.5167 −0.936574 −0.468287 0.883576i \(-0.655129\pi\)
−0.468287 + 0.883576i \(0.655129\pi\)
\(312\) 0 0
\(313\) −14.9282 −0.843792 −0.421896 0.906644i \(-0.638635\pi\)
−0.421896 + 0.906644i \(0.638635\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −3.12436 −0.175481 −0.0877406 0.996143i \(-0.527965\pi\)
−0.0877406 + 0.996143i \(0.527965\pi\)
\(318\) 0 0
\(319\) −13.3923 −0.749825
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −21.1244 −1.17539
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 3.46410 0.190982
\(330\) 0 0
\(331\) −29.3923 −1.61555 −0.807774 0.589493i \(-0.799328\pi\)
−0.807774 + 0.589493i \(0.799328\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 34.2487 1.86565 0.932823 0.360335i \(-0.117338\pi\)
0.932823 + 0.360335i \(0.117338\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 10.2679 0.556041
\(342\) 0 0
\(343\) −17.8564 −0.964155
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −21.8038 −1.17049 −0.585246 0.810856i \(-0.699002\pi\)
−0.585246 + 0.810856i \(0.699002\pi\)
\(348\) 0 0
\(349\) −25.0000 −1.33822 −0.669110 0.743164i \(-0.733324\pi\)
−0.669110 + 0.743164i \(0.733324\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 28.9808 1.54249 0.771245 0.636538i \(-0.219634\pi\)
0.771245 + 0.636538i \(0.219634\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 9.33975 0.492933 0.246466 0.969151i \(-0.420730\pi\)
0.246466 + 0.969151i \(0.420730\pi\)
\(360\) 0 0
\(361\) 0.928203 0.0488528
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 26.3923 1.37767 0.688834 0.724920i \(-0.258123\pi\)
0.688834 + 0.724920i \(0.258123\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 19.8564 1.03089
\(372\) 0 0
\(373\) 14.0526 0.727614 0.363807 0.931474i \(-0.381477\pi\)
0.363807 + 0.931474i \(0.381477\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 42.2487 2.17592
\(378\) 0 0
\(379\) 4.53590 0.232993 0.116497 0.993191i \(-0.462834\pi\)
0.116497 + 0.993191i \(0.462834\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −18.2487 −0.932466 −0.466233 0.884662i \(-0.654389\pi\)
−0.466233 + 0.884662i \(0.654389\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 27.4641 1.39249 0.696243 0.717807i \(-0.254854\pi\)
0.696243 + 0.717807i \(0.254854\pi\)
\(390\) 0 0
\(391\) −16.3923 −0.828994
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −37.3205 −1.87306 −0.936531 0.350584i \(-0.885983\pi\)
−0.936531 + 0.350584i \(0.885983\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −14.7846 −0.738308 −0.369154 0.929368i \(-0.620353\pi\)
−0.369154 + 0.929368i \(0.620353\pi\)
\(402\) 0 0
\(403\) −32.3923 −1.61358
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 10.7321 0.531968
\(408\) 0 0
\(409\) −17.8564 −0.882942 −0.441471 0.897275i \(-0.645543\pi\)
−0.441471 + 0.897275i \(0.645543\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −21.1244 −1.03946
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 21.4641 1.04859 0.524295 0.851537i \(-0.324329\pi\)
0.524295 + 0.851537i \(0.324329\pi\)
\(420\) 0 0
\(421\) 13.7846 0.671821 0.335910 0.941894i \(-0.390956\pi\)
0.335910 + 0.941894i \(0.390956\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −10.9282 −0.528853
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −33.5885 −1.61790 −0.808950 0.587878i \(-0.799963\pi\)
−0.808950 + 0.587878i \(0.799963\pi\)
\(432\) 0 0
\(433\) −11.4641 −0.550930 −0.275465 0.961311i \(-0.588832\pi\)
−0.275465 + 0.961311i \(0.588832\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 15.4641 0.739748
\(438\) 0 0
\(439\) 6.60770 0.315368 0.157684 0.987490i \(-0.449597\pi\)
0.157684 + 0.987490i \(0.449597\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −37.2679 −1.77065 −0.885327 0.464969i \(-0.846065\pi\)
−0.885327 + 0.464969i \(0.846065\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 24.1244 1.13850 0.569249 0.822165i \(-0.307234\pi\)
0.569249 + 0.822165i \(0.307234\pi\)
\(450\) 0 0
\(451\) −19.3923 −0.913148
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −22.1962 −1.03829 −0.519146 0.854686i \(-0.673750\pi\)
−0.519146 + 0.854686i \(0.673750\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 9.58846 0.446579 0.223289 0.974752i \(-0.428320\pi\)
0.223289 + 0.974752i \(0.428320\pi\)
\(462\) 0 0
\(463\) 2.39230 0.111180 0.0555899 0.998454i \(-0.482296\pi\)
0.0555899 + 0.998454i \(0.482296\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −26.1962 −1.21221 −0.606107 0.795383i \(-0.707270\pi\)
−0.606107 + 0.795383i \(0.707270\pi\)
\(468\) 0 0
\(469\) −17.4641 −0.806417
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −5.66025 −0.260259
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −3.33975 −0.152597 −0.0762984 0.997085i \(-0.524310\pi\)
−0.0762984 + 0.997085i \(0.524310\pi\)
\(480\) 0 0
\(481\) −33.8564 −1.54372
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 30.5359 1.38371 0.691857 0.722035i \(-0.256793\pi\)
0.691857 + 0.722035i \(0.256793\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −4.26795 −0.192610 −0.0963049 0.995352i \(-0.530702\pi\)
−0.0963049 + 0.995352i \(0.530702\pi\)
\(492\) 0 0
\(493\) −36.5885 −1.64786
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −30.5885 −1.37208
\(498\) 0 0
\(499\) 27.3923 1.22625 0.613124 0.789987i \(-0.289913\pi\)
0.613124 + 0.789987i \(0.289913\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 35.3205 1.57486 0.787432 0.616402i \(-0.211410\pi\)
0.787432 + 0.616402i \(0.211410\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −26.7846 −1.18721 −0.593603 0.804758i \(-0.702295\pi\)
−0.593603 + 0.804758i \(0.702295\pi\)
\(510\) 0 0
\(511\) 0.535898 0.0237067
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 2.19615 0.0965867
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −10.3923 −0.455295 −0.227648 0.973744i \(-0.573103\pi\)
−0.227648 + 0.973744i \(0.573103\pi\)
\(522\) 0 0
\(523\) −3.60770 −0.157753 −0.0788767 0.996884i \(-0.525133\pi\)
−0.0788767 + 0.996884i \(0.525133\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 28.0526 1.22199
\(528\) 0 0
\(529\) −11.0000 −0.478261
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 61.1769 2.64987
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0.803848 0.0346242
\(540\) 0 0
\(541\) 2.46410 0.105940 0.0529700 0.998596i \(-0.483131\pi\)
0.0529700 + 0.998596i \(0.483131\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −4.78461 −0.204575 −0.102288 0.994755i \(-0.532616\pi\)
−0.102288 + 0.994755i \(0.532616\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 34.5167 1.47046
\(552\) 0 0
\(553\) −39.3205 −1.67208
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 4.39230 0.186108 0.0930540 0.995661i \(-0.470337\pi\)
0.0930540 + 0.995661i \(0.470337\pi\)
\(558\) 0 0
\(559\) 17.8564 0.755246
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −22.7321 −0.958042 −0.479021 0.877804i \(-0.659008\pi\)
−0.479021 + 0.877804i \(0.659008\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −43.0526 −1.80486 −0.902429 0.430839i \(-0.858218\pi\)
−0.902429 + 0.430839i \(0.858218\pi\)
\(570\) 0 0
\(571\) 0.856406 0.0358395 0.0179197 0.999839i \(-0.494296\pi\)
0.0179197 + 0.999839i \(0.494296\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −11.8038 −0.491401 −0.245700 0.969346i \(-0.579018\pi\)
−0.245700 + 0.969346i \(0.579018\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 41.3205 1.71426
\(582\) 0 0
\(583\) 12.5885 0.521361
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −3.80385 −0.157002 −0.0785008 0.996914i \(-0.525013\pi\)
−0.0785008 + 0.996914i \(0.525013\pi\)
\(588\) 0 0
\(589\) −26.4641 −1.09043
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 23.0718 0.947445 0.473723 0.880674i \(-0.342910\pi\)
0.473723 + 0.880674i \(0.342910\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −14.4115 −0.588840 −0.294420 0.955676i \(-0.595126\pi\)
−0.294420 + 0.955676i \(0.595126\pi\)
\(600\) 0 0
\(601\) −24.3205 −0.992054 −0.496027 0.868307i \(-0.665208\pi\)
−0.496027 + 0.868307i \(0.665208\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −2.58846 −0.105062 −0.0525311 0.998619i \(-0.516729\pi\)
−0.0525311 + 0.998619i \(0.516729\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −6.92820 −0.280285
\(612\) 0 0
\(613\) −24.3923 −0.985196 −0.492598 0.870257i \(-0.663953\pi\)
−0.492598 + 0.870257i \(0.663953\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 12.0000 0.483102 0.241551 0.970388i \(-0.422344\pi\)
0.241551 + 0.970388i \(0.422344\pi\)
\(618\) 0 0
\(619\) −10.0000 −0.401934 −0.200967 0.979598i \(-0.564408\pi\)
−0.200967 + 0.979598i \(0.564408\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 14.1962 0.568757
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 29.3205 1.16909
\(630\) 0 0
\(631\) −0.0717968 −0.00285818 −0.00142909 0.999999i \(-0.500455\pi\)
−0.00142909 + 0.999999i \(0.500455\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −2.53590 −0.100476
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −12.8038 −0.505722 −0.252861 0.967503i \(-0.581371\pi\)
−0.252861 + 0.967503i \(0.581371\pi\)
\(642\) 0 0
\(643\) −14.5885 −0.575313 −0.287656 0.957734i \(-0.592876\pi\)
−0.287656 + 0.957734i \(0.592876\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −0.248711 −0.00977785 −0.00488893 0.999988i \(-0.501556\pi\)
−0.00488893 + 0.999988i \(0.501556\pi\)
\(648\) 0 0
\(649\) −13.3923 −0.525694
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 2.53590 0.0992374 0.0496187 0.998768i \(-0.484199\pi\)
0.0496187 + 0.998768i \(0.484199\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −2.53590 −0.0987846 −0.0493923 0.998779i \(-0.515728\pi\)
−0.0493923 + 0.998779i \(0.515728\pi\)
\(660\) 0 0
\(661\) 15.3923 0.598691 0.299346 0.954145i \(-0.403232\pi\)
0.299346 + 0.954145i \(0.403232\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 26.7846 1.03710
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −6.92820 −0.267460
\(672\) 0 0
\(673\) 38.3923 1.47991 0.739957 0.672654i \(-0.234846\pi\)
0.739957 + 0.672654i \(0.234846\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −40.6410 −1.56196 −0.780981 0.624555i \(-0.785280\pi\)
−0.780981 + 0.624555i \(0.785280\pi\)
\(678\) 0 0
\(679\) −2.00000 −0.0767530
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −21.4641 −0.821301 −0.410651 0.911793i \(-0.634698\pi\)
−0.410651 + 0.911793i \(0.634698\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −39.7128 −1.51294
\(690\) 0 0
\(691\) −10.0000 −0.380418 −0.190209 0.981744i \(-0.560917\pi\)
−0.190209 + 0.981744i \(0.560917\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −52.9808 −2.00679
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −17.8756 −0.675154 −0.337577 0.941298i \(-0.609607\pi\)
−0.337577 + 0.941298i \(0.609607\pi\)
\(702\) 0 0
\(703\) −27.6603 −1.04323
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 16.7321 0.629274
\(708\) 0 0
\(709\) 10.5359 0.395684 0.197842 0.980234i \(-0.436607\pi\)
0.197842 + 0.980234i \(0.436607\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −20.5359 −0.769075
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −17.1962 −0.641308 −0.320654 0.947196i \(-0.603903\pi\)
−0.320654 + 0.947196i \(0.603903\pi\)
\(720\) 0 0
\(721\) −50.2487 −1.87136
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 29.1769 1.08211 0.541056 0.840987i \(-0.318025\pi\)
0.541056 + 0.840987i \(0.318025\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −15.4641 −0.571960
\(732\) 0 0
\(733\) −43.5692 −1.60927 −0.804633 0.593773i \(-0.797638\pi\)
−0.804633 + 0.593773i \(0.797638\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −11.0718 −0.407835
\(738\) 0 0
\(739\) −26.1769 −0.962933 −0.481467 0.876464i \(-0.659896\pi\)
−0.481467 + 0.876464i \(0.659896\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 5.41154 0.198530 0.0992651 0.995061i \(-0.468351\pi\)
0.0992651 + 0.995061i \(0.468351\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −9.46410 −0.345811
\(750\) 0 0
\(751\) 40.7846 1.48825 0.744126 0.668040i \(-0.232866\pi\)
0.744126 + 0.668040i \(0.232866\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 20.3923 0.741171 0.370585 0.928798i \(-0.379157\pi\)
0.370585 + 0.928798i \(0.379157\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −30.1244 −1.09201 −0.546004 0.837783i \(-0.683851\pi\)
−0.546004 + 0.837783i \(0.683851\pi\)
\(762\) 0 0
\(763\) −21.6603 −0.784154
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 42.2487 1.52551
\(768\) 0 0
\(769\) 35.2487 1.27110 0.635551 0.772059i \(-0.280773\pi\)
0.635551 + 0.772059i \(0.280773\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −17.6603 −0.635195 −0.317598 0.948226i \(-0.602876\pi\)
−0.317598 + 0.948226i \(0.602876\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 49.9808 1.79075
\(780\) 0 0
\(781\) −19.3923 −0.693911
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 36.1962 1.29025 0.645127 0.764076i \(-0.276805\pi\)
0.645127 + 0.764076i \(0.276805\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0.928203 0.0330031
\(792\) 0 0
\(793\) 21.8564 0.776144
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −23.3205 −0.826055 −0.413027 0.910719i \(-0.635529\pi\)
−0.413027 + 0.910719i \(0.635529\pi\)
\(798\) 0 0
\(799\) 6.00000 0.212265
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0.339746 0.0119894
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −8.41154 −0.295734 −0.147867 0.989007i \(-0.547241\pi\)
−0.147867 + 0.989007i \(0.547241\pi\)
\(810\) 0 0
\(811\) −25.2487 −0.886602 −0.443301 0.896373i \(-0.646193\pi\)
−0.443301 + 0.896373i \(0.646193\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 14.5885 0.510386
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 3.33975 0.116558 0.0582790 0.998300i \(-0.481439\pi\)
0.0582790 + 0.998300i \(0.481439\pi\)
\(822\) 0 0
\(823\) 16.9282 0.590080 0.295040 0.955485i \(-0.404667\pi\)
0.295040 + 0.955485i \(0.404667\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 45.4641 1.58094 0.790471 0.612500i \(-0.209836\pi\)
0.790471 + 0.612500i \(0.209836\pi\)
\(828\) 0 0
\(829\) −51.7846 −1.79855 −0.899277 0.437380i \(-0.855907\pi\)
−0.899277 + 0.437380i \(0.855907\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 2.19615 0.0760922
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −8.41154 −0.290399 −0.145199 0.989402i \(-0.546382\pi\)
−0.145199 + 0.989402i \(0.546382\pi\)
\(840\) 0 0
\(841\) 30.7846 1.06154
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −21.8564 −0.750995
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −21.4641 −0.735780
\(852\) 0 0
\(853\) 0.196152 0.00671613 0.00335807 0.999994i \(-0.498931\pi\)
0.00335807 + 0.999994i \(0.498931\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 29.0718 0.993074 0.496537 0.868016i \(-0.334605\pi\)
0.496537 + 0.868016i \(0.334605\pi\)
\(858\) 0 0
\(859\) 7.78461 0.265607 0.132804 0.991142i \(-0.457602\pi\)
0.132804 + 0.991142i \(0.457602\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 49.5167 1.68557 0.842783 0.538253i \(-0.180915\pi\)
0.842783 + 0.538253i \(0.180915\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −24.9282 −0.845631
\(870\) 0 0
\(871\) 34.9282 1.18350
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −14.2487 −0.481145 −0.240572 0.970631i \(-0.577335\pi\)
−0.240572 + 0.970631i \(0.577335\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 6.80385 0.229227 0.114614 0.993410i \(-0.463437\pi\)
0.114614 + 0.993410i \(0.463437\pi\)
\(882\) 0 0
\(883\) 46.8372 1.57620 0.788098 0.615550i \(-0.211066\pi\)
0.788098 + 0.615550i \(0.211066\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −13.2679 −0.445494 −0.222747 0.974876i \(-0.571502\pi\)
−0.222747 + 0.974876i \(0.571502\pi\)
\(888\) 0 0
\(889\) −11.4641 −0.384494
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −5.66025 −0.189413
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −45.8372 −1.52876
\(900\) 0 0
\(901\) 34.3923 1.14577
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 1.21539 0.0403564 0.0201782 0.999796i \(-0.493577\pi\)
0.0201782 + 0.999796i \(0.493577\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −6.80385 −0.225422 −0.112711 0.993628i \(-0.535953\pi\)
−0.112711 + 0.993628i \(0.535953\pi\)
\(912\) 0 0
\(913\) 26.1962 0.866966
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 28.0526 0.926377
\(918\) 0 0
\(919\) 51.3923 1.69528 0.847638 0.530575i \(-0.178024\pi\)
0.847638 + 0.530575i \(0.178024\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 61.1769 2.01366
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 1.48334 0.0486668 0.0243334 0.999704i \(-0.492254\pi\)
0.0243334 + 0.999704i \(0.492254\pi\)
\(930\) 0 0
\(931\) −2.07180 −0.0679004
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −19.0718 −0.623048 −0.311524 0.950238i \(-0.600840\pi\)
−0.311524 + 0.950238i \(0.600840\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −8.53590 −0.278262 −0.139131 0.990274i \(-0.544431\pi\)
−0.139131 + 0.990274i \(0.544431\pi\)
\(942\) 0 0
\(943\) 38.7846 1.26300
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 52.6410 1.71060 0.855302 0.518130i \(-0.173372\pi\)
0.855302 + 0.518130i \(0.173372\pi\)
\(948\) 0 0
\(949\) −1.07180 −0.0347920
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 2.53590 0.0821458 0.0410729 0.999156i \(-0.486922\pi\)
0.0410729 + 0.999156i \(0.486922\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −12.0000 −0.387500
\(960\) 0 0
\(961\) 4.14359 0.133664
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −7.41154 −0.238339 −0.119170 0.992874i \(-0.538023\pi\)
−0.119170 + 0.992874i \(0.538023\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 22.2679 0.714612 0.357306 0.933987i \(-0.383695\pi\)
0.357306 + 0.933987i \(0.383695\pi\)
\(972\) 0 0
\(973\) 42.0526 1.34814
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −4.39230 −0.140522 −0.0702611 0.997529i \(-0.522383\pi\)
−0.0702611 + 0.997529i \(0.522383\pi\)
\(978\) 0 0
\(979\) 9.00000 0.287641
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 52.7321 1.68189 0.840946 0.541120i \(-0.181999\pi\)
0.840946 + 0.541120i \(0.181999\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 11.3205 0.359971
\(990\) 0 0
\(991\) 55.7846 1.77206 0.886028 0.463631i \(-0.153454\pi\)
0.886028 + 0.463631i \(0.153454\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −52.1962 −1.65307 −0.826534 0.562886i \(-0.809691\pi\)
−0.826534 + 0.562886i \(0.809691\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8100.2.a.t.1.2 2
3.2 odd 2 8100.2.a.s.1.2 2
5.2 odd 4 8100.2.d.m.649.4 4
5.3 odd 4 8100.2.d.m.649.1 4
5.4 even 2 1620.2.a.g.1.1 2
15.2 even 4 8100.2.d.l.649.4 4
15.8 even 4 8100.2.d.l.649.1 4
15.14 odd 2 1620.2.a.h.1.1 yes 2
20.19 odd 2 6480.2.a.bh.1.2 2
45.4 even 6 1620.2.i.n.541.2 4
45.14 odd 6 1620.2.i.m.541.2 4
45.29 odd 6 1620.2.i.m.1081.2 4
45.34 even 6 1620.2.i.n.1081.2 4
60.59 even 2 6480.2.a.bp.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1620.2.a.g.1.1 2 5.4 even 2
1620.2.a.h.1.1 yes 2 15.14 odd 2
1620.2.i.m.541.2 4 45.14 odd 6
1620.2.i.m.1081.2 4 45.29 odd 6
1620.2.i.n.541.2 4 45.4 even 6
1620.2.i.n.1081.2 4 45.34 even 6
6480.2.a.bh.1.2 2 20.19 odd 2
6480.2.a.bp.1.2 2 60.59 even 2
8100.2.a.s.1.2 2 3.2 odd 2
8100.2.a.t.1.2 2 1.1 even 1 trivial
8100.2.d.l.649.1 4 15.8 even 4
8100.2.d.l.649.4 4 15.2 even 4
8100.2.d.m.649.1 4 5.3 odd 4
8100.2.d.m.649.4 4 5.2 odd 4